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Abstract Single-shell high angular resolution diffusion
imaging data (HARDI) may be decomposed into a sum
of eigenpolynomials of the Laplace-Beltrami operator on
the unit sphere. The resulting representation combines the
strengths hitherto offered by higher order tensor decompo-
sition in a tensorial framework and spherical harmonic ex-
pansion in an analytical framework, but removes some of
the conceptual weaknesses of either. In particular it admits
analytically closed form expressions for Tikhonov regular-
ization schemes and estimation of an orientation distribution
function via the Funk-Radon Transform in tensorial form,
which previously required recourse to spherical harmonic
decomposition. As such it provides a natural point of de-
parture for a Riemann-Finsler extension of the geometric
approach towards tractography and connectivity analysis as
has been stipulated in the context of diffusion tensor imaging
(DTI), while at the same time retaining the natural coarse-
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to-fine hierarchy intrinsic to spherical harmonic decomposi-
tion.
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1 Introduction

High angular resolution diffusion imaging (HARDI) has be-
come a standard MRI technique for mapping apparent wa-
ter diffusion processes in fibrous tissues in vivo. The termi-
nology HARDI is used here to collectively denote schemes
that employ generic functions on the unit sphere, including
Tuch’s orientation distribution function (ODF) via classical
Q-Ball imaging [44], the higher order diffusion tensor model
and the diffusion orientation transform (DOT) by Özarslan
et al. [36, 37], analytical Q-Ball imaging [14, 15], and the
diffusion tensor distribution model by Jian et al. [27], et
cetera.

A homogeneous polynomial expansion of HARDI data
on the sphere has been proposed in a seminal paper by
Özarslan and Mareci [36], which we shall refer to on sev-
eral occasions further on. However, in this paper we con-
sider an inhomogeneous expansion, including all (even) or-
ders up to some fixed N (including N = ∞), and exploit
the redundancy of such a representation. The idea is to con-
struct a polynomial series on the unit sphere in such a way
that higher order terms capture residual degrees of freedom
that cannot be represented by a lower order polynomial, akin
to the hierarchical structure of a spherical harmonic expan-
sion. (A different higher order tensor model for the unre-
stricted case, with a specific focus on the representation of
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the apparent diffusion coefficient (ADC), has been proposed
by Liu et al. and Jensen et al. in terms of formal expansions
in the b-parameter [26, 33].)

Interestingly, each homogeneous term in the new poly-
nomial representation turns out to be self-similar under the
Laplace-Beltrami operator on the unit sphere, mimicking
the behaviour of its spherical harmonic equivalent. This
self-similar nature is the fundamental property underlying
many operations on HARDI that have hitherto been con-
sidered only in the context of a spherical harmonic decom-
position, such as Tikhonov regularization and estimation of
an orientation distribution function (ODF) from the ADC
[13, 14, 25, 38]. Regularization is of interest, since, unlike
DTI [10, 11, 30], a generic HARDI model accounts for ar-
bitrarily complex diffusivity profiles, thus raising the con-
comitant demand for regularization. ODFs are of interest for
their putative connection to the complex architecture of fi-
brous tissue.

The higher order tensor representation introduced by
Özarslan and Mareci (loc. cit.) does not exhibit self-
similarity, making it somewhat problematic in a context of
regularization or ODF estimation. (In this context, a func-
tion is called self-similar if it retains its form under regu-
larization, except possibly for an overall attenuation factor.)
The typical way to deal with this is to proceed via a spher-
ical harmonic representation, which is inconvenient if the
application context urges a tensorial approach, such as the
geometric rationale towards tractography and connectivity
analysis in classical DTI [4, 5, 16, 31, 38, 39]. Our poly-
nomial representation can be seen as a formal refinement
to the extent that degrees of freedom captured by a homo-
geneous N -th order tensor are decoupled and hierarchically
rearranged into self-similar monomials of degrees up to N ,
obviating an explicit spherical harmonic detour altogether.
(Spherical harmonics do play behind-the-scenes, as the span
of our homogeneous terms will be seen to coincide with that
of the spherical harmonics of corresponding order.)

