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Abstract—A classical solution for matching two image patches
is to use the cross-correlation coefficient. This works well if there
is a lot of structure within the patches, but not so well if the
patches are close to uniform. This means that some patches are
matched with more confidence than others. By estimating this
uncertainty more weight can be put on the confident matches
than those that are more uncertain. In this paper we present
a system that can learn the distribution of the correlation
coefficient from a video sequence of an empty scene. No manual
annotation of the video is needed. Two distributions functions
are learned for two different cases: i) the correlation between
an estimated background image and the current frame showing
that background and ii) the correlation between an estimated
background image and an unrelated patch.

Using these two distributions the patch matching problem is
formulated as a binary classification problem and the probability
of two patches matching is derived. The model depends on the
signal to noise ratio. The noise level is reasonably invariant
over time, while the signal level, represented by the amount of
structure in the patch or it’s spatial variance, has to be measured
for every frame.

A common application where this is useful is feature point
matching between different images. Another application is back-
ground/foreground segmentation. In this paper it is shown
how the theory can be used to implement a very fast back-
ground/foreground segmentation by transforming the calcula-
tions to the DCT-domain and processing a motion JPEG stream
without uncompressing it. This allows the algorithm to be
embedded on a 150MHz ARM based network camera. It is also
suggested to use recursive quantile estimation to estimate the
background model. This gives very accurate background models
even if there is a lot of foreground present during the initialisation
of the model.

I. INTRODUCTION

The correlation between two signals (cross correlation) is a
standard tool for assessing the degree to which two signals are
similar. It is a basic approach to match two image patches, for
feature detection [4] as well as a component of more advanced
techniques [3]. The technique has several advantages. Firstly,
the cross correlation is fairly easy to compute. When used for
matching a patch in a general position in an image, Fourier
methods can be used to compute the cross correlation fast.
Secondly, the cross correlation is independent of translations
and scaling in the intensity domain. Thus it is fairly indepen-
dent of lighting variations.

Numerous authors use cross-correlation for matching, [3],
[14]. However, there has been little attention to probabilistic
models of the correlation coefficient. The technique has been
shown to give good results in many situations where the

patches has enough structure. The contribution of this work
is a probabilistic formulation that can assess how certain a
correlation based match between two patches are and thereby
allow the following steps to put more weight on more certain
matches.

The theory presented in this paper can be used for any algo-
rithm that needs patch matching of patches of any size, such as
stereo matching or feature point tracking. But the application
considered here is background foreground segmentation in a
large scale automated traffic surveillance application. With
large scale we mean to cover the road network of an entire
city section with cameras and generate trajectories for all road
users such as cars, pedestrians and bicycles. There have been
a lot of background foreground segmentations suggested, but
non really suitable for this kind of application because

• To handle this amount of cameras, they have to be fairly
cheap and the video processing have to be embedded
within the cameras. It is not plausible to transfer the
amount of video data produced to a PC cluster doing
the processing. The aim is to use cameras like Axis
207, which contains a 150Mhz ARM processor. This
means that the algorithm have to be very computationally
efficient. The proposed algorithm is for example about
100 times faster than [10] that can handle continuously
varying backgrounds.

• The background typically consists of static pavement,
which means that there is no need for such complex
backgrounds. Neither is there a need for multimodal
background models to handle swaying trees or rippling
water, such as the mixtures of Gaussian suggested by
Stauffer and Grimson [13].

• The scene is outdoor, which means that the lighting
conditions will vary. Not only due to the sharp shadows
cast by the road users and the slow variations due to the
motion of the sun, but also due to more diffuse shadows
cast by passing clouds. Such passing clouds can move
faster than the road users and has no distinct borders but
will make the lighting vary smoothly over the image.

Friedman and Russel [5] have suggested to use a 3 component
mixture of Gaussian where the three components represent
pavement, pavement in shadow and foreground. This will work
nicely on a sunny day when shadows consist of sharp shadows
cast by road users. But on a cloudy day the diffuse clouds
will generate a lighting of the scene that varies smoothly both



spatially and temporary, there will no longer be two distinct
components but a continuous variation.

