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Abstract
This paper presents a new method to recover the relative pose between
two images, using three points and the vertical direction information. The
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vertical direction can be determined in two ways: 1- using direct physical
measurement like IMU (inertial measurement unit), 2- using vertical van-
ishing point. This knowledge of the vertical direction solves 2 unknowns
among the 3 parameters of the relative rotation, so that only 3 homologous
points are requested to position a couple of images. Rewriting the copla-
narity equations leads to a simpler solution. The remaining unknowns res-
olution is performed by an algebraic method using Grobner bases. The ele-
ments necessary to build a specific algebraic solver are given in this paper,
allowing for a real-time implementation. The results on real and synthetic
data show the efficiency of this method.

1 Introduction

This paper presents an efficient solution to the relative orientation problem in cali-
bration setting. In such a situation, the intrinsic parameters of the camera, e.g. the
focal length, the camera distortion are assumed to be a priori known. In this case
the relative orientation linking two views is modeled by 5 unknowns: the rotation
matrix (3 unknowns) and the translation (2 unknowns up to a scale). Its resolution
using only five points, in a direct and fast way, has been considered as a major
research subject since the eighties [21] up to now [29], [20], [27], [L16], [3]], [14].
In this paper we use the knowledge of the vertical direction to solve the relative
orientation problem for two reasons:

1- the increased use of MEMS-IMU (inertial measurement unit) in electronic per-
sonal devices such as smart phones, digital cameras and the low price IMU. The
sensors fusion (camera-IMU) is not the goal of this paper, as many authors have
shown the advantage of coupling them [17]. In MEMS-IMU the accuracy of head-
ing (rotation around the vertical axis Z) is worse than for pitch (rotation around
X axis) and roll (rotation around Y axis), due to the strength of the gravity field,
which has no effect on a rotation around the vertical axis. Thus the new method
presented in this paper takes a considerable benefit from a combination of data
from MEMS-IMU and from use of 3 homologous points, that strengthen the very
weakness of IMU data.

2- today very performant algorithms based on image analysis are available, that
allow to calculate the vertical direction with high accuracy. If we have only a set
of calibrated images we can also determine the vertical direction using vanishing
points extraction. A lot of algorithms [2], [[19], [25], on such topics exist in the
literature. These algorithms are very useful in urban and man-made environments



(301, [11, [23], ['L3].

The use of the vertical direction so as to reduce the disparity between two frames,
to simplify 3D vision, has already been considered by [31]. But most papers use
a fixed stereoscopic baseline, and here we consider that we have no knowledge
about it. Furthermore, most paper [31] try to solve the problem using iterative
methods or non minimal settings (e.g. more than three points).

2 Our contribution to the relative orientation prob-
lem

The main contribution of this paper is to provide an efficient algorithm to estimate
the relative orientation using the vertical direction as an external information in
the minimal case, using 3 points. Once the vertical direction is defined, we inject
this information in relative orientation, based on coplanarity equation. The knowl-
edge of the vertical direction removes 2 degrees of freedom to the problem of the
relative orientation. Therefore it will be enough to have only 3 homologous cou-
ples of points to solve for the 3 other unknowns: two parameters of the baseline
because it is up to a scale and the angle of rotation around the vertical axis. These
coplanarity constaints can be written as a system of polynomial equations. Hence,
we solve these equations using the Grobner bases in a direct way. The possibility
to build a solution with only 3 points is an obvious advantage in terms of compu-
tation time, in particular when sorting the undesirable solutions by classic robust
estimators such as Ransac (RANdom SAmple Consensus)[8]. In the Section [6]
we show that the new 3-point method provides better accuracy and robustness to
noise on relative orientation estimation.