2 Theory

We consider a higher order tensor representation of the
form1

u(y) =
∞∑

k=0

ui1...ik yi1 . . . yik . (1)

1Summation convention applies to identical index pairs, i.e. whenever
an identical index symbol occurs twice, once in lower and once in up-
per position, one tacitly sums over its possible values. Thus (1) is meant
to be read as u(y) = ∑∞

k=0
∑n

i1=1 . . .
∑n

ik=1 ui1...ik yi1 . . . yik . For k = 0
a product like yi1 . . . yik evaluates to unity by default, and a holor like
ui1...ik is to be understood as an index-free quantity, u [35, 42].

By yi and yi = ηij y
j we denote the components of vec-

tors (e.g. spatial directions), respectively dual covectors (e.g.
normalized diffusion sensitizing gradients), confined to the
unit sphere, and by ηij (respectively ηij ) the components of
the Euclidean metric tensor (respectively its inverse) in the
embedding 3-space. In Cartesian coordinates ηij = ηij = 1
iff i = j , otherwise 0. As outlined in the previous section
u(y) generically represents any HARDI-related scalar ob-
servable that can be represented as a function on the unit
sphere. In typical cases in practice it is stipulated that

u(y) = u(−y), (2)

in which case only even orders will be of interest. This sym-
metry property, or equivalently the identification of antipo-
dal points, −y ∼ y, implies that y actually represents ori-
entation, not direction. We will only occasionally need this
symmetry, in which case it will be explicitly indicated. Note
that u(y) represents a single codomain sample (e.g. signal
strength as a function of direction/orientation at a fiducial
point in space), its dependence on the spatial domain vari-
able x ∈ R

3 is suppressed in the notation.
The collection of polynomials on the sphere,

B =
⋃

k∈Z
+
0

Bk with Bk = {
yi1 . . . yik | k ∈ Z

+
0

}
, (3)

is complete, but redundant. Apart from the fact that odd or-
ders might be of no interest, redundancy is evident from
the fact that lower order even/odd monomials can be repro-
duced from higher order ones of equal parity through con-
tractions as a result of ηij yiyj = 1 (unit sphere confinement
or “single-shell” restriction). Thus any monomial of order
k ≤ N ∈ Z

+
0 is linearly dependent on the set of N -th or-

der monomials of equal parity. This, of course, justifies the
approach by Özarslan and Mareci, in which data are fitted
against linear combinations of N -th order monomials, dis-
carding all lower order terms.

However, exploiting the redundancy of B, (3), we may
choose to encode residual information in higher order tensor
coefficients. As N → ∞ this residual tends to zero, while
all established tensor coefficients of ranks lower than N re-
main fixed in the process of incrementing N . The coeffi-
cients are constructed as follows. Suppose we are in posses-
sion of ui1...ik for all k = 0, . . . ,N − 1, then we consider the
function

EN(uj1...jN ) =
∫ (

u(y) −
N∑

k=0

ui1...ik yi1 . . . yik

)2

dy (4)

to find the N -th order coefficients by minimization (integra-
tion here and henceforth takes place over the unit sphere).
Setting

∂EN(uj1...jN )

∂ui1...iN
= 0, (5)
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one obtains the following linear system for the contravariant
tensor coefficients ui1...iN :

Ai1...iN j1...jN
uj1...jN

=
∫

u(y)yi1 . . . yiN dy −
N−1∑

k=0

Ai1...iN j1...jk
uj1...jk , (6)

with symmetric covariant tensor coefficients

Ai1...ik =
∫

yi1 . . . yik dy.

Note that the second inhomogeneous term on the r.h.s. of (6)
is absent in the scheme proposed by Özarslan and Mareci.
By symmetry considerations constant odd-rank tensors van-
ish:

Ai1...i2k+1 = 0 (k ∈ Z
+
0 ). (7)

All even-rank constant tensors must be products of the
Euclidean metric tensor, so we stipulate

Ai1...i2k
= γkη(i1i2 . . . ηi2k−1i2k), (8)

for some constant γk . Parentheses symbolize index sym-
metrization, i.e. if Ti1...ip is a rank-p tensor, then

