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Abstract We investigate a class of variational problems that
incorporate in some sense curvature information of the level
lines. The functionals we consider incorporate metrics de-
fined on the orientations of pairs of line segments that meet
in the vertices of the level lines. We discuss two particular
instances: One instance that minimizes the total number of
vertices of the level lines and another instance that mini-
mizes the total sum of the absolute exterior angles between
the line segments. In case of smooth level lines, the latter
corresponds to the total absolute curvature. We show that
these problems can be solved approximately by means of a
tractable convex relaxation in higher dimensions. In our nu-
merical experiments we present preliminary results for im-
age segmentation, image denoising and image inpainting.
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1 Introduction

For almost three decades, smoothness of first-order deriva-
tives has been the dominating regularization framework to
solve ill-posed low-level vision problems such as image de-
noising, image segmentation, inpainting [19,4,28,33]. It has
first been observed in the seminal work of Mumford [27]
that higher order features such as the curvature of an ob-
ject boundary gives a much stronger prior for tasks such
as boundary completion and object disocclusion [29]. Since
then, there is an increased interest in functionals incorporat-
ing higher order information, see for example [8,5].

There is also a strong evidence that curvature plays a
dominant role in the human visual system [24,12]. A com-
mon choice, which is known to coincide with the main prop-
erties of Gestalt principles is to minimize the elastica func-
tional∫

γ

(α +βκ
2) dγ , (1.1)

where α > 0, β > 0 are weighting parameters, γ is a smooth
curve and κ is its curvature. A related and well studied func-
tional is the so-called Willmore energy [40]

1
2

∫
γ

κ
2 dγ , (1.2)

where now γ is a smooth, closed surface, κ is its mean curva-
ture and dγ is the induced surface measure. Gradient flows
of this energy have been studied for geometric problems
based on level-set formulations [14], convolution threshold-
ing schemes [22] or more recently by a two-step time dis-
cretization scheme [18].

The concept of curvature regularity of object boundaries
has been generalized to whole images in [26,2]. The main
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idea is to impose the curvature regularity to each single level
line of a gray value image which leads to a functional∫

Ω

|∇u|

(
α +β

(
div

∇u
|∇u|

)2
)

dx , (1.3)

where Ω is the image domain and u ∈ C 2
c (Ω , IR) is the

image function. In [26], the application to image inpaint-
ing problems is shown, where the model yields faithful re-
constructions of missing image data. Remarkably, the pro-
posed algorithm based on dynamic programming computes
a globally optimal solution. For related work see also [3,
10,38] where different algorithms are proposed to minimize
the elastica functional. Also related, researchers study par-
tial differential equations (PDEs) related to the gradient flow
of (1.3). See for example [39,11].

The reason that held researchers off from using curva-
ture depending functionals for practical imaging problems
is its strong non-convexity, which makes a global minimiza-
tion a very hard task. It is only recently that researchers
started to work on global minimization algorithms for gen-
eral curvature depending energy functionals. In [34,35],
the authors proposed in a discrete setting an integer lin-
ear programming formulation of curvature minimizing en-
ergy functionals. The method basically works by discretiz-
ing all possible combinations of oriented boundary elements
which results in a huge integer linear program (LP). The in-
teger LP is then solved by standard LP relaxation which for
many practical image segmentation and inpainting problems
leads to near-optimal solutions. A related, but simpler ap-
proach has been presented in [16] by means of a Markov ran-
dom field formulation incorporating higher-order cliques.
Recently, a convex relaxation of the Menger curvature of a
characteristic function has been proposed in [20], but a gen-
eralization to general images remains unclear. Image seg-
mentations with curvature regularization can also be ob-
tained for certain active contour-type models which are
based on so-called ratio functionals [36]. The minimizer is
obtained by a minimum ratio cycle algorithm applied to a
graph that represents all possible discrete curves in the im-
age. Although this approach can lead to globally optimal so-
lutions, it is still a relaxation of the original problem in the
sense that it does not explicitly exclude self-intersections.
Furthermore, the model is restricted to binary segmenta-
tion problems and cannot incorporate region-based fidelity
terms.

In a paper by Citti and Sarti [12] it has been shown that
by lifting (1.3) to the so-called roto-translation space, (1.3)
reduces to a minimal surface problem in higher dimensions.
The idea is to consider the original problem in a higher di-
mensional space, where the additional dimension is given
by a local orientation ϑ ∈ S1 tangential to the image gra-
dient. The level lines of the function u lifted to this space
are then tangent to the vector fields (ϑ ,0) and (0,1) and

Fig. 1 Lifting of a binary image u of an octagon to the roto-translation
space Ω × S1. The red lines refer to the measure |∇u| which is only
supported at the edges of the octagon. According to their orientations,
they appear as straight lines at different heights in the roto-translation
space.

its directional derivatives are given by X1 = ϑ1∂x1 +ϑ2∂x2

and X2 = ∂ϑ . The authors consider a generalized function
v : Ω × S1 → IR+ that can be identified with the measure
∇u in the lifted space. See Figure 1 for an example where
a simple binary image is lifted to the roto-translation space.
Surprisingly, it turns out that in this representation, the non-
convex higher order two-dimensional problem (1.3) can be
written in terms of a non-convex energy depending only on
the first order derivatives X1 and X2. The authors showed
applications to disocclusion problems using an iterative dif-
fusion and concentration process by application of the so-
called sub-Laplacian operator in the lifted space.