The paper is organized as follows. In the section |3| we present the geometric
framework of our system. Section 4| rewrites the coplanarity constraint using the
vertical direction knowledge. The resolution of polynomial system with the help
of Grobner bases is described in Section [5| The assessment of the algorithm in
noisy conditions is studied in Section where the 3-point algorithm is com-
pared to the well known 5-point algorithm. In Section a comparaison with
real image database is performed.
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Figure 1: Coordinate systems and geometry overview. The vector V., is the
vector of vertical vanishing point and pierces the image plane in v. R,., is define
in Section

3 Coordinate systems and geometry framework

The classical coordinate system of camera (cf. figure [I)) used in computer vision
has been chosen [[11]]. In this camera system (X .qm, Yeam, Zeam ) the focal plane
1S Zeam = F', F being the focal length. Given the calibration matrix K (a 3x3
matrix that includes the information of focal length, skew of the camera, etc.), the
view is normalized by transforming all points by the inverse of K, m = K~ 'm,
in which m is a 2-coordinates point in the image. Thus the new calibration matrix
of the view becomes the identity matrix. M is the object point. In the rest of the
paper we suppose that all image 2D-coordinates of the point are normalized. For
a stereo system in relative orientation, the center of the world space coordinate
system is the optical center C' of the left image, with the same directions of axes.
The world coordinate system is denoted by (X,,, Y., Z,). In this system the Y,
axis is along the physical vertical of the world space.



4 Using the vertical direction knowledge for relative
orientation

4.1 Use the IMU information

If we have of an IMU coupled with the camera, we need only to know the rotation
angle («) around X axis and Z axis () based on our coordinates system. So the
rotation matrix equals:

cosy —siny Of [1 0 0
Ryer = |siny cosy 0] |0 cosa —sina (D)
0 0 1| |0 sina cosa

4.2 Use the information given by vertical vanishing point

If we only have a set of calibrated images of a man-made environment we can
extract the vertical direction using vertical vanishing point. Let us suppose that
‘Te; be the vector joining C' to the vanishing point in the image plane expressed in
the camera system, and }71;(0 ,1,0) be the Y axis of the world system ((see figure
. We perform the rotation that transforms 171,; into 571; Thus, we determine the
rotation axis w and the rotation angle ¢ in the following way: W = ﬁ ® 371,:,
after simpliﬁcatﬁ)n aic)l normalisation W = [% |0, =Y2], where d = /V2+ V2
, 0 = arccos (Vyer - Yy), so after simplification, § = arccos (V,,). Using Olinde-
Rodrigues formula we get the following rotation matrix :

Ryer = I cosf +sinf [w],, + (1 — cos f)w ‘w. (2)
The rotation (R,..) given by equation 1| or [2|is then applied to all 2D points ob-

tained in each image, 7 is replaced by R,.,m.

4.3 Rewriting the coplanarity constraint

First, we recall that for a pair of homologous points m! and m? of a pinhole cam-
era, the constraint on these 2 points is expressed by the equation of coplanarity:

m}
m2 m3 1| B |m2| =0, 3)
1



where E is a 3x3 rank-2 essential matrix [[11]. We can also express this constraint
by the equation 4]

o T. -7, [m!
[m% m 1] —T, 0 T, | R 77%5 =0. 4)
T, =T, 0 1

However, if we apply the rotation (R,.,) obtained in equation to all homologous
points, before we take in account this constraint (equation [d)), the rotation R is ex-
pressed in a simpler way, as it remains only one parameter of rotation to estimate,
the angle ¢ around the Y axis (vertical axis). Thus:

cos¢p 0 —sing
Ry=1 0 1 0 (5)
sing 0 cos¢

Using t = tan £, we replace cos ¢ by (1 — t?)/(1 +¢?) and sin ¢ by 2¢/(1 + t2).
The new coplanarity equation is rewritten as:
(—2m2Tyt + m2(To(1 — 2) + 2T5t)—
miT, (1 — 2))ml + (m2(1 + )T+
m2(1 + )T, )mb + (m2T, (1¢%)+
m2(27.t — T,(1 — %)) — 2m2T,t)m} = 0.

(6)

3 pairs of homologous points allows for instancing equation 6 as { f2, fs3, f1}
with remaining unknowns 717, T, T’, and ¢. The corresponding base is only com-
posed from two degree of freedom since no scale modeling has been yet per-
formed. Therefore it is necessary either to fix a component of the base to 1, either
to add the constraint of normality. We choose this last one: f; = T + T, + T —
1 = 0. The advantage is that it allows to get a more general modeling. We have
therefore a system of 4 polynomial equations of degree 3 { f1, fa, f3, f1}. Now we
describe the direct resolution of this polynomial system using the Grobner bases.

