Skip to main content
Log in

Nonnegative Diffusion Orientation Distribution Function

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Because of the well-known limitations of diffusion tensor imaging (DTI) in regions of low anisotropy and multiple fiber crossing, high angular resolution diffusion imaging (HARDI) and Q-Ball Imaging (QBI) are used to estimate the probability density function (PDF) of the average spin displacement of water molecules. In particular, QBI is used to obtain the diffusion orientation distribution function (ODF) of these multiple fiber crossing. As a probability distribution function, the orientation distribution function should be nonnegative which is not guaranteed in the existing methods. This paper proposes a novel technique to guarantee the nonnegative property of ODF by solving a convex optimization problem, which has a convex quadratic objective function and a constraint involving the nonnegativity requirement on the smallest Z-eigenvalue of the diffusivity tensor. Using convex analysis and optimization techniques, we first derive the optimality conditions of this convex optimization problem. Then, we propose a gradient descent algorithm to solve this problem. We also present formulas for determining the principal directions (maxima) of the ODF. Numerical examples on synthetic data as well as MRI data are displayed to demonstrate the significance of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alexander, D.C., Barker, G.J., Arridge, S.R.: Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data. Magn. Reson. Med. 48, 331–340 (2002)

    Article  Google Scholar 

  2. Barmpoutis, A., Hwang, M.S., Howland, D., Forder, J.R., Vemuri, B.C.: Regularized positive-definite fourth order tensor filed estimation from DW-MRI. NeuroImage 45, 5153–5162 (2009)

    Article  Google Scholar 

  3. Barmpoutis, A., Jian, B., Vemuri, B.C., Shepherd, T.M.: Symmetric positive 4th order tensors & their estimation from diffusion weighted MRI. In: Karssemeijer, M., Lelieveldt, B. (eds.) Information Processing and Medical Imaging, pp. 308–319. Springer, Berlin (2007)

    Chapter  Google Scholar 

  4. Basser, P.J., Jones, D.K.: Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed. 15, 456–467 (2002)

    Article  Google Scholar 

  5. Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson., Ser. B 103, 247–254 (1994)

    Article  Google Scholar 

  6. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophysica 66, 259–267 (1994)

    Article  Google Scholar 

  7. Bloy, L., Verma, R.: On computing the underlying fiber directions from the diffusion orientation distribution function. In: Metaxas, D., Axel, L., Fichtinger, G., Székeley, G. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2008, pp. 1–8. Springer, Berlin (2008)

    Chapter  Google Scholar 

  8. Chefd’Hotel, C., Tschumperle, D., Deriche, R., Faugeras, O.: Regularizing flows for constrained matrix-valued images. J. Math. Imaging Vis. 20, 147–162 (2004)

    Article  MathSciNet  Google Scholar 

  9. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, New York (1998)

    MATH  Google Scholar 

  10. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular diffusion imaging: estimation and applications. Magn. Reson. Med. 56, 395–410 (2006)

    Article  Google Scholar 

  11. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and analytical q-ball imaging. Magn. Reson. Med. 58, 497–510 (2007)

    Article  Google Scholar 

  12. Descoteaux, M., Wiest-Daesslé, N., Prima, S., Barillot, C., Deriche, R.: Impact of Rician adapted non-local means filtering on HARDI. In: MICCAI 2008, Part II. LNCS, vol. 5242, pp. 122–130 (2008)

    Google Scholar 

  13. Ghosh, A., Deriche, R.: From second to higher order tensors in diffusion-MRI. In: Tensors in Image Processing and Computer Vision, pp. 315–334. Springer, London (2009)

    Chapter  Google Scholar 

  14. Ghosh, A., Tsigaridas, E., Descoteaux, M., Comon, P., Mourrain, B., Deriche, R.: A polynomial based approach to extract the maxima of an antipodally symmetric spherical function and its application to extract directions from the orientation distribution function in diffusion MRI. In: Workshop on Computational Diffusion MRI, Held in Conjunction with the MICCAI 2008 Conference, New York, USA, September 2008 (2008)

    Google Scholar 

  15. Ghosh, A., Descoteaux, M., Deriche, R.: Riemannian framework for estimating symmetric positive definite 4th order diffusion tensors. In: Metaxas, D., Axel, L., Fichtinger, G., Székeley, G. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2008, pp. 858–865. Springer, Berlin (2008)

    Chapter  Google Scholar 

  16. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin (1993)

    Book  Google Scholar 

  17. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  18. Ozarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50, 955–965 (2003)

    Article  Google Scholar 

  19. Patel, V., Shi, Y., Thompson, P.M., Toga, A.W.: Mesh-based spherical deconvolution: a flexible approach to reconstruction of non-negative fiber orientation distributions. NeuroImage 51, 1071–1081 (2010)

    Article  Google Scholar 

  20. Poupon, C., Rieul, B., Kezele, I., Perrin, M., Poupon, F., Mangin, J.F.: New diffusion phantoms dedicated to the study and validation of HARDI models. Magn. Reson. Med. 60, 76–83 (2008)

