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Abstract

In this paper, the minimization of a weighted total variati@gularization term with.® norm
as the data fidelity term is addressed using Uzawa blockattaxmethods. The unconstrained
minimization problem is transformed into a saddle-poirtigem by introducing a suitable aux-
iliary unknown. Applying a Uzawa block relaxation methodth@ corresponding augmented
Lagrangian functional, we obtain a new numerical algoritimnmwhich the main unknown is
computed using Chambolle projection algorithm. The aawfliunknown is computed explic-
itly. Numerical experiments show the availability of ougatithm for salt and pepper noise
removal or shape retrieval and also its robustness agdiesthoice of the penalty parameter.
This last property allows us to attain the convergence irdaced number of iterations leading
to efficient numerical schemes. Moreover, we highlight te that an appropriate weighted to-
tal variation term, chosen according to the properties @fititial image, may provide not only
a significant improvement of the results but also a geoméhligcing of the image components.

Keywords: Total variation,L* norm, augmented Lagrangian, Fenchel duality, Uzawa method
salt and pepper noise removal, shape retrieval, geomdteidrfg.



1 Introduction

In many image processing problems, a denoising step isregtjtd remove noise or spurious de-
tails from corrupted pictures. Variational approachesshgained a wide popularity these years
due to the possible addition of well-chosen regularity 'erdamong the most influential models,
we can cite the total variation minimization framework adtced by Rudin and Osher [40] and
Rudin, Osher and Fatemi [41]. In this framework, given a ynamsage f(x), they propose to
recover the original image(x) by minimizing the total variation undér® data fidelity:

E(u):/Q|Du(x)|dx+A/Q(u(x)—f(x))de, (1.1)

whereQ C R?, is the image domain aml a positive scale parameter.
Such a minimization allows the recovery of a simple georoetescription of the image while
preserving boundaries. This framework is then very efficignen denoising images with flat
zones but fails in preserving texture details. It also failsemoving contrasted and isolated
pixels in images corrupted by an impulse noise. Another Heak is that the minimizer presents
aloss of contrast due to thé data fidelity term as mentioned in [19].

Consequently, many recent works propose to investigataihienization of a total variation
regularization term with &' data fidelity term:

E(u):/Q|Du(x)|dx+)\/Q|u(x)—f(x)|dx. (1.2)

This energy is non strictly convex and thus the global mimeniis not unique on the contrary
to the energy (1.1). However the norm presents some interesting properties [19] and then
outperforms thed.2 norm for applications such as impulse noise removal [37 a28hape de-
noising [6, 38, 10]. The minimization &fV + L! yields a contrast invariant filter [19, 21] and
well preserves contrasted features at different scales.

In [10], the authors propose to use a weighted total vanatgularization term, denoted by
TV, instead ofTV and they search for the imageavhich minimizes:

E(u) = /Q g(x)|Tu(x)] dx+ A /§.2|u(x)—f(x)|dx, (1.3)

whereg : Q — R* is a function independent of

Wheng is chosen as an edge indicator function of the inputimagg, (g¢x) = 1/(1+|0f])), the
weighted TV norm allows a better preservation of cornerssrap angles in shape denoising.
More important, the introduction of such a function allowsestablish a link betweefvy and
the Geodesic active contours model introduced by [13, 3[lad4n improvement of the original
snhakes [30]. This point will be further explained in SectBdevoted to the geometric properties
of the model.

The minimization of functionals (1.2) and (1.3) is not tal/due to their non differentiability.
Recent papers addressed the minimizatiom\éf+ L using various numerical algorithms. For
example, standard calculus of variations and Euler-Lagratuations can be used to compute
the PDE that will drive the functional towards a minimum [6, 38, 10]. This method requires



a smooth approximation of tHe* norm and a small time step much be chosen so as to ensure
the convergence. This often leads to a large number of ib@saias mentioned by [10]. In
[16], a MRF (Markov Random Field) model is proposed whichsude anisotropic separable
approximation (i.e|0u| = |Dyu| + |Dyu| whereDy andDy are the horizontal and vertical discrete
derivative operators). This approximation is also usedi R3] where the authors proposed
an efficient graph-cut method. In all these approaches, progimation or a smoothing of the

L norm is required. In [10], following the works of [18, 15, 4féh more particularly [5], an
elegant fast minimization algorithm based on a dual fortmhais proposed. Thanks to such
approaches, they do not need any approximation or smoottiitige L* norm, they only use a
convex regularization of the criterion as follows (first posed by [5]):

Er(u,v):/Qg(x)\Du(x)]der%/Q\U(X)Jrv(x)— f(x)\zdx+)\/Q\v(x)]dx (1.4)

In their algorithm, the penalty parametemust be chosen large enough so as to ensure that
f = u+vwhere the functioru represents the geometric information (piecewise smogfioms)
and the functiorv captures the texture information [34, 43, 5]. The choicehef penalty pa-
rameterr can then be problematic and the influence of this parametepovergence must be
deeply studied. Moreover, choosimgoo large may lead to an increase computational time
(ill-conditioning).