A different approach is to preprocess the input image to
extract intensity independent features and base the background
model on those instead. However, many intensity independent
features break down in dark or uniform areas. Take for
example the normalised rgb, that transforms the colour pixel
(r, g, b) into

(
r

r+g+b ,
g

r+g+b ,
b

r+g+b

)
. When r, g and b all

are small, the denominator becomes close to zero and the
noise is scaled up out of proportion. Gordon et al [6] has
suggested to ignore normalised rgb features in dark areas
and there rely on other features instead. In their case the
results from a stereo matching algorithm. A fix threshold
was used to decide if the features were reliable or not. In
the same fashion Hu et al [7] used 3 different models for
background patches with different amount of structures. Also,
Wayne and Schoonees [16] suggests to use two thresholds on
the background likelihood to classify pixel into background,
foreground and unknown depending on how close to the
background model the current frame is. The unknown pixels
are then filled in by a morphological post processing step based
on their neighbours.

This property of features being unreliable in some cases
and very reliable in other cases is not a discrete property.
It is a property that varies continuously from a patch with
a lot of structure to a uniform patch or from a very dark
pixel to a very light pixel. Features can be utilised much more
efficiently by instead of thresholding them into reliable and
not reliable, using a continuous estimate of how reliable they
are and weight the different features accordingly.

We suggest to divide the image into patches and to use
normalised cross correlation to match such patches to a
background model. Such comparison is independent both to
translations and scaling of the intensity domain, which makes
it fairly lighting independent. At least as long as the lighting
is the same over the entire patch. This is typically the case for
cloud shadows as they are diffuse and for the interior of sharp
shadows. However at the borders of sharp shadows that is not
the case, but foreground detections made at the very border of
shadows can be removed by later processing steps that does
not look at each block separately, but considers neighbours as
well. A Markov random field for example[9].

Theoretical background and foreground distributions of the
cross correlation coefficient is derived in [1] and the back-
ground distribution depends on a single parameter, the signal
to noise ratio. The signal here refers to the amount of structure
in the patch. Using Bayes rule and the likelihood produced
by those distributions, the probability of each block showing
background or foreground can be calculated. This makes it
possible to use the cross correlation feature for all patches even
if the amount of structure is low. In that case the foreground
probability will be close to 0.5 and represent an uncertain state.
The segmentation will then rely more on other features or on
neighbours. This means that there will be no need to chose
between several different distinct models. Instead the signal
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Fig. 1. Logarithmic plots of simulated distribution functions (crosses) for
different signal to noise ratio, σ̂, together with the theoretical functions (solid
lines). ffg is red and fbg is blue. d = 16.

to noise ratio is measured and a single parametrised model
will move continuously from being very certain about highly
structured patches to being very unsure about uniform patches.

In [8] image patches are matched by first transforming
the signal to a binary signal and then forming a correlation
coefficient called increment sign correlation. They also calcu-
late the distribution function of the increment sign correlation
assuming a Gaussian noise model in image intensity. Much
information is, however, lost in the binarisation and the re-
maining theory is only applicable for binary signals.

The assumption made in [1] was that the foreground distri-
bution arises from the cross-correlation between two random
Gaussian distributed independent patches, and that the back-
ground distribution arises from the cross-correlation coefficient
between two patches that differ only by scale, translation and
additive Gaussian noise. This is an over-simplification. At least
in the foreground case, where the probability of two unrelated
patches, chosen from natural images, being correlated is fairly
high. The theory does however give the conclusion that the
main parameter that controls the shape of the distribution is
the signal to noise ratio or the amount of structure in the patch.

In this paper the foreground and background distributions
will instead be learned from training data as a function of the
measured signal to noise ratio.