5 Resolution of the relative orientation equation us-
ing Grobner bases

We recall first the basic definitions of Grobner bases, and also the link between
Grobner bases and linear algebra. Then, we use these concepts to derive a specific
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algorithm to compute the Grobner basis of the system of polynomials defined in
Section 4.3l

5.1 Properties of Grobner basis

The notion of Grobner basis was introduced by B. Buchberger, who gave the first
algorithm to compute it (see [4]). This algorithm is implemented in most gen-
eral computer algebra systems like MAPLE, MATHEMATICA, SINGULAR [10],
MACAULAY?2 [9], COCOA [5] and SALSA software [22]. Let R = K[xq,. .., Z,]
be a polynomial ring where K is an arbitrary field. Let fi,...,fx € R be a
sequence of k polynomials and let I = (fi,..., fx) be an ideal of R gener-
ated by the f;’s. We need also a monomial ordering on R. We recall here
the definition of the degree reverse lexicographic ordering (DRL), denoted by
=<, which is an especial monomial ordering having some interesting computa-
tional properties. For this we denote respectively by deg(m) (resp. deg;(m))
the total degree (resp. the degree in z;) of a monomial m. If m and m' are
monomials, then m < m/ if and only if the last non zero entry in the sequence
(deg,(m’) — degy(m),...,deg, (m’) — deg,(m), deg(m) — deg(m’)) is negative
(see [[7]).

Let in(f) € R be the initial (greatest) monomial of a polynomial f € R with
respect to < and in(/) = (in(f) | f € I) be the initial ideal of I.

Definition 5.1 (Grobner basis) A finite subset G C I is a Grobner basis of |
w.rt. < if (in(G)) = in({).

Definition 5.2 (Reduced Grobner basis) A Grobner basis G of I is called re-
duced if for all g € G, g is monic and no monomial of g lies in (in(G \ {g})).

Proposition 5.1 ([7], Proposition 6, page 92) Every ideal has a unique reduced
Grobner basis.

5.2 Macaulay matrix

We recall now the definition of a Macaulay matrix and we explain who we could
use it to compute the Grobner basis of an ideal. With the notations of above
subsection, we consider the ideal / generated by the f;’s and < be DRL monomial
ordering. We suppose that we know the maximum degree d of monomials which
appear in the representation of the elements of the Grobner basis of [ in terms of



the f;’s (in Subsection we show how to compute such a degree for the ideal
generated by polynomials defined in Subsection [4.3). Note that this degree is the
maximum degree of monomials which appear in the computation of the Grobner
basis of .

We can build the Macaulay matrix My(f1, ..., fr) (for short we denote it by
M) as follows: Write down horizontally all the monomials of degree at most d,
ordered following < (the first one being the largest one). Hence, each column of
the matrix is indexed by a monomial of degree at most d. Multiply each f; from 1
to k by any monomial m of degree at most d — deg( f;), and write the coefficients
of m f; under their corresponding monomials, thus giving a row of the matrix. The
rows are ordered: row m f; is before u f; if either i < jor¢ = j and m < w.

monomials of degree at most d
My= mf;

For any row in the matrix, consider the monomial indexing the first non-zero
column of this row. It is called the leading monomial of the row, and is the leading
monomial of the corresponding polynomial.

Gaussian elimination applied on this matrix leads to a Grobner basis of / (see
[15]). Indeed, call Md the Gaussian elimination form of M, such that the only
elementary operation allowed for one row is the addition of a linear combination
of the previous rows. Now, consider all the polynomials corresponding to a row
whose leading term is not the same in M, and M,, then the set of these polyno-
mials is a Grobner basis of 1.

5.3 Constructing the specific Macaulay matrix

In this subsection we describe a general algorithm to compute the Grébner basis of
the system of polynomials defined in Subsection[#.3] It is worth noting that when
the coordinates of the input points change, only the coefficients of polynomials
change. Thus, using Lazard’s approach (see the above subsection), we build a
Macaulay matrix (and we may compute it directly when the coordinates of the
input points change), and a Gaussian elimination on this matrix gives the Grobner
basis of the ideal.