Based on this very interesting work and after a reminder efgéhometric properties of this
model, we propose a new numerical scheme for the minimizatf1.3) using Uzawa (dual)
methods. Indeed, (1.4) is the penalty functional assatiafiéh the constrained minimization
problem .
min E(uv) = /Q g(x)|Tu(x)] dx+ A /Q V()| dx. (L5)

u+v=

The “natural” improvement of the method proposed by [10h&rntto associate the penalty and
multiplier methods, i.e. an augmented Lagrangian methbe. augmented Lagrangian method
combines the features of the penalty and primal-dual agpraad moderates the disadvantages
of both. Moreover, convergence in augmented Lagrangiamadstcan usually be attained
without the need to increasdo infinity, see e.g. [7]. We then propose a Uzawa block ralara
algorithm based on the augmented Lagrangian functionataded with (1.5). In each iteration
of our algorithm, the main unknown is computed using Chambolle algorithm [15], and the
auxiliary unknownv is computed explicitly using Fenchel duality theory.

The numerical scheme is then tested and evaluated for shipgper noise removal and
shape denoising in order to demonstrate the applicabifitpup method. We show that the
proposed algorithm is robust against the choice of the pepafameter. The optimal choice
for the penalty parameter leads to an efficient scheme instefmumber of iterations and then
computational time. Besides, we also propose to study theeimce of well-chosen functions
g in order to improve shape retrieval or salt-and-pepperenmsoval. An efficient algorithm,
denoted UBR-EDGE, is then proposed and evaluated for thisalaplication. We also give
an example showing that this function can help us to perfogeanetrical filtering of shape
components.

The paper is organized as follows. In Section 2 we presenThet- L1 model followed
by its geometric properties in Section 3. In Section 4, weothice the augmented Lagrangian
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formulation of theTVy+L* model. The Uzawa block relaxation method is detailed iniSe@.
The convergence of the algorithm is presented in Sectioolléyfed by numerical experiments
in Section 7.

2 Introduction of the TV + L!-norm minimization problem

Let Q be a two-dimensional bounded open domaifR8fwith Lipschitz boundary. An image
can be interpreted as a real function definedor a suitable discretization of this continuous
image. We consider the following convex energy functiongfired, for anyf < L1(Q), any
g: Q — R" and any positive parametar.

amzlﬁummawn+yémw_f®mx @.1)

Our aim is the minimization of the energy functiorigli.e.
in E 2.2
ueg]\/l?Q) (u)7 ( )

whereBV (Q) is the subspace of functiomss L1(Q) such that

|Oul :=sup| [ ud-¢dx| ¢ € €HQ,R?), |p| < 1| < oo
o= e |, |

with O- ¢ = divg. Itis known thatBV (Q) is a Banach space when equipped with its “natural”
norm

I v vy =l u ey + . 100l

In order to approximate (2.1) by an augmented Lagrangiaryseehe following minimization
problem
minE(u) (2.3)

uev

whereV =W11(Q)NL?(Q). In practice, discrete operators are considered.

In two-dimensional form, an image is an array of sikex N. The Euclidean spadgN*N
is denoted byX and equipped with the? scalar productu,v)yx = ¥ 1<ij<n UijVij and the norm
| ulliz= v/(u,u)x. TheL! norm is defined by u || 1= ¥ 1 j<n |Uij|- If u€ X, Ouis a vector
inY = X x X defined bydu = ((Ouij)*, (Ouij)?), with

1) Uipnj — Ui if i <N 2 Ui j+1— Ui j if j<N
(Buij) _{ 0 fion  (CWT=Y g if j =N

A discrete version of the divergence operator must be defiyeahalogy with the continuous
setting(p, Ou)y = —(div(p), u)x:

pli— Py fl<i<N prj— PP, FL<j<N
—pt,;  ifi=N —py ifj=N



We sometimes use the notatiah p for div(p).
The discrete total variation and fidelity terms are then

J = 0 dx = ii | Ui, 2.4
(U) / g(X)| U(X)| X 1§|§’J§N9 J| u J| (2.4)
F = A . — f dx=A i'—fi', 2.5

(U) / ‘U(X) (X)’ X 1§|§,1§N ‘u ] J ‘ ( )

and the minimization problem (2.3) becomes

minE(u) = J(u) + F(u). (2.6)
ueX
From now and through the rest of the paper, we will considerikcrete functionals (2.4)-
(2.5) and the discrete minimization problem (2.6). We wolireetimes use the continuous nota-
tions; however, the reader has to keep in mind that only therelie case is considered.

3 Geometric properties of the model

In this section, we propose to remind some geometric prigseof theTV, TV + Lt and TV +
L functionals.

In [38], the authors propose a geometric interpretatiorhefénergy criterion.® + TV in
terms of the level sets af and f. We remind here for completeness the main results of their
study using the notations introduced in [21].

Let us denote the lower level sets of an image as follows:

LY(u) = {x,u(x) < a}, (3.1)

and the upper level sets as:
U%u) = {xu(x) > a}. (3.2)

For each levetr, U%(u) andL?(u) denote two sets of the image From a geometrical point of
view, the co-area formula [26] states that, for any functidrich belongs to the space of bounded
variations BVQ), there is a relation between the TV regularization term dved gerimeter
Per (U9) of the setU?. Indeed, we can write for att € [0,1]:

Per(U(u) = [ Bxue(w (33)

wherexy«(u) stands for the characteristic function of thed&t(u). In [38], the authors lighten
the fact that the energy (1.2) can be written as an integratier the different level set values
of the imagess andv of the energye“:

E(u) = /RE“(U, f)da, (3.4)

with
E%(u, f) =Per(U%(u)) +A|UY(u)AU%(f)] (3.5)
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where the second term represents the Lebesgue measurewifitireetric difference between the
two setdJ % (u) andU?(f). Such a geometrical feature may contribute to explain tbpenties
of the TV + L! energy. Indeed, when decreasing the weijjhif the data term, components
will be removed in an order determined by their size and tgewmetry. For example, small
components will be removed first and sharp angles will be sheab Moreover, this criterion
can be exploited to formulate efficient shape segmentatigorithms [38, 9]. Indeed, let us
consider that the initial functioffi is a binary shape defined by (f), the main idea is to find
the minimizeru of the energy (1.2) in the space of all functions rather timathé non-convex
collection of characteristic sets. In [38], the authorsvsltlbat any setd1(u), obtained by a
simple threshold of the result functiam is a global minimizer of (3.4). The main problem
of this approach lies in the choice of the lewgl for thresholding. Note that this method can
be extended to the segmentation of an image in two regionslf38oased on the Mumford-
Shah functional [35]. It can then be considered as an alieento geometrical PDEs (Partial
Differential Equations) classically used in active como[R0, 39]. On the contrary to these
approaches, it provides a global optimum but this optimumoisunique (the criterion is not
strictly convex).

When dealing with the weighted TV norm, similar results canskated [10]. Indeed, the
TV, term, when applied to a characteristic set is equivalentwteighted perimeter

V(W) = [ a(sds 36)

whereC designates the boundary of the Bét(u) andsits arc length. Such a term corresponds
to the energy criterion introduced by [14] under the ham@enidesic active contours. The
introduction of the functiog may then be used to minimize a weighted length that takegibene
of image properties. In [14], an edge indicator functiomisdaduced ¢(x) = 1/(1+ B|01])) in
the criterion (3.6) in order to segment objects with strongrmaries in images corrupted with
a Gaussian noise.

In [10], based on the results of [38], the authors proposeake benefit of the relation
betweenTVy and the criterion (3.6) to address the segmentation prableghus remind their
main theorem in order to be self content.

Theorem 3.1 ([10]) Suppose that g(x) € [0,1] and f(X) the given imageis a characteristic func-
tion of a bounded domain Q; C Q, for any given A > 0, if u(x) isany minimizer of the criterion
(1.3), then for almost every a; € [0, 1] we have that the characteristic function of the set U %1 (u)
isa global minimizer of the criterion (1.3).

Hence, minimizingT Vg + L norm can be interpreted as the research of an optimal domain
that minimizes the geodesic active contour energy with aitiadal data fidelity term based on
the symmetric difference between shapes. In [10], the asitttemonstrate that this algorithm
can then be exploited for shape segmentation. Here agaichtbice of the coefficient; can
be problematic, since for eaeh € [0,1], the setU“1(u) is a potential solution.

As far as image denoising or shape denoising is concernegrapose to choose the func-
tion g according to the type of noise of the corrupted image. Indaredge indicator function



is well appropriated for a Gaussian noise but not for a salt@apper noise. In our experimen-
tal results, we test three different functiogsind we study their influences on the final results.
A substantial improvement of both the restoration qualitgd ghe segmentation result can be
observed when using a suitable functignMoreover it can also be used to select some image
components according to their geometry as demonstrateaeifast section dedicated to the
experimental results.

Let us now introduce our augmented Lagrangian method fodénwation of an efficient
numerical scheme faFV + L minimization.

4 Augmented Lagrangian formulation

In this section we present Uzawa (dual) methods for solvn@)( To this end, we need to trans-
form the convex minimization problem (2.6) into a suitakdeldle-point problem by introducing
an auxiliary unknown.

Let us introduce the auxiliary unknowm= f — u and rewrite the functiondt as

E(u,p) =J(u)+F(p). 4.2)
For consistency, we introduce the constraints set
K={(up) eXxX|u+p—Ff=0inX}.
The unconstrained minimization problem (2.6) becomes

in E . 4.2
(ur}])'QK (u,p) (4.2)

To problem (4.2), we associate the Lagrangian functicifabefined onX x X x X, by
Z(u,p;s) =E(u,p) +(su+p— f)x. (4.3)
In (6), (-,-)x denotes th&?(X) scalar product. The corresponding saddle-point probleteis

sup inf Z(u,p;s). (4.4)
seX (U,p)GK

SinceE is convex, proper and lower semi-continuous, a saddle goinp*;s*) € X x X x X of
£ exists and verifies

Z(u,phs) <L, phs) < Z(up;s), Y(up,s) eXxXxX.
We now introduce the augmented Lagrangian functional, defoy
r
Z(upis) =Z(ups) +5 [lutp— 1 (4.5)

wherer > 0 is the penalty parameter. It can be proved (easily) thatdlegoint of % is a
saddle point ofZ and conversely. This is due to the fact that the quadratio tet%; vanishes
when the constraini+ p— f = 0 is satisfied.



5 Uzawa block relaxation methods

Uzawa block relaxation methods have been used in nonlineahamics for operator splitting
and domain decomposition methods [27, 29, 32]. ApplyingWwizalock relaxation method to
the saddle point problem (4.4) we obtain the following alyons.