T(i1...ip) = 1

p!
∑

π

Tπ(i1...ip), (9)

in which the summation runs over all p! permutations π

of index positions. The constant γk needs to be determined
for each k ∈ Z

+
0 . One way to find γk is to evaluate (8) for

i1 = · · · = i2k = 1 in a Cartesian coordinate system, since
the symmetric product of metric tensors on the r.h.s. evalu-
ates to 1 for this case:

γk = A1...←2k indices→...1 =
∫

y2k
1 dy. (10)

This is a special case of the closed-form multi-index repre-
sentation by Folland [21] and Johnston [28]:

∫
y

α1
1 . . . yαn

n dy = 2

Γ ( 1
2 |α| + n

2 )

n∏

i=1

Γ

(
1

2
αi + 1

2

)
, (11)

if all αj are even (otherwise the integral vanishes). Here
|α| = α1 + · · · + αn = 2k denotes the norm of the multi-
index, and

Γ (t) =
∫ ∞

0
st−1e−sds (12)

is the gamma function. Relevant properties: Γ (�) = (�− 1)!
and Γ (� + 1

2 ) = (� − 1
2 ) . . . 1

2

√
π = (2�)!√π/(4��!) for

� ∈ Z
+
0 .

From (6) and (7–8) it follows that, for general spatial di-
mension n,

Ai1...i2k
= 2Γ (k + 1

2 )Γ ( 1
2 )n−1

Γ (k + n
2 )

η(i1i2 . . . ηi2k−1i2k). (13)

Equations (7) and (13) form the tensorial counterpart of (11).
Note that the coefficients Ai1...ik are independent of the
physical interpretation of the expansion on the r.h.s. of (1)
as long as its construction is based on an energy minimiza-
tion principle of the form (4) for the observable of interest.

The interesting property of our inhomogeneous expan-
sion, viz. that it realizes a (partial) hierarchical ordering of
degrees of freedom akin to the one induced by spherical har-
monic decomposition, is manifest in the following observa-
tion. Consider the Laplace-Beltrami operator Δ on the unit
sphere, then for any N ∈ Z

+
0 ∪ {∞} and t > 0,

uN(y, t) ≡ etΔuN(y) =
N∑

k=0

ui1...ik (t)yi1 . . . yik , (14)

with

ui1...ik (t) = e−k(k+1)tui1...ik . (15)

A proof of (14–15) is provided elsewhere [17], where it
is shown that the span of the homogeneous polynomi-
als ui1...ik yi1 . . . yik for fixed k coincides with that of the
spherical harmonics Ykm(y) (with m = −k,−k + 1, . . . ,

k − 1, k) of the same order, and hence constitutes a de-
generate eigenspace of the Laplace-Beltrami operator with
eigenvalue −k(k + 1). (It is understood, in this case, that
n = 3, and that the coordinates y ∈ R

3 of the embedded
unit sphere are parameterized in terms of the usual spherical
coordinates θ,φ.) This is nontrivial, since the monomials
yi1 . . . yik themselves are not eigenfunctions of Δ. Indeed,
(14–15) show that the degrees of freedom in the polynomial
expansion are segregated in such a way that we may inter-
pret each homogeneous term as an incremental refinement
of detail relative to that of the lower order expansion. To ap-
preciate the significance of (14), note that uN(y, t) satisfies
the heat equation on the unit sphere:

∂u

∂t
= 1√|g|∂μ

(
gμν

√|g|∂νu
)

= Δu, (16)

in which the initial condition corresponds to the N -th or-
der expansion of the raw data, uN(y,0) = uN(y), and |g| =
detgμν . Here the Riemannian metric of the embedded unit
sphere is given by

gμν = ∂yi

∂ξμ
ηij

∂yj

∂ξν
, (17)
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in which ξμ (μ = 1, . . . , n− 1) parameterize the unit sphere
in R

n. It is evident from the above that the linear com-
binations ui1...ik yi1 . . . yik , unlike the monomials yi1 . . . yik

themselves, are eigenfunctions of the heat operator exp(tΔ),
i.e. self-similar polynomials on the unit sphere, with eigen-
values e−k(k+1)t . Recall that the heat operator can be seen
as the canonical resolution degrading2 semigroup opera-
tor [29]. The parameter t captures inverse angular resolu-
tion at which the raw HARDI data are resolved (at a fixed
point in space). Indeed, (14) shows that each homogeneous
polynomial (k fixed) retains its form upon blurring (increas-
ing t), up to a t-dependent attenuation factor e−k(k+1)t . This
characteristic decay is analogous to the e−t‖ω‖2