II. CORRELATION COEFFICIENT

Here, the cross correlation between small patches, typically
4 × 4 or 8 × 8 pixels, will be studied. It is not dependent
on the two dimensional structure of the patch, which allows
each patch, a, to be represented as a one dimensional vector,
a = (a1, a2, · · · ad), where ak is the grey level of pixel k, and
d is the total number of pixels in the patch. The order of the
pixels is not important as long as the same order is always
used. The following notation for the mean, ā = 1

d

∑
ak, the

displacement, âk = ak− ā and the length (amount of structure
or variance), |â|2 =

∑
â2
k will be used. The correlation

coefficient, c, between two patches, a and b is defined as

c =
∑
âk b̂k

|â|
∣∣∣b̂∣∣∣ =

â
|â|
· b̂∣∣∣b̂∣∣∣ , (1)

where · denotes scalar multiplication. Note that c = cosα,
with α the angle between the two vectors â and b̂.



The patch matching problem can be formulated as a binary
Bayesian classification problem, with one feature, c. In other
words, given a known patch and one or several candidate
patches it is possible to calculate the probability, for each
of the candidate patches, that they are noisy, rescaled and
translated versions of the known patch using Bayes’ formula.
To do that the distribution function, fbg (c), of correlating
the known patch with a noisy rescaled and translated version
of itself is compared with the distributing function, ffg (c),
of correlating the known patch with a random uncorrelated
patch. Distributions for these two cases are provided by [1].
The foreground distribution, ffg (c), will only depend on the
dimension d, while the background distribution, fbg (c |σ̂ ), will
also depend on the signal to noise ratio l = 1

σ̂ which is defined
as the standard deviation of the noise, σ, divided by the amount
of structure (length) of the observed patch, ˆ|a|, i.e σ̂ = σ

ˆ|a|
.

The distributions are

ffg (c) =
Γ
(
d
2

)
√
πΓ
(
d
2 −

1
2

) (1− c2) d−3
2 (2)

and

fbg (c|σ̂) =
√

1 − c2
d−4

√
π

e
c2−1
2σ̂2 ·

(3)·
d−2∑
k=0

(
d− 2
k

)
Γ
(
k+1

2

)
Γ
(
d−2

2

) ( c√
2σ̂

)d−2−k


1 + c

|c| −
cΓ

“
k+1
2 , c

2

2σ̂2

”
|c|Γ( k+1

2 ) k even

Γ
“
k+1
2 , c

2

2σ̂2

”
Γ( k+1

2 ) k odd
.

Plots of a few cases are given i Figure 1.

III. BACKGROUND MODEL

To use the correlation coefficient for background/foreground
segmentation a background model have to be constructed and
updated continuously. It will not be assumed that this model
is available apriorie nor that it is possible to observ the scene
when it is empty, i.e. contains no foreground. Instead the
background model will be estimated continiouls online while
the system is running and foreground objects are present. This
means that no manual initialisation is needed. Once the camera
is mounted and the system started it will start estimate the
background. During the first few minutes, output will not be
reliable, but as soon as the model estimate has converged the
output becomes useable.

As mentioned above the typical backgrounds in the con-
sidered applications are unimodal and it is more important
to lower the computational demands than handle multimodal
backgrounds. The lighting does however vary and the back-
ground model need to be estimated and updated during such
variations as well as with foreground objects present.

The input image It at time t is divided into patches pj,t
which are each normalised into p̂j,t

|p̂j,t| and a background path,
bj , is estimated as the temporal median over those normalised
patches. To estimate the noise level this background estimate
is rescaled to the same length (the same lighting conditions)
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Fig. 2. Simulated intensity of a single pixel (grey). The pixel shows a
background that is 80 in first half and 170 the second half mixed with different
amount of foreground that is uniformly distributed between 0 and 255. The
pixel is assumed to be measured with Gaussian noise with a standard deviation
of 4 in the first half and 6 in the second. It’s mean (thick blue) and standard
deviation (dashed blue) estimates using a learning factor α = 0.9993.
It’s mean (thick red) and standard deviation (dashed red) estimates using a
recursive quantile estimator with ct = 0.02.

as the observed patch and the difference

|p̂j,t|∣∣∣b̂j∣∣∣ b̂j − p̂j,t (4)

will be used as an sample from the noise distribution.