Algorithm UBR
Initialization. p~?, s” andr > 0 given.
k> 0. Compute successively, p¢ ands< as follows.
Step 1. Find uk € X such that
LU PR < 4w phs), weX. (5.1)
Step 2. Find p¥ € X such that
LUK P ) < LUK g9, vgeX. (5.2)
Step 3. Update the Lagrange multiplier
SHL = K r(uk 4 pf—1).
The algorithm UBR corresponds to the generic Uzawa blockxetlon algorithm ALG2
(see, e.g., [27, 29]). We detail the algorithm above in th¢ sebsections.
5.1 Solution of sub-problem(5.1)
The functionalu — % (u, p*~1;s¢) can be rewritten as

~k—1

Py(u) i= 5 || Ul +3(0)+ (BT ux +C (5.3)

wherepk—1 = &+ r(p"1 — f) andC is a constant which does not count in the minimization.
Let.71 : X - Rand¥4; : Y = X x X — R be defined by

Fa(u) = = [lufZ+(Fu)x, (5.4)

5
2

GV) = /Q glvidx. (5.5)
SettingA\ = 0 € Z(X,Y), the sub-problem i can be rewritten as

(P]_) inf ﬁl(U) —|—g1(/\U).
ueX
The Fenchel dual problem ¢P;) is
(P1)  sup—F1 (-A'V) =4 (V),

vieY



whereN* € Z(Y, X) is the adjoint ofA (A*v* = —div(v*) = —0-v¥), #1 : X* =X - RU{+}
and¥; : Y* =Y — RU {4} denote the Fenchel convex conjugate functionalspfand¥,
respectively..#1 and%; satisfy the conditions of the Fenchel duality theorem (sge |25, p.
59]) and then, it follows that no duality gap occurs. The @iisolutionu and the dual solution
V* satisfy the extremality condition (see e.g. [25, p. 53])

AV =0V = 0%(0) = ra+ p L, (5.6)

since.%# is differentiable.
From the definition of the Fenchel convex conjugate funetiowe have

FL(U) = supu,u)x —.Z1(u)
ueX
1 * ~k—1 (12
= - 5.7)

Forv*, the Fenchel convex conjugate¥f is

V) =Sup(v vY—/g|v|dx { o i |og (5.8)
Substituting (5.7) and (5.8) intd*), we get the dual problem

sup—Z1 (—A\'V') -4 (V') = Sup—— I0-v =%,

v Iv|<g
_ = et
S LA a3
_ ; el
= W gz<02r H 0-v— 12, . (5.9)

The Karush-Kuhn-Tucker conditions (see e.g. [8, 33]) agabtd the convex problem (5.9) yield
the existence of a multiplign > 0 such that

—%D(D-\f*—ﬁk’l)—kZu\f“ -0 (5.10)

u(v'P-g?) = o (5.11)

As in Chambolle [15], either the constraint is active or meg, have

1 K
SI0(0v — B2 - 4% = 0

that is, .
gkl
U= 7rg O@-ve—p ). (5.12)



Substituting (5.12) into (5.10), we obtain
—D(D-\f*—f)k1)+$|D(D-\ﬁ—f>kl)|\ﬁzo. (5.13)

Equation (5.13) is identical with [10, Eq.38], up to a (péyatonstant. For solving (5.13), we
can then use the fixed-point procedure of Chambolle %% 0 and for any > 0
1 VHTO@- v - Y
1+ (r/g9)D@ v =)’

(5.14)

wheret > 0. The Chambolle procedure (5.14) can be viewed as a senficitipuler scheme
for computing the stationary solution of the following ewtdbn equation

A O(0-v— p<?

1 ~k—
- )+ F v =0

that is,
VL

—0(0-v — ﬁk-1)+éym(m.vf— peh vt =o.

Finally, with v computed using (5.14), we computeising the extremality condition (5.6),

ie.
0= %(D.\fk_pk—l): f—pk_l—i—%(l]-\fk—sk). (5.15)

5.2 Solution of sub-problem(5.2)

The functionalp — % (UK, p;s¢) can be rewritten as

r ~
@o(p) = 5 I P72 +(@p)x +2 [ [pldx-+C.

whereu® = §¢4-r(uk — ) andC is a constant which does not count in the minimization. As in
previous subsection we set

Fop) = 5Pz +@Px YPEX,
%@ = A [ lddx vaex.
Setting/A = Id (the identity operator), the sub-problem (5.2) reads
(F2)  Inf F2(p) +%2(Ap)
for which the dual problem is

(F2)  sup—F(-q) - %(q).

gqexX
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A straightforward calculation, using fenchel convex cgajte functional, yields

* [k 1 * ~ *
Z50) = o o - Vo eX

with the extremality condition between the primal solutijpand the dual solutiog*
—q =rp+d.
Gathering the results above, we compute the solution ofubgysoblem (5.2) explicitly

) { 0 if |r(uk—f)| <A,

p= (Ut :
f_uk_%[sk_A% if |+ r(uk—f)] > A.

5.3 Uzawa block relaxation algorithms

With the results of the previous section, we can present @amid block relaxation algorithm.
Algorithm UBR

Initialization. p~1, 2 andr > 0 given.

Iteration k > 0. Compute successively, p¢ ands< as follows.

Step 1. Setg* ! = &+ r(p“~ — ) and computeX with (5.14).
Computeu®
uk=f— pk’1+%(D-vk—§‘)

Step 2. ComputepX

[0 if <41 (U — )] <A,

p"= K (uk— .
fouk—1 [sk—)\% if |84 r (U= f)| > A.
Step 3. Update the Lagrange multiplier
SHL = & r(Uf 4 pf—1).

We iterate until the relative error i and p¥ becomes sufficiently “small”.

11



6 Convergence

We first rewrite the constrained optimization problem (423 standard form by setting
Gu)=J(u), F(p)=Apu.
Let us introduce the linear and continuous oper&arX — X, defined by
Bu=u-f.