    Article  Google Scholar 

  21. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)

    Article  MATH  Google Scholar 

  22. Qi, L., Wang, Y., Wu, E.X.: D-eigenvalues of diffusion kurtosis tensors. J. Comput. Appl. Math. 221, 150–157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Qi, L., Han, D., Wu, E.X.: Principal invariants and inherent parameters of diffusion kurtosis tensors. J. Math. Anal. Appl. 349, 165–180 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 118, 301–316 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Qi, L., Yu, G., Wu, E.X.: Higher order positive semi-definite diffusion tensor imaging. SIAM J. Imaging Sci. 3, 416–433 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rockafellar, R.T.: Convex Analysis. Princeton Publisher, Princeton (1970)

    MATH  Google Scholar 

  27. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52, 1358–1372 (2004)

    Article  Google Scholar 

  28. Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N.G., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48, 454–459 (2002)

    Article  Google Scholar 

  29. Tournier, J.-D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35, 1459–1472 (2007)

    Article  Google Scholar 

  30. Wang, Z., Vemuri, B.C., Chen, Y., Mareci, T.H.: A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI. IEEE Trans. Med. Imaging 23, 930–939 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Maxime Descoteaux and Rachid Deriche and the Odyssee Diffusion MRI Toolbox. The authors would also like to thank Cyril Poupon for his kind offer of the diffusion phantom dataset. The authors would also like to thank three anonymous referees who have contributed to improve the quality of the paper.

This work was partly supported by the Research Grant Council of Hong Kong and the National Natural Science Foundation of China (No. 11001060), the Natural Science Foundation of Jiangxi Province, China (2009GQS0007) and the program of JGZX (20112BCB23027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaohang Yu.

Appendix: The Solution Method for (7)

Appendix: The Solution Method for (7)

According to optimization theory, the optimality conditions of (7) have the form:

$$ \left \{ \begin{array}{l} \sum_{i=1}^m \sum_{j=0}^{m-i}ib_{ij}x_1^{i-1}x_2^jx_3^{m(i,j)}=m\lambda x_1,\\[5pt] \sum_{i=0}^m \sum_{j=1}^{m-i}jb_{ij}x_1^ix_2^{j-1}x_3^{m(i,j)}=m\lambda x_2,\\[5pt] \sum_{i=0}^m \sum_{j=0}^{m-i-1}m(i,j)b_{ij}x_1^ix_2^jx_3^{m(i,j)-1}=m\lambda x_3,\\[5pt] x_1^2 + x_2^2 + x_3^2=1. \end{array} \right . $$
(18)

Here m(i,j)=mij. The additional “m” on the right hand sides of the first three equations make it the same as the definition of Z-eigenvalues [7, 2124] for the symmetric tensor x. If (x,λ) is a solution of (18), then x is a stationary point of (7) and

$$ \lambda= \varPsi(\mathbf{x}) $$
(19)

is a Z-eigenvalue of u. Then, the smallest Z-eigenvalue of u is the optimal value of (7).

We may solve (18) in the following way:

Case 1

x 3=x 2=0. By (18), this only happens if b m−1,1=b m−1,0=0. In this case, x 1=±1, λ=b m,0.

Case 2

x 3=x 1=0. By (18), this only happens if b 1,m−1=b 0,m−1=0. In this case, x 2=±1, λ=b 0,m .

Case 3

x 3=0, \(x_{1} \not= 0\) and \(x_{2} \not= 0\). Then (18) becomes

$$ \left \{ \begin{array}{l} \sum_{i=1}^m ib_{i,m-i}x_1^{i-1}x_2^{m-i}=m\lambda x_1,\\ [5pt] \sum_{i=0}^{m-1} (m-i)b_{i,m-i}x_1^ix_2^{m-i-1} =m\lambda x_2,\\[5pt] \sum_{i=0}^{m-1} b_{i,m-i-1}x_1^ix_2^{m-i-1}= 0,\\ [5pt] x_1^2 + x_2^2=1. \end{array} \right . $$
(20)

We may eliminate λ in (20) and have the following equations of x 1 and x 2:

$$\left \{ \begin{array}{l} \sum_{i=1}^m ib_{i,m-i}x_1^{i-1}x_2^{m-i+1}\\ [5pt] \quad=\sum_{i=0}^{m-1} (m-i)b_{i,m-i}x_1^{i+1}x_2^{m-i-1},\\ [5pt] \sum_{i=0}^{m-1} b_{i,m-i-1}x_1^ix_2^{m-i-1}=0,\\ [5pt] x_1^2 + x_2^2 =1. \end{array} \right . $$

Let t=x 1/x 2. We have

$$ \left \{ \begin{array}{l} \sum_{i=1}^mib_{i,m-i}t^{i-1} =\sum_{i=0}^{m-1}(m-i)b_{i,m-i}t^{i+1},\\ [5pt] \sum_{i=0}^{m-1}b_{i,m-i-1}t^i = 0. \end{array} \right . $$
(21)