A. Recursive Quantile Estimation

To get good estimates of the background image and the
noise level even when there is a lot of foreground, recursive
quantile estimation will be used. The mixture of Gaussian
approach [5], [13], that only update the mean if the current
pixel value is within 2.5 standard deviations of the mean can
handle a lot of foreground. However it is a local optimisation
algorithm, which might fail if there is no decent estimate of the
mean to begin with. There is no guarantee that this approach
will converge if it is initiated randomly, as is shown by a
counterexample in the simulations below where it converges
to something completely wrong, see Figure 3 lower right.

The solution we suggest is to use the median instead of
the mean and to estimate the variance from the 25/75%
quantile. Möller et al shows [11] how to estimates quantiles
recursively, and proves that it will converge under very general
assumptions on the input data. They use a control sequence
ct = max(c0/t, cmin), where constant c0 is a starting value
that is typically chosen a few times larger than the maximum
intensity value. After some time the sequence will become
constant with value cmin. A larger value of this parameter will
make the algorithm adapt faster to changes in the background.
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Fig. 3. Normalised histogram over the the second half of the simulated
pixel values from Figure 2 (grey) and the background estimations made by
the three different algorithms: leaning factor (blue), recursive quantile (red)
and Stauffer/Grimson (green).

The median B0.50,t(x), 25% quantile B0.25,t(x) and 75%
quantile B0.75,t(x) of each pixel It(x) in a image sequence
is found with

Bγ,t =

 Bγ,t−1 + γct if Bγ,t−1 < It
Bγ,t−1 − (1− γ) ct if Bγ,t−1 > It
Bγ,t−1 if Bγ,t−1 = It

. (5)

From these quantiles the variance, Vt, can be estimated using√
Vt =

B0.75,t −B0.25,t

N−1
cdf (0.75)−N−1

cdf (0.25)
, (6)

where N−1
cdf (x) is the inverse of the normal cumulative distri-

bution function

Ncdf (x) =
∫ x

−∞
N (t |0, 1) dt, (7)

N−1
cdf (0.75)−N−1

cdf (0.25) ≈ 1.349. (8)

In the considered algorithm this will be applied to estimate
a background image as the median of p̂j,t

|p̂j,t| , and a noise
level as the standard deviation (6) of the noise samples from
Equation 4.

B. Simulations

Figure 2 shows a plot of the simulated intensity of a single
pixel in grey. In the top left plot the pixel always shows the
background which is measured with additive Gaussian noise.
The blue thick line shows the estimated background model
using a learning factor to estimate the mean and variance and
the two dashed blue lines shows an offset of two times the
estimated standard deviation from this mean. The red lines
shows the corresponding values but based on the 25%, 50%
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Fig. 4. The simulated pixel as in Figure 2. Here the background distribution is
estimated using the mixture of Gaussians algorithm by Stauffer and Grimson
[13].

and 75% quantile estimations instead. Both estimates agree
equally well with the ground truth after they have converged
when there is no foreground. The learning factor and the step
size have been chosen to make the convergence time of the
two estimates approximately equal.

In the top right image of Figure 2 the pixel is assumed
to show the foreground 1% of the time. The foreground is
modelled as uniformly distributed between 0 and 255. The
quantile based estimator still gives the same result while the
mean based overestimates the variance. In the bottom row
the amount of foreground is increased even further and now
the learning factor based estimator overestimates the variance
even further and also overestimates the mean value when it is
lower than 127 and underestimate it when it is larger than 127.
The quantile based estimator still gives reasonable results. The
mean of the last estimates archived right before the background
intensity was changed and at the end of the sequence are
shown in Table I. Also, normalised histograms of the data
together with plots of the probability distribution functions
estimated are shown in Figure 3.