We observe that the constrained minimization problem (4.8)yjuivalent to unconstrained min-
imization problem

minG(u) + F(Bu).

ueX

The augmented Lagrangian functional (4.5) can be rewréten
r
Z:(u,pis) = G(U) +F (p) + (s Bu+p)x +3 | Bu+p|f .

SinceF andG are convex, proper and lower semi-continuous functionadsthe constraint is
linear, a saddle-point fafZ exists. We easily verify the the function@l, p) — % (u, p;s) is
coercive onX x X, proper inu (for any fixedp ands) and proper inp (for any fixedu ands).
Algorithm UBR is therefore equivalent to finite dimensionatsion of ALG2 described in [29,
chapter 3]. We have the following convergence theorem,tfgSyrem 4.2].

Theorem 6.1 (Convergence)The sequence (uk, p*, ) generated in Algorithm UBRis such that
K—utinX, pf=piinX, £—=s'inX,
(u*, p*,s") being a saddle-point of ;.

Since we are in finite dimension, it is not necessary to asgsbimaniform convexity of or of
G, [29, Remark 4.4-4.6].

7 Numerical experiments

In this section, we present some numerical examples to &ealhe algorithm UBR for ap-
plications such a salt and pepper noise removal (sectign Shape denoising (section 7.2) or
geometric filtering (section 7.3). The influence of the pgnphrameter is more particularly
studied and we propose to test the robustness of our nurhscliame against variations of this
parameter. The stability of our algorithm regarding witiistharameter allows to obtain the
convergence in a reduced number of iterations without dsang the quality of the result. We
also propose to take benefit of the functgix) to improve the denoising results by choosing an
appropriate function for the different noise models. Thisdtion can also help us to perform a
geometric filtering of shapes.

12



In all numerical experiments, the convergence of the algoriUBR is checked using the
following convergence criterion:

o —u B - pe 43

K13+ 1913

< &up (7.1)

Note that, each iteration of Algorithm UBR requires the amence of the Chambolle fixed
point procedure (5.14). The convergence of this loop is kigaising a threshold on the nor-
malizedL? error onV. In the experiments, we choosep = 0.5 for the first iterations and
erp = 0.1 to end the process. According to our experiments (not te@drere), increasing the
accuracy of the Chambolle fixed point procedure does notawgpthe final result whereas it
increases the computational cost of each iteration.

The numerical experiments were run@i+ with the library Pandoré developed by R.
Clouard. The salt and pepper noise was generated with ¢ymioposed by D. Tschumperle,
except the images of the Figure 12 which were downloaded fhenpage of R. Chah

7.1 Salt and pepper noise removal

Salt and pepper noise is a model that can represent thesefféddit errors in transmission
or faulty memory locations. In salt and pepper noisy imagesnoisy pixels can take only the
minimum or maximum values in the dynamic range of image \&al&®r such images, the use of
theL! norm is then well suited due to its link to median filteringhdts been used by [1, 2, 3] for
1D data and by [36, 37, 28, 6] for efficient image denoisingatgms. Two-phase approaches
are also proposed in [17, 11, 12] with very nice results foigh ltevel of salt an pepper noise.
In this paper, we first propose to test the robustness of aairalgorithm, named UBR, for the
denoising of the image “peppers” (Figure 1.(a)). In a secsteqh, we propose to take benefit
of a dedicated functiog in order to increase the quality of the results. Our algaritils then
embedded in a more complete process, named UBR-EDGE, thatlisated for the denoising
of various images corrupted with a high level of noise.

The restoration performances are classically measuretldbPENR (peak signal-to-noise
ratio) defined as follows:

PSNR= 10| mex’ 7.2
=10lo .
%0 15 o0, §) — (i, )2 (72

wheremax denotes the maximum value loffor 8-bits imagesnax = 255) and Q| is the number
of pixels (i, j) of the imageo. We notelo(i, j) andIg(i, j) the discrete values d§, the original
image, andg, the restored image. This value is inversely proportioadhé mean square error
and so a higher value of PSNR corresponds to a better ra@storasult (note that this is only an
overall measure that must not be used without a visualizatfdghe results).

Savailable at http://www.greyc.ensicaen.fr/regis/Paaflo
4http://gmic.sourceforge.net/
Shttp://www.math.cuhk.edu.hk/ rchan/paper/impulse/
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(a) Peppers (b) Lena
Figure 1: Input image: (a) Peppers (256x256), (b) Lena (512X

7.1.1 Robustness of UBR

Firstly, the experimental results provided in Figure 2 shbe applicability of our numerical
scheme (named UBR) for this application. With the functgir) = 1 andA = 1.5, we find

a PSNR of 35 dB for the denoising of an image corrupted with a noise of 10%ise is
correctly removed as can be observed in Figure 2.b, morgitnenoisy part is captured through
the auxiliary unknowrv as displayed in Figure 2.c.

=

(a) Noisy image (b) Final image (c) Final imagev

Figure 2: The two different imagas(PSNR= 32.5dB) andv obtained after convergence with
UBR and withg(x) = 1 (A = 1.5,r = 20, £, = 0.0001) for the image “peppers” with a salt and
pepper noise of 10%.

Secondly, we want to study the robustness of the result sigdia choice of the parameter
r. Our experimental results show that the algorithm UBR ptesithe same denoised image
for different values of. This is demonstrated by the Figure 3 that displays the &wvolwf the
PSNR according to the number of iterations for differenapagters (from 10 to 200). Such
a feature then represents an improvement of the method ggdpo [10] since the convergence
can be obtained without the need to increaseinfinity.