Let f1,..., f1 € C[T,,T,,T.,t] be the system of polynomials as defined in
Subsection Let I = (f1,..., f1). Our first challenge is to choose a good



monomial ordering. From a good monomial ordering, we mean an ordering for
which the maximum reached degree in Grobner basis computation is minimum.
Or in terms of complexity, we look for an ordering for which the computation has
the optimal complexity. We choose DRL ordering because it typically provides for
the fastest Grobner basis computations. Let us consider DRL(T,, T}, T, t). We
compute first the maximum degree of monomials which appear in the computation
of the Grobner basis of I w.r.t. this ordering. We use this degree to study the
complexity of computing Grobner basis and also to construct the Macaulay matrix
of I to compute its Grobner basis. For this, we homogenize the f;’s w.r.t. an
auxiliary variable h and we compute the Grobner basis of the homogenized system
for DRL(7}, T}, T.,t, h). The maximum degree of the elements of this basis is 6
and therefore the maximum degree of monomials which appear in the computation
of the Grobner basis of I will be 6 (see [15]] for more details). We have tested some
other monomial orderings, and it seems that this ordering is the best one.

Our second challenge is to build Mg(f1, ..., f1), say M. To compute such a
matrix, we have to find the products m f;, such that a Gaussian elimination on the
matrix representation of these products leads us to the Grobner basis of /. For
this, we use the maximum reached degree in Grobner basis computation which
is 6. We consider all products m f; where m is a monomial of degree at most
6 — deg(f;). This gives 175 polynomials. Among them, there are some products
which are useful to build M. Using the following programme in MAPLE, we
could choose the useful ones:

L:=NULL:
AA:=A:
for i from 1 to nops(A) do
unassign('p’) :
X:=AA:
member (A[1], AA, 'p’):
AA:=subsop (p=NULL, AA) :
if IsGrobner (Macaulay (AA)) then
L:=L,1i:
else
AA:=X:
fi:
od:

where IsGrobner is a programme to test whether a set of polynomials is a
Grobner basis for [ or not, and Macaulay is a programme which performs a
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Gaussian elimination on the matrix representation of a set of polynomials. This
gives 65 polynomials of degree at most 6. In this case, M has a size 65 x 77. Here
is the list of 65 polynomials which were found by this way.

f47 tf47 TZf47 Tyf47 Txf47 tTZf47 tTyf47 thf47
T.Ty fa, ToTo f3, T fa, Ty T fa, T fu, tT.T, £,
t1. T, fa, tTnyzL, tT, Ty fas T2 fu, fa,tf3, T f3,

Tyf37 Txf37 thf?)? tTyf3; thf?n TZTyf37 TZT:Ef37
T;f37 TyTzfi’)a Tsz37 thTmf?n tTy2f37 tTyTxf?n

th2f3; f27 tf27 Tzf2; Tyf?u Tmf27 tTZf% tTny,
thny TZTny, Tszf27 Ty2f27 TyTxf27 T:?f%

t1. T, fo, tTnyz, tT, Ty fo, tT2 fo, f1,tf1, Tofr,

Tyfb Txfla t2f17 tTyflu thfla t3f17 t2Tyf17
tQwah t3Tyf17 thxfl

Remark that TsGrobner and Macaulay were written in MAPLE and the
former does not use Buchberger’s criterion to test whether or not a set of polyno-
mials is a Grobner basis or not, because using this criterion is very time-consuming.
In fact, we have used the properties that we can compute in(/) and a set of polyno-
mials G C [ is a Grobner basis for [ if in(G) = in(/). This makes IsGrobner
very fast and efficient, and allows to do the above choice in real time.