When using mixtures of Gaussians based algorithms [13],
[5], the difference between using a learning factor as they do
and the quantile estimates are not as striking. Figure 4 shows
how the Stauffer/Grimson [13] performs on the same input
data as in Figure 2. And the estimated background distribution
is shown as a green line in Figure 3. A three component
mixture, as suggested in [13], have been used. To make a
fair comparisson with the other algroithms, the last step of that
algorithm that tries to estimate how many mixture components
there are in the background model have been hardcoded to
always return the correct value one. This is becuase the
simulated data is unimodal and the other algroithms assumes



Amount Mean Value Standard Deviation
foreground GT LF RQ SG GT LF RQ SG

0% 80 80.01 79.99 80.02 4 4.03 3.99 3.71
1% 80 80.34 79.88 79.91 4 9.48 3.98 3.69

10% 80 84.75 80.24 80.00 4 27.30 4.55 3.81
30% 80 93.86 80.69 79.97 4 45.04 6.54 3.93

0% 170 170.08 170.10 170.10 6 6.08 6.00 5.60
1% 170 169.47 169.85 169.89 6 10.75 6.02 5.61

10% 170 165.14 169.56 169.98 6 28.00 6.74 5.64
30% 170 157.91 168.89 29.85 6 44.00 9.43 17.41

TABLE I
RESULTS OF ESTIMATING THE MEAN AND VARIANCE OF A GAUSSIAN
BACKGROUND DISTRIBUTION MIXED WITH DIFFERENCE AMOUNTS OF

UNIFORMLY DISTRIBUTED FOREGROUND. THREE DIFFERENT METHODS:
LEARNING FACTOR (LF), RECURSIVE QUANTILE (RQ) AND

STAUFFER/GRIMSON (SG) ARE COMPARED WITH THE GROUND TRUTH
(GT).

it to be unimodal. The algorithm performs very well in most
cases. The variance is somewhat underestimated, but it should
be possible to compensate for that by figuring out how much
the estimate is biased. What’s troubling though is that when
there is a lot of foreground present this algorithm might lock
on to something completely wrong and then stick to that as
has happened in the lower right plot of Figure 3 and Figure 4.
This is because it is based on the EM-algorithm, which is
a local optimisation algorithm that can get stuck in a local
maxima. The convergence properties of the recursive quantile
estimator are investigated in [11] and it is shown to converge
under some very general assumptions on the input sequence.
The result is also tabulated in Table I.

IV. EMPIRICAL DISTRIBUTIONS

The assumptions presented in Section II are, at least in
the foreground case, an over-simplification. But the theory
still implies that the most important parameter that governs
the shape of the distribution is the signal to noise ratio, l.
By using a background model generated as described above
and a camera looking at a scene with no moving objects an
empirical background distribution, fbg (c |l ), can be learned
by building a two dimensional histogram over the observed
correlation coefficients and the observed signal to noise ratios.
By reordering the blocks in the background image but not
in the input frame, a foreground distribution, ffg (c |l ), can
be estimated in the same way. The probability of foreground
can then be found by assuming equal priors and using Bayes
formula,

p (foreground| c, l ) =
ffg (c |l )

ffg (c |l ) + fbg (c |l )
. (9)

The resulting distribution from the training is shown in Fig-
ure 5. All bins of the histograms were initiated with a single
sample. That results in making events that never occurred
in neither in the foreground nor the background during the
training generate a foreground probability of 0.5 instead of
being undefined.

V. IMPLEMENTATION

The presented approach is very well suited for processing
motion JPEG compressed video. That is a video compression
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Fig. 5. The probability of foreground, p (foreground| c, l ), as a function of
the signal to noise ratio l and the correlation coefficient c.

standard that stores each frame of a video as a JPEG image.
The JPEG compression algorithm divides the image into 8x8
blocks and performs a discrete cosine transform (DCT) on
each block. All calculation presented above can be performed
in this DCT domain, which means that the algorithm can
operate on motion-JPEG compressed videos without uncom-
pressing them fully. Processing a compressed image will be
more efficient on low end systems due to better utilisation of
the cache memories as the JPEG-image is already organised
in 8x8 blocks. In the DCT-domain the first coefficient is the
mean value, which means that the operation of removing the
mean simply means skipping the first coefficient. After that,
Equation 1 for calculating the correlation coefficient from
zero mean vectors is the same in the DCT-domain as in
the intensity-domain. This kind of implementation becomes
very fast. A 320 × 240 video is processed at 243 fps on a
2.40GHz P4, 640× 480 at 70 fps and 1280× 1024 at 17 fps.
On a 150Mhz ARM system embedded within an Axis 207W
network camera 320× 240 videos are processes at 16-20 fps
depending on how large the compressed images become. The
variation in processing speed is probably due to the bottleneck
in the system being the memory bandwidth.