We also report the number of iterations according (&igure 4). In this case, the optimal
value in terms of iterations is obtained fox 30 with 60 iterations wheA = 1.5, and forr = 10
with 91 iterations wheid = 0.5. Choosing a higher value foincreases the number of iterations
needed to attain the convergence without improving the famllt. We can then choose a small
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value forr to obtain a low computational cost without decreasing tredityuof the result.

PSNR

35 T PSNR=325dB
---r=10
—— =20
~-—-1r=30
------ r =100
—— -1 =200

10 1

5__

50 100 150 200
0 : : : :

[terations

Figure 3: Algorithm UBR (g=1) : Evolution of PSNR during itgions @ = 1.5) with r =
10,20,30,100,200 (gyp = 0.0001) for the image “peppers” with a salt and pepper noise)es 1
(the function isg(x) = 1).

Iterations
300 + )
200 + T
g o -7 ---A=15
. e RREE A=05
100 4% -
7 50 100 150 200
0 : : : :

Figure 4: Algorithm UBR (g=1) : Number of iterations for cargence according to the param-
eterr with A = 0.5 andA = 1.5 for the image “Peppers” with a salt and pepper noise of 10%

(9(x) = 1).

7.1.2 Improvement using an appropriate functiong

Thirdly, we propose to take benefit of the fact that the dyrmamainge of the noise is known. We
propose to replace the edge indicator function used in [di0fe functiong(x) by a regularized
version of the following mask function:

On if f(x)=min or max

m(x) = { a elsewhere (73)
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wheremin andmax are respectively the minimum and maximum intensity valuethe noisy
imagef. We chooser,, = 1.5 anda = 0.5 in order to uppermost smooth the corrupted pixels. We
then takeg(x) = mg(x) wheremg(X) = G4 * m(x) is a slight regularized version af (o = 0.5).
Figure 5 displays the different values of PSNR and the neguimages obtained while setting
g(x) = 1 (first row) andg(x) = my(X) (second row). Final images are provided for different
values of the regularization paramefer For each parameter, we observe a significant increase
of 2 to 4dB in the final PSNR. The best value of PSNR i53dB obtained fold = 1.2. The
scale effect of the parametglis also less visible due to the fact that we restrict the aggation

term to the extreme values of intensities correspondingeabrrupted pixels.

= T

(@A =05g9g=1 (b)A=19g=1 (c)A =15g=1
PSNR=25.5 dB PSNR=30.3 dB PSNR=325dB

@A =05g=my (b)A=1g=my4 (c)A=15g=my
PSNR=29.6 dB PSNR=34.3 dB PSNR=34.9 dB

Figure 5: Experimental results with the algorithm UBR foffelient smoothing values of
(r = 20,£yp = 0.0001) for the image “peppers” with a salt and pepper noised@b.1The first
row displays the results obtained wifx) = 1 while the second row displays the result obtained

usingg(x) = mg(X).

In Figure 6, we report the variation of the PSNR accordindhtogarameted for g(x) =1
andg(x) = mg(x). In Table 7, we give the PSNR values for different noise keegld the corre-
sponding computational costs (witiix) = my(X) andr = 20). A good quality of restoration is
obtained at a low computational cost (fron® seconds for a noise of 10% td34seconds for a
noise of 70% with a computer ofciHz and Z5b of RAM), which confirms the efficiency of our
numerical scheme UBR. We use this feature to design our sdlpapper noise removal algo-
rithm detailed thereafter. Note that the parameisiset to the same value for all the experiments
of Table 7. Choosing automatically the valuer @ order to obtain the lower computational cost
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at each noise level or each parametés an open question that remains difficult to solve.

PS\R
40 ¢

3+ e
30 + LT T e

254+ o7

204 ---- noise=10%g = my(X)
154+ noise=10%g =1

10 +

ST 02 04 06 08 10 12 14 16 1
0 } } } } } } } } }
A

Figure 6: Algorithm UBR : Final PSNR value obtained accogdio the parameter with r =20
for the image “peppers” corrupted with a salt and pepperenoisl0% (withg(x) = 1 and with

9(x) = Mg (x)).

Algorithm UBR (g = my) for Peppers (256x256)
Noise level| PSNR| A | lterations| Computational cost
10 349 | 15 63 16s
20 314 | 1.2 139 28s
30 29.0 | 1.2 158 3.3s
40 273 | 1.2 161 39s
50 255 | 1.2 167 43s
70 219 | 1.2 167 43s

Figure 7: PSNR according to the salt and pepper noise levehfoimage “peppers” using
g(x) = mg(X) (r = 20, &p = 0.0001). The computational cost for convergence is obtainiéu w
a computer of @Hz with 2Gb of RAM.