5.4 Constructing the specific algebraic solver

In this subsection,, we recall briefly an algebraic solver which uses a Grobner
basis to find the solutions of the system defined in Subsection4.3]

Thanks to the property that the division by the ideal / is well defined when we
do it w.r.t a Grobner basis of /, we can consider the space of all remainders on
division by I (see [[/]). This space is called the quotient ring of I, and we denote
itby A= C[Tz,Ty,Tz,t]/I. It is well-known that if [ is radical then the system
fi =--- = f4 = 0 has a finite number of solutions /V if the dimension of A as an
C-vector space is N (see [7]], Proposition 8 page 235). We can easily check by the
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function IsRadical of MAPLE that [ is radical. A basis for A as a vector space
is obtained from in(7) by ([7], Theorem 6, page 234)

B = {m | m is a monomial and m ¢ in(/)}

From computing a Grobner basis of I, we could compute in(/), which is equal to
in(I) = (T, T,, T?,¢°) and thus the set

B = {1,t,t*, 3 t*,¢°, T,, T.t, T,t*, T.t*, T,t*, T.t°}

is a basis for A as an C-vector space. Therefore, we can conclude that the system
fi = --- = fi = 0 has 12 solutions. Note that we have obtained these results
for an especial coordinates of input points. We can discuss mathematically the
correctness of these results for any set of points. But, that is out of the subject of
this paper and the scope of this conference. We recall here briefly the eigenvalue
method that we have used to solve the system f; = --- = f; = 0, see [6]], page 56
for more details. For any f € C[T},T,,Tz,t] let us denote by [f] the coset of f
in A. We define my : A — A by the following rule:

my(lg]) = [fl.lg] = [fg] € A

Since, the ideal generated by the f;’s is zero-dimensional, then A is a finite di-
mensional C-vector space, and we can present my by a matrix which is called the
action matrix of f. For any ¢, if we set f = x;, then the eigenvalues of m,, are the
x;-coordinates of the solutions of the system. Using these eigenvalues for each ¢,
and a test to verify whether or not a selection n-tuple of these eigenvalues vanishes
the f;’s, we could find the solutions of the system. A more efficient way is to use
eigenvectors. Let f be a generic linear form in A, then we could read directly all
solutions of the system from the right eigenvectors of m , see [6], page 64.

5.5 Computation of final relative orientation

After the resolution of the polynomial system, and the obtention of the parameters
T, ,T,,T. andt, itis possible to compute the finale relative orientation between
the images. If we suppose that R, is the rotation matrix defined in the section
@for the image 1, and R,.,» the same for the image 2, and 7, the rotation matrix
defined by ¢ (equation [3)), the final relative orientation between the images 1 and
2 is:

Rfinal = Rver2t R¢RU6T17

— t — —_ ‘ (7)
Ttinat = Ryera” T, where T' = [Tx, Ty, Tz|".
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6 Experiments

The accuracy of the relative orientation resolution, using a vertical vanishing point

and 3 tie points, is based on three factors :

1- the accuracy of the polynomial resolution of the translation parameters (7'z , Ty , T'z),
and of the rotation around the Y axis using the Grobner bases,

2- the geometric accuracy for the estimation of the vertical direction,

3- the accuracy of the algorithm on tie points in presence of noise.

In order to evaluate the different impacts, we have in a first time worked on syn-
thetic data in Section[6.1] then we have used real data in Section[6.2]

6.1 Performance Under Noise

In this section, the performance of the 3 points method in noisy conditions has
been studied and compared to the 5 points algorithm [27] using the software pro-
vided by authors [26]. The employed experimental setup is similar to [20]. The
distance to the scene volume is used as the unit of measure, the baseline length
being 0.3. The standard deviation of the noise is expressed in pixels of a 352x288
image as 0 = 1.0. The field of view is equal to 45 degrees. The depth varies be-
tween 0 to 2. Two different translation values have been treated, one in X (sideway
motion) and one in Z (forward motion). The experiments involve 2500 random
samples trials of point correspondences. For each trial, we determinate the an-
gle between estimated baseline and true baseline vector. This angle is called here
translational error, and expressed in degrees. For the error estimation on the rota-
tion matrix, the angle of (Rz;ueRestimate) is calculated, and the mean value for the
2500 random trials for each noise level is displayed. From Figure and[5] we
see that the 3-point algorithm is more robust to error caused by noise in sideway
and forward motion for estimation of rotation and translation.