When estimating the noise level from the noise samples of
Equation 4 memory can be saved by a slight modification to
the quantile estimator (6). As it is presented above both the
25% quantile, B0.25,t and the 75% quantile, B0.75,t has to
be estimated. But the noise samples typically have median 0
and are symmetrically distributed, i.e B0.25,t = −B0.75,t. By
assuming this to be the case only one of B0.25,t and B0.75,t

have to be estimated. In order to not loose any precision it
can be estimated as the median over the absolute values of
the samples.

VI. EXPERIMENTS

The background foreground segmentation have been tested
on 26 different sequences from 3 different test sets: i)
Axis’s Open Evaluation of Motion Detection Algorithms ii)



Fig. 6. From left to right: An input frame, the correlation coefficient between this input frame and a background model (c), the signal to noise level (l) and
the probability of foreground, p (foreground |c, l ). The colour coding is the same as is used in Figure 5.

WallFlower, and iii) Traffic Survailience. The output is a
probabilistic background/foreground segmentation. It can be
used as an input to a tracking algorithms that uses probabilistic
background/foreground segmentation directly, such as [2] or
it can be used as the t-weights in a MRF such as [9]. A MRF
gives a binary MAP estimate of the segmentation considering
the neighbouring blocks as well. In both cases the probability
of foreground of each block is assumed to be independent.
To achieve that we have only used non-overlapping blocks.
It would of course be possible to use overlapping blocks as
well, but in that case neighbouring probabilities would become
highly correlated.

Figure 8 shows a single frame from each of 25 of the se-
quences with the borders of the connected segments produced
by a MRF segmentation overlaid. The exact same parameters
were used in all cases.

Figure 6 shows some segmentation results from one test
sequence. Most of the pedestrian is detected as foreground.
A large part of the jacket is very uncertain though, as it is
uniformly coloured and partly underexposed. The interior of
the shadow is detected as background with less probability
than the rest of the ground as the SNR is lower. The border of
the shadow is detected as foreground because here the patches
overlap the border and thus the assumption about the light
being constant within the patch no longer holds.

The Axis’s Open Evaluation of Motion Detection Algo-
rithms dataset consists of 10 different quite challenging se-
quences from different scenes acquired with different types of
cameras and resolution, with varying weather condition and
illumination both indoor and outdoor. Results from two frames
from one of the sequences are shown in Figure 7. It shows
the successfully segmentations generated from the suggested
algorithm together with results from the Stauffer and Grimson
algorithm [13]. The later fails due to the lighting variations.
Results from all 10 sequences are shown in Figure 8 (first
two rows). The results are mostly correct. In the third image
on the first row a shadow is detected as foreground because
the wall it falls on is lit by some complex far from constant
lighting. Also part of the shadows in the 9th image shows up
as foreground, partly due to an overexposed specular reflection
in the floor. There is in total 13 pedestrians, 2 cars and 1 open
door correctly detected as foreground. All other cars present
are stationary and correctly detected as background.

The proposed algorithm were also tested on the WallFlower
dataset from [15] available online1, which is also used by
[12]. This dataset consists of 7 sequences with resolution
160x120. For each sequence one frame has been manually
segmented into foreground and background. The result from
the proposed algorithm followed by a binary MRF segmenta-
tion was compared to those ground truth frames and results are
presented in Table II and Figure 8 (3rd row). The LightSwitch
sequence fails. It shows an indoor dark scene that is suddenly
illuminated because the light in the room is turned on. This is a
lighting variation, but due to limitations of the camera used to
capture the scene, the sparse amount of light available during
the dark part of scene were not enough for proper exposure,
i.e. underexposed images were generated that are almost
completely black. This means that the background model is
in this case trained on dark underexposed frames that does
not contain the same structures as the light frames. However,
this scene falls outside the scope of the considered algorithm
which is targeted for outdoor traffic scenes. If the LightSwitch
sequence is excluded this gives on average 6.78% misclassified
pixels, which is slightly better than the results presented in
[15], [12], 7.82% and 7.33% misclassified pixels respectively.
The proposed algorithm is also significantly faster. Those
160x120 sequences are processed at 690 fps on a 2.4GHz P4.
This speed together with it’s robustness for varying lighting is
the main benefits of the proposed algorithm.