7.1.3 UBR-EDGE: an algorithm for salt and pepper noise remosl

The use of the functiog provides a significant increase of the quality of the finaliss How-
ever, even if the algorithri Vg + L! well performs for low noise values, it gives very smoothed
results for higher noise values. Indeed, in order to remarsgel noisy patches, we must decrease
the parameteA and so increase the smoothing of the whole image. In ordenpwave the
results for very noisy images, we propose to first decreassite of unknown values using a
median filter (of half-size 1). The pixels that are still uolam after this first pass are estimated
by computing a mean on the known 4-connexity neighboursyiesonly take the known values
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to compute the mean). The aim of this first pass is to correcbifs introduced by the extreme
intensity values of the noisy pixelsn{n or max). This first estimation is then corrected using
the TVg + L algorithm which is able to smooth differently noisy pixeterh uncorrupted ones
through theg function. At the end of the process, we apply a very simpleeestgoother also
known as EDDI [24] usually used in deinterlacing procesfectronic devices. In this efficient
edge smoother, the unknown intensity value is estimatedobypating the mean between the
two opposite pixels that have the nearest value of intemsity4-neighborhood. We apply this
simple filtering scheme only on pixels that are detected asipted pixels in the input image.

In Figure 8, we show the different steps of our process foreéktoration of the image “Lena”
with a salt and pepper noise of 70%. The Figure 8.(c) displagsmage obtained after the pre-
processing step (median filter + mean). This image is predeas an input of our algorithm
UBR usingg(x) = my(X) and the result of our UBR algorithm is given in Figure 8.(d)heT
EDGE smoother EDDI is then applied to this result giving tilafimage Figure 8.(e) which is
the result of our UBR-EDGE algorithm.

(a) Input image (70%)

(c) Step 1: pre-processing (d) Step 2: UBR (e) Final : UBR + EDG
PSNR=19.6 dB PSNR=30.1 dB PSNR=30.6 dB

Figure 8: Salt and pepper noise removal using the algoritlBRAEDGE for the image Lena

corrupted by a noise of 70%. The result is given for each stépeqrocess. The image obtained
after the pre-processing (median+mean) is given in (c)s Thiage is used as an input of the
algorithm UBR and the result is given in (d). A last post-mss&ing is applied to the image
which yields to the final result given in (e).

Some visual results are provided in Figure 9 for “Lena” (2% and in Figure 10 for
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“Peppers” (256x256). Thanks to these visual results anthécassociated PSNR values and
computational costs reported for all the noise levels indak, we can conclude that our algo-
rithm provides good visual results at a low computationatcdhe PSNR values obtained for
the image “Lena” can be compared with the PSNR values repant§l 7] for many different
algorithms. Compared to the values computed in this papgralgorithm gives comparable
PSNR results to the best algorithm (i.e. algorithm Ill) e¥@na high noise level. Indeed, the
PSNR value reported for the restoration of the image “Leratupted by a noise of 70% is
29.3 dB using the algorithm Ill [17] and 34 dB using our algorithm. For a noise of 90%, they
find a PSNR of 25! dB while our algorithm gives a PSNR of 26dB. We also report the visual
results and associated PSNR values for the noisy images eféh page of R. Chah For such
images our algorithm gives good quality results with a PSIdRe/that is near to the one found
by the algorithm [17] even if a little smaller (with a differee of less than 1 dB). As far as the
computational cost is concerned, it is difficult to compdae tivo computational costs since the
algorithm Il is programmed using Matlab. However, our aition seems to provide a lower
computational cost especially for a high level of noise (Ealgle 11).

7.2 Shape retrieval

The second example concerns shape retrieval with the inieigel€”) corrupted by a Gaussian
noise of variance 10 (Figure 13). In order to take benefit efaigorithm UBR for segmentation
purposes, we apply the same procedure as in [10]. The digoi# processed until convergence
and the final functioru is thresholded in order to display the &t (u) with a = 0.5. In all
experiments, we display both the characteristic functibthis set and its final boundary in
white on the initial image. The accuracy of the segmentatisult is evaluated using the Dice
Coefficient defined as follows between two shaeandSes:

|S.Lﬂsref|
|SJ.| + |Sef |

Note that, for a perfectly segmented shape, we l2@e= 1. Here,S¢¢ is the circle shape of
Figure 13.a an®; = U%%(u) (upper level set of u wheneis the result of our algorithm UBR).

Let us first test the availability of our scheme for segméoapurposes. In Figure 14 (first
and second row) the final results obtained using differehtegaof A and withg(x) = 1 are
reported. The boundary of the d¢f->(u) is displayed in white on the noisy image and the
extracted shape is represented on the second row usingrg bimege. Our algorithm allows
to properly segment the shape. However, for small values,dhe TV regularization term
smoothes the corners and removes some small components stidpe. In order to avoid this
scale space effect and to improve the DC value, we can talefibeha classical edge indicator
function:

DC(S1,Set) =2 (7.4)

9(x) = 1/(1+ BGo *[Of]).

whereG, is a Gaussian kernel of 0-mean and variaodgve takeog = 0.1 andf3 = 10). Thanks
to this function, the DC coefficient is significantly impravas can be observed in Figure 14

Shttp://www.math.cuhk.edu.hk/ rchan/paper/impulse/
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(third and fourth rows) and is less dependent on the value @ke also the Figure 16). These
experiments confirm the interest of the weighted total wameterm for segmentation using dual
approaches as mentioned in [10].

As far as the robustness against the parantdéteconcerned, we again visualize the number
of iterations (Figure 15.a) and tHaC value (Figure 15.b) according to the parameteiThe
experimental results tend to prove that the algorithm cajagetowards the same final result for
each value of. The number of iterations is provided for two different \@dwfA (0.5 and 1).