-attenuation
of a Gaussian blurred image in the Euclidean frequency do-
main, with frequency coordinate ω ∈ R

n. Cf. Descoteaux
et al. [14] and Hess et al. [25] for similar regularization
schemes expressed relative to a spherical harmonic basis,
and to Florack et al. [18] for a comparison between the
spherical harmonic and tensorial approaches towards regu-
larization.

3 Examples

We consider some examples of possible application contexts
for the generic theory presented in the previous section.

3.1 Relation to Higher Order DTI and Regularization

In this example we consider the Stejskal-Tanner equa-
tion [43],

S(y) = S0 exp (−bD(y)) , (18)

and identify the generic function u(y) from the previous the-
ory with the ADC D(y), considered as a function of orien-
tation (in particular, D(y) = D(−y)).

Here are some examples of (13) for the relevant case,
n = 3:

k = 0: A = 4π,

k = 1: Aij = 4π

3
ηij ,

k = 2: Aijk� = 4π

15
(ηij ηk� + ηikηj� + ηi�ηjk).

The corresponding linear systems, (6), are as follows:

AD =
∫

D(y)dy,

AijD
j =

∫
D(y)yidy − AiD,

Aijk�D
k� =

∫
D(y)yiyj dy − AijD − AijkD

k.

2“Degrading” is meant in a sense akin to cartographic generalization,
i.e. without negative connotation.

It follows that the scalar constant D is just the average dif-
fusivity:

D =
∫

D(y)dy∫
dy

. (19)

The constant vector Di vanishes identically, as it should
(since no basis independent constant vectors exist). For the
rank-2 tensor coefficients we find the traceless matrix

Dij = 15
∫

D(y)yiyj dy − 5
∫

D(y)dyηij

2
∫

dy
, (20)

and so forth. If, instead, we fit a homogeneous second order
polynomial to the data (by formally omitting the

∑
-terms

on the r.h.s. of (6)), as proposed by Özarslan and Mareci, we
obtain the following rank-2 tensor coefficients:

DÖ.M.

ij = 15
∫

D(y)yiyj dy − 3
∫

D(y)dyηij

2
∫

dy
, (21)

which are clearly different. However, one may observe that
the full second order expansions coincide. The difference in
coefficients, in this example, is explained by the contribution
already contained in the lowest order term of our polyno-
mial, which in Özarslan and Mareci’s scheme has migrated
to the second order tensor.

In fact, we conjecture that equality holds to any order N .
More precisely, if DN(y) denotes the truncated expansion
of (1) including monomials of orders k ≤ N only, with
coefficients constructed according to (6–13), DÖ.M.

N (y) the
N -th order homogeneous polynomial expansion proposed
by Özarslan and Mareci, and DS.H.

N (y) the canonical spheri-
cal harmonic decomposition, cf. Frank [22] and Alexander
et al. [1], then

DN(y) = DÖ.M.

N (y) = DS.H.

N (y). (22)

(The formal limit N → ∞ makes sense only for left and
right hand sides.) This shows the equivalence of all three
representations.

In particular (14) reveals that the classical rank-2 DTI
representation, defined via the Stejskal-Tanner formula,
(18), arises not merely as an approximation under the as-
sumption that the apparent diffusion coefficient can be writ-
ten as

D(y) ≈ DDTI(y) = Dij
DTIyiyj , (23)

but expresses the exact asymptotic behaviour of D(y, t) =
D∞(y, t) as t → ∞, recall (14):