We may solve the two one-variable equations of (21) separately. If they have common solutions t, then (18) has solutions

Case 4

\(x_{3} \not= 0\). We may eliminate λ in (18) and have the following equations of x:

$$ \left \{ \begin{array}{l} \sum_{i=1}^m \sum_{j=0}^{m-i}ib_{ij}x_1^{i-1}x_2^jx_3^{m(i,j)+1} \\[5pt] \quad=\sum_{i=0}^m \sum_{j=0}^{m-i-1}m(i,j)b_{ij}x_1^{i+1}x_2^jx_3^{m(i,j)-1},\\ [5pt] \sum_{i=0}^m \sum_{j=1}^{m-i}jb_{ij}x_1^ix_2^{j-1}x_3^{m(i,j)+1} \\ [5pt] \quad=\sum_{i=0}^m \sum_{j=0}^{m-i-1}m(i,j)b_{ij}x_1^ix_2^{j+1}x_3^{m(i,j)-1},\\ [5pt] x_1^2 + x_2^2 + x_3^2 =1. \end{array} \right . $$
(22)

Let w=x 1/x 3, v=x 2/x 3. Then we have

$$ \left \{ \begin{array}{l} \sum_{i=1}^m \sum_{j=0}^{m-i}ib_{ij}w^{i-1}v^j \\ [5pt] \quad=\sum_{i=0}^m \sum_{j=0}^{m-i-1}m(i,j)b_{ij}w^{i+1}v^j,\\ [5pt] \sum_{i=0}^m \sum_{j=1}^{m-i}jb_{ij}w^iv^{j-1} \\[5pt] \quad=\sum_{i=0}^m \sum_{j=0}^{m-i-1} m(i,j) b_{ij}w^iv^{j+1}. \end{array} \right . $$
(23)

For solving system (23), we first regard it as a system of polynomial equations of variable w and rewrite it as

$$\left \{ \begin{array}{l} \gamma_0w^m+\gamma_1w^{m-1}+\cdots+\gamma_m=0,\\ \tau_0w^{m-1}+\tau_1w^{m-2}+\cdots +\tau_{m-1}=0, \end{array} \right . $$

where γ 0,…,γ m , τ 0,…,τ m−1 are polynomials of v, which can be calculated by (19). By the Sylvester theorem, the above system of polynomial equations in w possesses solutions if and only if its resultant vanishes [9]. The resultant of this system of polynomial equations is the determinant of the following (2m−1)×(2m−1) matrix

$$ V:= \left ( \begin{array}{c@{\ }c@{\ }c@{\ }c@{\ }c@{\ }c@{\ }c@{\ }c@{\ }c} \gamma_0&\gamma_1&\cdots&\gamma_{m-2}&\gamma_{m-1}&\gamma_m&\cdots&0&0\\ 0&\gamma_0&\cdots&\gamma_{m-3}&\gamma_{m-2}&\gamma_{m-1}&\cdots &0&0\\ \cdot&\cdot&\cdots&\cdot&\cdot&\cdot&\cdots&\cdot&\cdot\\ 0&0&\cdots&\gamma_1&\gamma_2&\gamma_3&\cdots&\gamma_m&0\\ 0&0&\cdots&\gamma_0&\gamma_1&\gamma_2&\cdots&\gamma_{m-1}&\gamma_m\\ \tau_0&\tau_1&\cdots&\tau_{m-2}&\tau_{m-1}&0&\cdots&0&0\\ 0&\tau_0&\cdots&\tau_{m-3}&\tau_{m-2}&\tau_{m-1}&\cdots&0&0\\ \cdot&\cdot&\cdots&\cdot&\cdot&\cdot&\cdots&\cdot&\cdot\\ 0&0&\cdots&\tau_0&\tau_1&\tau_2&\cdots&\tau_{m-1}&0\\ 0&0&\cdots&0&\tau_0&\tau_1&\cdots&\tau_{m-2}&\tau_{m-1} \end{array} \right ), $$

which is a polynomial equation in variable v. After finding all real roots of this polynomial, we can substitute them to (23) to find all the real solutions of w. Then, using \(x_{1} = \frac{w}{\sqrt{1+w^{2}+v^{2}}}\), \(x_{2} = \frac{v}{\sqrt{1+w^{2}+v^{2}}}\), \(x_{3} = \frac{\pm1}{\sqrt{1+w^{2}+v^{2}}}\), λ=Ψ(x), we may find all the solutions of (18) in this case.

Combine all the possible solutions of (18) in these four cases, and find λ min(As), the smallest value of λ of these solutions. This solves (7).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, L., Yu, G. & Xu, Y. Nonnegative Diffusion Orientation Distribution Function. J Math Imaging Vis 45, 103–113 (2013). https://doi.org/10.1007/s10851-012-0346-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0346-y

Keywords

Navigation