7.3 Geometric filtering

Finally, we give here an example of the applicabilityTafy + L minimization for geometric fil-
tering of shapes according to the orientation of their gnadi. Such geometric filters are usually
designed in the framework of mathematical morphology ireotd remove some shapes from a
set using their geometric properties [42]. In this papertake one example to demonstrate the
potential use off Vg + L® for such an application. Let us consider that we want to rexibe
horizontal ellipses from the binary image of Figure 17.a. tt\n define the regularized mask
Mg (X, Brer ) = O:(0(X) — Bret ), WhereB(x) represents the orientation of the gradientf athd o,

is a regularized dirac function equal to 1 wh@nr= 6, and almost 0 elsewhere. We then use
the following function forg:

9(x) = 1/(1+ Bme (X, Bret ) [Of ).

As can be observed in Figure 17, when applying + L! using the function defined above for
6et = 11/2[1) (horizontal values of the gradient), we make the verticalpgls disappear from
the initial image (the resulting binary shape and boundaie shown in Figure 17).

8 Conclusion

In this paper, we propose to minimizeTa/y + L! criterion using an augmented Lagrangian
method which combines the features of the penalty and pritual approach and moderates
the disadvantages of both. We propose a Uzawa Block Retex@itiBR) scheme and we more
particularly study the robustness of the algorithm agahmsipenalty parameter Experimental
results tend to prove that the convergence can be attairtbdwvincreasing to infinity. This
parameter can then be chosen so as to decrease the numbeatadrits and therefore the compu-
tational cost. We also study the influence of the funcgdar different applications such as salt
and pepper noise removal, shape retrieval or geometridridteAn appropriate choice for this
function improves the final results for both salt and peppaserremoval and shape retrieval.
We also show that it can be used to select some shape compa@ueotrding to their geometric
properties. Using this function, we propose a whole alporifor salt and pepper noise removal
(UBR-EDGE) that is able to handle high noise levels at a lompotational cost. As far as the
perspectives are concerned, we can remark that choosiomatitally the value of the penalty
parameter in order to obtain the lower computational castfh image is an open question
that remains difficult to solve. Our on going research isaed towards this issue and towards
the design and evaluation of some other functigifer geometric filtering.
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(e) Noise: 50%

(9) N_ois 0% (h) PSNR=34 dB

(i) Noise: 90% () PSNR=26 dB

Figure 9: Salt and pepper noise removal using the algoritlBRAEDGE for the image Lena
(512x512). The input images are given with the associatedlte



o T

(c) Peppers, Noise: 70%  (d) UBR-EDGE PSNR=2dB

Figure 10: Salt and pepper noise removal using the algorifi@R-EDGE for the image “Pep-
pers” (256x256). For the result obtained in (b%2 and for the result in (d} = 1.5.

Algorithm UBR-EDGE
Lena (512x512) Peppers (256x256)
Noise | PSNR| Computational cost (s) PSNR| Computational cost (s
10 43.4 2.7 40.6 0.4
20 39.7 3.9 37.3 0.7
30 37.1 5.3 34.5 1.1
40 35.3 6.6 32.2 1.4
50 33.9 8.1 30.6 1.7
70 314 17.1 27.7 2.3
90 26.6 41.4 23.1 20.1

Figure 11: PSNR according to the salt and pepper noise levéi¢ image “peppers” (256x256)
and “Lena” (512x512) using the algorithm UBR-EDGIE 200, &, = 0.0001). For a noise
level between 10% and 50%, we choose the same valde=92. For a noise level of 70%,
A =15and for 90%A = 0.7. The computational cost for convergence is given with apater
of 3GHz with 2Gb of RAM, it includes the pre- and post- processing steps.
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(e) UBR-EDGE: PSNR=29 dB

. -

(g) UBR-EDGE: PSNR=38 dB (h) UBR-EDGE: PSNR=38 dB

Figure 12: Salt and pepper noise removal using the algorfifi®R-EDGE for different images
of the Berkeley database corrupted with a salt and peppse mdi70%. For all the results, we
takeA = 2.

26



(@) (b)

Figure 13: Input image (a) with a Gaussian noise of 10% (b)

@A=1g=1 (b)A=05g=1 (c)A=029g=1
DC=0.99 DC=0.97 DC=0.95

@A =1 (b)A =05 ©)A =02
DC= 0.999 DC=0.999 DC= 0.994

Figure 14: Experimental results of shape segmentationW#R for different smoothing values
of A (r =20,&,p = 0.0001) for the image “circle” with a Gaussian noise of 10%. Twe first
rows display the results obtained wgtx) = 1 while the two last rows display the result obtained
using an appropriate functiam= ¢ (|0I|). For each value ok, we show both the sé&1%>(u)
and its boundary in white.
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(b)
Figure 15: Algorithm UBR withg(x) = ¢ (|01 (x)|): Number of iterations for convergence (a)

and dice coefficient (b) according to the parameteith A = 0.5 andA = 1 for the segmentation
of the image *“circle” corrupted with a Gaussian noise of 1@%j & 0.0001).
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Figure 16: Algorithm UBR: Dice coefficient according to thargmeteid with g(x) = 1 andg
chosen as a function of the image gradient for the segmentafithe image “circle” corrupted
with a Gaussian noise of 10%+ 20,,, = 0.0001).

(@) Initial shape (b) Final image
S
[——
>
(c) setU%5(u) (d) contour ofU%5(u)

Figure 17: Experimental results of geometrical filteringléstion of horizontal ellipses) with
UBR (r = 20,A = 0.05, g,p = 0.0001) for the image “ellipses”. We show the initial image, (a)
the final image without thresholding (b) the 8£t°(u) (c) and its boundary (d).
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