D(y, t) =
(
Dηij + e−6tDij

)
yiyj

︸ ︷︷ ︸
DDTI(y, t) = D

ij
DTI(t)yiyj

+O(e−20t ). (24)
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Thus the DTI tensor is not self-similar, but has a bimodal
resolution dependence. The actual limit of vanishing reso-
lution is of course given by a complete averaging over the
sphere:

lim
t→∞D(y, t) = lim

t→∞DDTI(y, t) = D, (25)

recall (19).
The generalized counterpart of (24) suggests a Finsler [6,

7, 34] rather than Riemannian [5, 16, 31, 32, 38, 39] frame-
work for tractography and connectivity analysis, whereby
one replaces the contravariant rank-2 (dual metric) tensor
DDTI(y, t) by

Dij
HARDI(y, t) = Dij

DTI(t) +
∞∑

k=1

Di1...ikij (t)yi1 . . . yik , (26)

with multimodal additional y-dependent terms as defined
in (14). For details on Finsler geometry the books by Bao
et al. [8] and Shen [41] are highly recommended. Litera-
ture on Riemannian geometry is abundant. Spivak [42] and
Misner et al. [35] are classics. Rund [40] provides a useful
variational perspective.

3.2 Derivation of an ODF via the Funk-Radon Transform

In the second example we identify the function u(y) from
Sect. 2 with a raw HARDI signal (again at an implicitly de-
fined spatial locus x ∈ R

3). The precise way of identification
will become clear soon.

To begin with, we consider the hypothetical signal func-
tion S(q) defined for all Euclidean diffusion wave vectors
q ∈ R

3, and recall its relation to the diffusion probability
function P(r), with Euclidean displacement vector r ∈ R

3,
via Fourier transformation:

P(r) =
∫

R3
S(q)e2πir·qdq. (27)

Considerations of signal-to-noise ratio and acquisition time
have led Tuch [44] to introduce the single-shell orienta-
tion diffusion function (ODF), defined on the unit sphere
‖y‖ = 1,

Ψ (y) =
∫ ∞

0
P(λy)dλ, (28)

and to consider an approximation ΨQ(y) ≈ Ψ (y) in the
form of the so-called extended Funk-Radon transform in
terms of a single-shell acquisition in q-space:

ΨQ(y) =
∫

R3
S(q)δ(q · y)δ(‖q‖ − Q)dq, (29)

in which Q > 0 denotes the radius of the acquisition shell in
q-space. This “Q-ball” reconstruction has gained popular-
ity because of the data acquisition efficiency of single-shell
recordings and for its robustness (for not too large Q).

There exist similar analytical approaches towards Q-ball
imaging, cf. Descoteaux et al. [14], Anderson [2], and Hess
et al. [25], all of which exploit spherical harmonic decompo-
sition. We focus on the approach by Descoteaux et al. based
on the so-called Funk-Hecke theorem, which yields for any
spherical harmonic function Y�m(y) of capital order �

∫

‖η‖=1
δ(y · η)Y�m(η)dη = 2πY�m(y)P�(0) (30)

in which P�(t) denotes the Legendre polynomial of de-
gree �. Note that for even � = 2k we have

P2k(0) = (−1)k(2k)!
22k(k!)2

= (−1)k√
π

Γ (k + 1
2 )

Γ (k + 1)
. (31)

Taking into account that the homogeneous polynomials, i.e.
the terms in (1) and (14) with k fixed, belong to the span of
the spherical harmonics of the same order k, (29) and (30)
allow us to write the ODF in tensor representation with ten-
sorial coefficients Si1...ik induced by the signal S = S∞,

S(y) =
∞∑

k=0

Si1...ik yi1 . . . yik , (32)

according to the general recursive scheme given by (6):

Ψ (y) = 2π

∞∑

k=0

Pk(0)Si1...ik yi1 . . . yik . (33)

Analogous to (14) we may incorporate a regularization para-
meter via a suitable generator based on the Laplace-Beltrami
operator on the unit sphere, e.g.

Ψ (y, t) = 2π

∞∑

k=0

Pk(0)Si1...ik (t)yi1 . . . yik , (34)

with t-dependent attenuation of coefficients, recall (15).
(Truncation at finite order N results in an additional regu-
larization effect.)