The wallflower paper [15] also present results from applying
frame-to-frame difference as well as several other classic
methods to the wallflower sequences. If the LightSwitch is
discarded, frame-to-frame difference gives on average 17.70%
miss-classified pixels, a thresholded difference with a mean
value background estimate gives 9.50% and the pfinder ap-
proach gives 11.63%. The suggested algorithm gives only
6.78% miss-classified pixels. However frame-to-frame differ-
ence is not an option in traffic scenes since cars might stand
completely still for long periods of time when they stop for a
red light.

Finally, tests were performed on a large traffic surveillance
dataset consisting of videos from 22 intersection. Eight camera
units were used for the study. They were moved between sites
just before or after the weekend, resulting in three to four

1http://research.microsoft.com/users/jckrumm/WallFlower/TestImages.htm



Fig. 7. Frame 733 (first row) and frame 1140 (second row) from a sequence recorded on a partly cloudy, windy day. First column shows the input frame.
Second column shows the segmentation produced by the Stauffer and Grimson algorithm [13] with 3 components in the mixture model. Third column shows
the probability of foreground as produced by the suggested algorithm, and the last column shows MRF segmentation of that probability.

Sequence FP (%) FN (%) Tot (%)
TimeOfDay 2.47 0.95 3.42
ForegroundAperture 8.23 1.67 9.90
Bootstrap 0.44 10.95 11.39
Camouflage 7.83 2.01 9.83
LightSwitch 51.15 0.00 51.15
MovedObject 0.00 0.00 0.00
WavingTrees 4.75 1.35 6.10

TABLE II
RESULTS FROM APPLYING THE PROPOSED ALGORITHM TO THE DATASET

FROM [15]. FOR EACH OF THE 7 SEQUENCES THE PERCENTAGES OF
MISCLASSIFIED PIXELS ARE PRESENTED SEPARATELY FOR FALSE

POSITIVES AND FALSE NEGATIVES.

weekdays of recordings at each site. The recording were made
as 320×240 motion JPEG. A subset of the dataset 2 is available
online including some manual counts made. It consists of 1
hour video from each of 8 selected intersections. More can
be made available if there is sufficient interest. Results from
a single frame from each of those 8 sequences are shown last
in Figure 8. All cars in motion are detected in those frames,
and no false positives are made. The cars not detected are
stationary parked cars.

VII. CONCLUSIONS

The distribution function of the cross-correlation coefficient
is learned from training data in two cases: a background
distribution from a video sequence of a static scene and a
foreground distribution from the same scene but with the
background patches reordered. Using these two distribution
the probability of two image patches matching are derived
using Bayes formula. This gives a probabilistic theory that
can be used to place higher weights on more certain matches,

2http://www.lth.se/index.php?id=15823

e.g. patches with a lot of structure, than on more unreliable
matches, e.g. patches close to uniform.

The theory is tested on a foreground/background segmenta-
tion application. The experimental validation is performed on
videos from 26 different scenes acquired with different types
of cameras and resolution, with varying weather condition
and illumination both indoor and outdoor. The exact same
parameters were used in all cases, and the processing is very
fast, 243 fps for a 320× 240 video on a 2.40GHz P4.

The algorithm is fast enough to run on a 150Mhz ARM
platform embedded within an Axis 207W network camera
and it can handle the the backgrounds typically encountered
in traffic surveillance situations. This consists of unimodal
backgrounds (i.e. static pavement and not swaying trees or
rippling water) with lighting varying continuously over both
space and time as it does due to a changing cloud-cover on a
cloudy day.

By using recursive quantile estimation of the background
model the algorithm is able to both initiate and update it
even when there is a lot of foreground and lighting variations
present. This is needed both in highway scenes where there
can be a lot of traffic or ques and in intersections where a car
can stop at a red light for quite some time.
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