Now let us compare 3-point and five-point algorithm on a planar scene. In
this configuration all the points of the scene in the world have the same Z (here
equal to 2). The results for the estimation of the rotation (Figure [6) show that the
two algorithms provide a good determination of the rotation, but the 3-point gives
much better results than the 5-point one for the base determination in sideway
motion (Figure [7). This weakness of the 5-point algorithm in planar scene has
been discussed in [24].
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Figure 2: Error on the rotation (in degrees, sideway motion).
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Figure 3: Error on the baseline orientation (in degrees, sideway motion).

6.1.1 Impact of the accuracy of the vertical direction on the estimation of
relative orientation

We have introduced an error of 0 to 0.5 ° on the angular accuracy of the vertical
direction. Today for example, a low-cost inertial sensor such as Xsens-MTi
gives a precison around 0.5 ° on rotation angle around X axis and Z axis (the ver-
tical direction being Y axis). Of course, some high accuracy IMU are available,
they may reach an accuracy better than 0.01 ° on the orientation angles if properly
coupled with other sensors (e.g. GPS). Using an automatic vanishing point detec-
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Figure 5: Error on the baseline orientation (in degrees, forward motion).

tion specially in urban scene, we get a very precise vertical direction (better than
0.001 °), as it will be shown later. We have checked the impact of this accuracy on
the determination of the rotation and the base. (Figure[I0]and Figure [ T).

6.2 Real Example

So as to provide a numerical example on real images, we have chosen to work on
the 9-images sequence “entry-P10” of the online database [28]. In this database
we know all the intrinsec and external parameters. First, we extracted the vanish-
ing points on each image. We used the algorithm of because beyond its high
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Figure 7: Error on the base orientation (in degrees) in planar configuration (side-
way motion)

speed, it allows an error propagation on the vanishing points according to the error
on the segments detection. We express this error in an angular manner. The results
of the angular errors are shown in the table 1. As one can see it, the determination
of the vertical vanishing point is very precise and according to the Figure[I0]and
[[1]it induced an error close to zero. Then, we have computed the relative orien-
tation for 3 successive images (each time, 2 following couples of images). The
interest points are extracted using SIFT [18] algorithm. The results are presented
in the Figure[12] The mean value of angular errors on the rotation amounts to 0.82
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Image \ Angular error on vertical direction in degree \

0000 0.002569
0001 0.0066
0002 0.001584
0003 0.001443
0004 0.000899
0005 0.00115
0006 0.001445
0007 0.005018
0008 0.002424
0009 0.002223

Table 1: Results. Vertical direction detection using the vertical vanishing point.

degree. For the estimation of the translation, this error amounts to 1.33 degree.
These results show clearly the efficiency and robustness of the method.

6.3 Time Perfomance

The resolution of the polynomial system and detection of vanishing point was
written in C ++. With a 1.60 GHz PC the time of each resolution is about 2 us, al-
lowing real-time application. We may note that the selection process using RanSac
[8] among the SIFT points is running considerably faster on 3-point than on 5-
point algorithm.
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Figure 12: Result on “entry-P10” sequence. Each cell contiens the error on rota-
tion in degrees (upper left) and error on the translation in degrees (bottom right).

7 Summary and Conclusions

Today, more and more low-cost personal devices include MEMS-IMU in comple-
ment to cameras, these devices allow to provide very easily the direction of the
vertical in the image. Furthermore, image based automatic extraction of the ver-
tical vanishing point offers a very high accuracy alternative, if needed. So, here,
we have demonstrated the advantage of using the vertical direction, and an effi-
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cient algorithm for solving the relative orientation problem with this information
has been presented. In addition to a considerable acceleration, compared with the
classical 5 point solution, our algorithm provide a noticeable accuracy improve-
ment for the baseline estimation. Another interesting feature improvement has
been demonstrated: the planar scenes raise no more problem in baseline estima-
tion. This advantageous result is due to an appropriate problem formulation using
in a explicit way the significant parameters of the relative orientation (parameters
of the rotation and the translation).
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