In particular, the example shows that no explicit detour
via a spherical harmonic representation is needed to achieve
a closed-form analytical Q-ball representation within a ten-
sorial framework. The resulting diffusion ODF is equivalent
to the one obtained from the established analytical Q-ball
algorithm in the spherical harmonic basis. This is of inter-
est in Q-ball applications where the tensor formalism is the
preferred choice, such as in a differential geometric (notably
Finslerian) approach towards tractography and connectivity
analysis.

3.3 Spatial Regularization

Realizing that the unit-sphere function and its coefficients
introduced in (14–15) also depend on a spatial variable
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x ∈ R
3, we may consider to combine regularization in the

spatial domain (with a control parameter s > 0 for spatial
coherence, cf. Assemlal et al., Chen et al. and Goh et al.
[3, 12, 24]) with codomain regularization (with the indepen-
dent parameter t > 0 for signal smoothing at fixed position),

uN(x, y, s, t) = esΔx etΔy uN(x, y)

=
N∑

k=0

ui1...ik (x, s, t)yi1 . . . yik , (35)

in which Δx is the standard Laplacian for Euclidean 3-
space, and Δy the one appropriate for the unit sphere (Δ in
the foregoing). For example, on an unbounded domain the
operator esΔx can be identified (in spatial representation) as
Gaussian convolution:

ui1...ik (x, s, t) = e−k(k+1)t (ui1...ik ∗ φs)(x), (36)

in which

φs(x) = 1
√

4πs
3

exp

(
−‖x‖2

4s

)
. (37)

Other types of regularization and domain boundary restric-
tions can be straightforwardly accounted for. In particular
this combined domain–codomain regularization can be ap-
plied to the polynomial representations of the spatially ex-
tended ADC function D(x,y) from Sect. 3.1 and signal
function S(x, y) from Sect. 3.2.

As a special case, recall the Q-Ball representation of (34)
and consider it as a function of position in Euclidean space
R

n, then we may write the doubly-regularized ODF as

Ψ (x, y, s, t) = 1

(2π)n

∞∑

k=0

∫

Rn

eiω·xe−s‖ω‖2
e−k(k+1)t

× Ψ̂ i1...ik (ω)yi1 . . . yik dω, (38)

with spatial Fourier coefficients

Ψ̂ i1...ik (ω) =
∫

Rn

e−iω·xΨ i1...ik (x)dx, (39)

and, in terms of the coefficients of the actual raw signal,

Ψ i1...ik (x) = 2πPk(0)Si1...ik (x). (40)

This double-frequency representation, (38–40), reveals the
effect of simultaneous regularization in the (infinite) spa-
tial domain and on the (compact) unit sphere as a high-
frequency attenuation process (with continuous, respec-
tively discrete frequency spectrum for ω and k). Of course,
an equivalent representation can be obtained using the spher-
ical harmonic basis {Ykm|k = 0,1,2, . . . ;−k ≤ m ≤ k} in-
stead of the redundant set B of (3).

In the Riemann geometric rationale the (pointwise) in-
verse of the contravariant diffusion tensor image is identified
with the (covariant) metric tensor. In the Finsler geometric
rationale one may instead stipulate a Finsler norm function
F(y) as a generalization of a Riemannian metric induced

norm
√

gij yiyj , so that the corresponding (regularized) dual

Finsler metric is given by

gij (x, y, s, t) = ∂2Ψ (x, y, s, t)

∂yi∂yj

. (41)

By definition (ignoring our control parameters for regular-
ization)

gij (x, y) = ∂2F 2(x, y)

∂yi∂yj
, (42)

is called the (covariant) Finsler metric, and so we have the
following relation with the ODF, recall (38):

∂2Ψ (x, y, s, t)

∂yi∂yk

∂2F 2(x, y, s, t)

∂yk∂yj
= δ

j
i . (43)

We stipulate this as our conjecture for a rigorous Riemann-
Finsler geometric approach towards tractography and con-
nectivity analysis.

To actually prove this conjecture beyond heuristics a
more thorough investigation of this “correspondence prin-
ciple” will need to be conducted. In any case, the interesting
feature of any Finsler metric, such as (41), is its directional
dependence, i.e. its dependence on y, which distinguishes
it from a Riemannian metric. The latter arises as a special
case, either as the hypothetical case in which all coefficients
of orders k > 2 happen to vanish identically, or, in an oper-
ational sense, in the asymptotic limit of large regularization
t � 0 in the signal codomain akin to (24). We refer to the
literature for details on Riemann-Finsler geometry [8].

