Skip to main content
Log in

Denoising for Multiple Image Copies through Joint Sparse Representation

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This paper addresses the recovery of original images from multiple copies corrupted with the noises, which can be represented sparsely in some dictionary. Sparse representation has been proven to have strong ability to denoise. However, it performs suboptimally when the noise is sparse in some dictionary. A novel joint sparse representation (JSR)-based image denoising method is proposed. The images can be recovered well from multiple noisy copies. All copies share a common component—the image, while each individual measurement contains an innovation component—the noise. Our method can separate the common and innovation components, and reconstruct the images with the sparse coefficients and the dictionaries. Experiment results show that the performance of the proposed method is better than that of other methods in terms of the metric and the visual quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lu, X., Sakaino, H.: A spatial adaptive filter for smoothing of non-Gaussian texture noise. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Taipei, Taiwan, pp. 841–844 (2009)

    Google Scholar 

  2. Faghih, F., Smith, M.: Combining spatial and scale-space techniques for edge detection to provide a spatially adaptive wavelet-based noise filtering algorithm. IEEE Trans. Image Process. 11(9), 1062–1071 (2002)

    Article  MathSciNet  Google Scholar 

  3. Sun, L., Zhang, C., Hu, M.: Interferogram phase noise suppressing using nonlinear partial differential equation. In: International Conference on Radar, Shanghai, China, pp. 1–4 (2006)

    Chapter  Google Scholar 

  4. You, Y.L., Kaveh, M.: Fourth-order partial differential equations for noise removal. IEEE Trans. Image Process. 9(10), 1723–1730 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Nath, V.K., Hazarika, D., Mahanta, A.: Video noise reduction in 3-D mixed transform domain using its efficient wavelet structure. In: Annual IEEE India Conference (INDICON), Ahmedabad, India, pp. 1–4 (2009)

    Chapter  Google Scholar 

  6. Su, W., Zhou, Y.: Wavelet transform threshold noise reduction methods in the oil pipeline leakage monitoring and positioning system. In: International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Changsha, China, pp. 1091–1094 (2010)

    Chapter  Google Scholar 

  7. Jiao, C., Wang, D., Lu, H., Zhang, Z., Jerome, Z.: Multiscale noise reduction on low-dose CT sinogram by stationary wavelet transform. In: IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, pp. 5339–5344 (2008)

    Google Scholar 

  8. Grace Chang, S., Yu, B., Vetterli, M.: Wavelet thresholding for multiple noisy image copies. IEEE Trans. Image Process. 9(9), 1631–1635 (2000)

    Article  Google Scholar 

  9. Luisier, F., Blu, T., Unser, M.: SURE-LET for orthonormal wavelet-domain video denoising. IEEE Trans. Circuits Syst. Video Technol. 20(6), 913–919 (2010)

    Article  Google Scholar 

  10. Banerjee, S.: Low-power content-based video acquisition for super-resolution enhancement. IEEE Trans. Multimed. 11(3), 455–464 (2009)

    Article  Google Scholar 

  11. Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52(1), 6–18 (2006)

    Article  MathSciNet  Google Scholar 

  12. Carrillo, R.E., Barner, K.E., Aysal, T.C.: Robust sampling and reconstruction methods for sparse signals in the presence of impulsive noise. IEEE J. Sel. Top. Signal Process. 4(2), 392–408 (2010)

    Article  Google Scholar 

  13. Fuchs, J.J.: A frame construction and a universal distortion bound for sparse representations. IEEE Trans. Inf. Theory 51(10), 3601–3608 (2005)

    Article  Google Scholar 

  14. Wakin, M., Duarte, M., Sarvotham, S., Baron, D., Baraniuk, R.: Recovery of jointly sparse signals from few random projections. In: Proceedings of the Workshop on Neural Information Processing Systems (NIPS), Vancouver, Canada, pp. 1435–1442 (2005)

    Google Scholar 

  15. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bronstein, A.M., Bronstein, M.M., Zibulevsky, M.: On separation of semitransparent dynamic images from static background. Lect. Notes Comput. Sci. 3889, 934–940 (2006)

    Article  Google Scholar 

  17. Duarte, M., Sarvotham, S., Baron, D., Wakin, M., Baraniuk, R.: Distributed compressed sensing of jointly sparse signals. In: Asilomar Conf. Signals, Systems and Computers, Pacific Grove, November 2005

    Google Scholar 

  18. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: 1993 Conference Record of the Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, Pacific Grove, pp. 40–44 (1993)

    Google Scholar 

  19. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  20. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(15), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  21. Yin, L., Yang, R., Gabbouj, M., et al.: Weighted median filters: A tutorial. IEEE Trans. Circuits Syst. 43(3), 157–192 (1996)

    Article  Google Scholar 

  22. Popovici, A., Dan, P.: Cellular automata in image processing. In: Proceedings of AMS, pp. 1–6 (2000)

    Google Scholar 

  23. Ji, Z., Liao, H., Zhang, X., Wu, Q.H.: Simple and efficient soft morphological filter in periodic noise reduction. In: TENCON 2006. 2006 IEEE Region 10 Conference, pp. 1–4 (2006)

    Google Scholar 

  24. Starck, J.-L., Elad, M., Donoho, D.: Image decomposition via the combination of sparse representations and variational approach. IEEE Trans. Image Process. 14(10), 1570–1582 (2005)

    Article  MathSciNet  Google Scholar 

  25. CAVIAR Test Case Scenarios: http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nannan Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, N., Qiu, T. & Ren, F. Denoising for Multiple Image Copies through Joint Sparse Representation. J Math Imaging Vis 45, 46–54 (2013). https://doi.org/10.1007/s10851-012-0343-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0343-1

Keywords

Navigation