Figure 1 shows a synthetic example of a single-shell
signal, illustrating the effect of combined domain and
codomain regularizations. The example was created using
a Gaussian mixture model:

S = 1

2
S0

(
e−bgT D1g + e−bgT D2g

)
, (44)

in which D1 and D2 are linear tensors with principal eigen-
vectors oriented along stipulated fibers, and eigenvalues
(3,3,17) × 10−4 mm2/s. The b-value is 1000 s/mm2 and
the number of gradient directions 80.

The glyphs in the first column of Fig. 1 vary from top
to bottom due to spatial averaging only (a Gaussian scale
space process), i.e. no regularization is applied to their lo-
cal profiles. On the other hand, going from left to right, we
observe a simplification of these profiles that is exclusively
driven by pointwise regularization in the signal domain, i.e.



J Math Imaging Vis (2010) 38: 171–181 177

Fig. 1 Artificial data of
crossing fibers built with a
Gaussian mixture model, and
perturbed by Rician noise with
SNR = 15.3. From left to right:
signal (codomain)
regularization, with
t = 0.00,0.018,0.050,0.14.
From top to bottom: spatial
(domain) regularization, with
s = 0.00,0.22,0.37,0.61.
Recall (35). Cf. text for
explanations

a parallel process involving no spatial neighbourhood inter-
actions. In general one will need to incorporate both types
of regularization for reasons of robustness and depending
on data and objective. It is not a priori self-evident that a
single pair of parameters (s, t) (“scale selection”) may work
in practical applications, although it is an obvious first step
towards more sophisticated attempts to solve the notorious

problem of scale (“deep structure”), e.g. through a coarse-

to-fine approach. Even in the one-parameter case this is still

an outstanding problem [20, 29].

Figure 2 shows an RGB map representing the princi-

pal diffusion directions (main eigenvector of DTI tensor) in

a Wistar rat brain (red: left-right, green: anterior-posterior,
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Fig. 2 Brain of 17-week old
male Wistar rat, and region of
interest

blue: superior-inferior). The luminance is weighted by the
fractional anisotropy value.

The rat brain data were measured on a 9.4T Bruker
Biospec AVANCE-III system. HARDI was acquired using
a diffusion-weighted spin-echo sequence with two unipo-
lar pulsed field gradients placed symmetrically around the
180 degree pulse (TE 27 ms, TR 4000 ms, NA 1, total time
19 hours). Fifteen coronal slices with slice thickness 500 µm
and interslice gap 50 µm were measured. The matrix size
was 128 × 128, zero-filled to 256 × 256 pixels. The FOV
was 25.6 × 25.6 mm2, leading to an in-plane pixel dimen-
sion of 100 µm. A series of 54 images with different gra-
dient directions and b-value 3000 s/mm2, together with an
unweighted image, was measured.

The enlarged ROI3 on the right-hand side in Fig. 2 fo-
cuses on the junction of the internal capsule (large white
matter bundle, represented as a bright green structure, partly
seen in the lower left corner of the ROI) and the zona in-
certa (gray matter, lying just above the internal capsule). In
the zona incerta, many small fiber bundles are intermingled,
causing crossings to occur in the HARDI data. These fiber
bundles include tracts from the subthalamic nucleus to more
lateral nuclei such as the globus pallidus.

Figure 3 shows the combined (three-dimensional) regu-
larization in domain and codomain for the ROI. Again, no-
tice that the apparent smoothing effects visible in the glyph
representations have various causes. On the top row smooth-
ing is entirely due to individual glyph regularization (low-
ering of angular resolution). In the left column smoothing
of glyphs is caused by Gaussian weighted spatial averag-
ing only (lowering of spatial resolution). For tractography
purposes one may want to control both spatial and angular
resolution depending on the size of the structures of interest,
signal-to-noise ratio, robustness, et cetera.

3In human subjects, proper fiber tracking in a similar region might be
important for neurosurgical purposes such as the planning of electrode
implantation for deep brain stimulation of the subthalamic nucleus.

4 Conclusion and Recommendations for Future Work

We have posited a tensorial decomposition of HARDI-
related functions on the unit sphere in terms of inhomo-
geneous polynomials. The resulting polynomial represen-
tation may be regarded as the tensorial counterpart of the
canonical spherical harmonic decomposition. Although for-
mally equivalent to the homogeneous polynomial expan-
sion proposed by Özarslan and Mareci [36], our inhomo-
geneous expansion differs in an essential way. It segregates
the HARDI degrees of freedom into a hierarchy of homoge-
neous polynomials that are self-similar under the act of reso-
lution degradation induced by the heat operator, exp(tΔ), or
similar Tikhonov regularization operators of the type f (tΔ),
each with a characteristic decay that depends on order (for
fixed t ∈ R

+).
The polynomial framework is generically applicable to

single-shell representations. In the context of HARDI we
have illustrated its potential use by several examples. One
is the well-posed extension of rank-2 DTI to arbitrary ranks
while simultaneously controlling regularity via a control pa-
rameter t > 0, exploiting the special properties of the ho-
mogeneous terms. The asymptotic case of almost vanish-
ing resolution (t → ∞) reproduces the diffusion tensor of
classical diffusion tensor imaging (DTI), with one constant
and one resolution-dependent mode. Whereas this example
is based on the Stejksal-Tanner equation for the ADC, a sec-
ond example involves only the HARDI signal itself, and
mimics the popular analytical Q-ball rationale within the
tensorial framework, again by virtue of the special proper-
ties of the homogeneous terms in the polynomial expansion.
A third example shows how the representations can be si-
multaneously regularized in spatial and signal domains, in-
troducing a second regularization parameter s > 0 (scale)
for spatial coherence. A suggestion for future research is
to consider regularization in domain and/or codomain, (35),
for sufficiently small negative values of s and t , in com-
bination with truncation at some optimal order N(s, t) for
the purpose of enhancement (inverse diffusion). Truncation
makes this scenario well-posed, but amplification of noise



J Math Imaging Vis (2010) 38: 171–181 179

Fig. 3 Recall Fig. 2, and (35).
From left to right: signal
(codomain) regularization, with
t = 0.00,0.0025,0.018,0.14.
From top to bottom: spatial
(domain) regularization, with
s = 0.00,0.10,0.15,0.22. Cf.
text for explanations

requires a careful balance of order versus enhancement pa-
rameter(s). A similar case has been studied in the context of
grey-value images (trivial codomain) and spatial deblurring
[19] as an extension of traditional image sharpening. ODF
enhancement in the HARDI codomain may facilitate fiber
tracking.

In all cases, and unlike in previous work, analytical
manipulations are carried out directly within the tensorial
framework, i.e. without the need to map terms to a spherical
harmonic basis. This is especially attractive in the context
of a differential geometric rationale. The theory in this pa-
per naturally suggests a shift of paradigm for tractography
and connectivity analysis based on a Finslerian rather than
Riemannian geometry combined with Tikhonov-like regu-
larization, and provides the basic operational concepts for
this.

Several major conceptual issues will need to be addressed
in the future in order to apply Finslerian geometry to HARDI
problems. One concerns the requirement of positivity, both
dictated by the physical nature of diffusion weighted imag-
ing as well as by the axiomatic constraint imposed on the
Finsler function [8]. Positivity has been addressed in the

case of fourth order representations, cf. Barmpoutis et al.
and Ghosh et al. [9, 23]. A second problem concerns the
rigorous derivation of the Finsler function itself in terms
of HARDI measurement data and the underlying physics of
water diffusion. Our suggestion in this paper is of a heuristi-
cal nature. A third problem concerns the fact that choices
will need to be made when extending methods for trac-
tography and connectivity analysis from the Riemannian to
the more general Finslerian framework, for these extensions
are not necessarily unique. For instance, the uniqueness of
an a priori reasonable (torsion-free) connection compati-
ble with the metric in the Riemannian framework is lost in
the Finslerian case, and ambiguities will need to be taken
away by physical considerations and/or experimental vali-
dation.
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