In this paper we make use of the idea of Citti and Sarti
and show that it can be used to find a convex representa-
tion of a certain class of vertex penalizing (related to cur-
vature minimizing) functionals. We show that the lifted rep-
resentation v of the image can be related to the image u it-
self by means of linear constraints. This allows us to utilize
the convex representation of the curvature in a convex reg-
ularization framework for general imaging problems. The
paper is organized as follows: In Section 2 we give a pre-
cise mathematical definition of the functional lifting idea
of Citti and Sarti using measures. In Section 3 we present
the class of vertex penalizing functionals by means of a
lower semi-continuous metric on the continuous label space
of orientations of the level lines of the image. In Section 4
we describe a convex relaxation of the functionals, which
makes the functional amenable as a regularizer for general
imaging problems. In Section 5 we give a finite differences
discretization of the energies and show how to efficiently
minimize the resulting convex programs using a first-order
primal-dual algorithm. In the last section we give a conclu-
sion and discuss possible directions for future investigations.
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2 Functional lifting

We propose, in the following, a representation of the gra-
dient of a function of bounded variation which is lifted to
a positive measure on the higher-dimensional space Ω ×S1

where Ω ⊂ IR2 is a bounded domain and S1 denotes the unit
circle in IR2. But first, as we make frequent use of it, let us
shortly recall the definition of the space BV(Ω), for detail
we refer to the literature, for example [1].

Definition 2.1. Let Ω ⊂ IR2 be a domain and u ∈ L1(Ω).
Then, the total variation of u is

TV(u) = sup
{∫

Ω

udivϕ dx
∣∣∣ ϕ ∈ C ∞

c (Ω , IR2),‖ϕ‖∞ ≤ 1
}
.

The space of functions of bounded variation is the set

BV(Ω) = {u ∈ L1(Ω)
∣∣ TV(u)< ∞}

endowed with the norm ‖u‖BV = ‖u‖1 +TV(u).

Note that BV(Ω) is a Banach space. For further prop-
erties, let us also mention some basic measure-theoretic no-
tions.

Definition 2.2. Denote by B(Ω) the Borel algebra gener-
ated by the open subsets of Ω . An IRd-valued finite Radon
measure is a countably additive, regular set function µ :
B(Ω)→ IRd with µ( /0) = 0.

A IR-valued finite Radon measure µ is positive, denoted
µ ≥ 0, if µ(E)≥ 0 for all E ∈B(Ω).

The total variation measure |µ| of a finite Radon mea-
sure is defined as

|µ|(E) = sup
{ ∞

∑
n=0
|µ(En)|

∣∣∣En ∈B(Ω) pairwise disjoint,

Ω =
∞⋃

n=0

En

}
.

The space of Radon measures is the set

M (Ω , IRd) = {µ : B(Ω)→ IRd ∣∣ µ Radon measure}

endowed with the norm ‖µ‖M = |µ|(Ω).

The total-variation measure of a IRd-valued finite Radon
measure is always a positive finite Radon measure. With the
norm ‖·‖M , M (Ω , IRd) becomes a Banach space. It is well-
known that M (Ω , IRd) can be identified with the dual space
of C0(Ω , IRd) by the integral

ϕ 7→
∫

Ω

ϕ dµ.

In particular, for u ∈ BV(Ω), the distributional derivative
is a Radon measure, i.e., ∇u ∈M (Ω , IR2). It is absolutely
continuous with respect to its total variation measure, hence,
there is a density σ ∈ L1

|∇u|(Ω , IR2) such that ∇u = σ |∇u|.

It can be shown that σ(x) ∈ S1 |∇u|-almost everywhere.
Therefore, the pair (σ , |∇u|) is called the polar decompo-
sition of ∇u.

Finally, let us define the operation which rotates a ϑ ∈ S1

counterclockwise by π

2 :

ϑ
⊥ =

(
0 −1
1 0

)
ϑ .

This way, −σ(x)⊥ points tangential to the level sets of u
oriented in such a way that the function u is increasing on
the “left-hand side”.

With these prerequisites, the definition of the functional
lifting of ∇u for u ∈ BV(Ω) reads as follows.

Definition 2.3. Let u ∈ BV(Ω), denote by |∇u| ∈M (Ω)

the total variation measure of ∇u ∈M (Ω , IR2) and by σ ∈
L∞

|∇u|(Ω , IR2) the density of ∇u with respect to |∇u|. We de-
fine the functional lifting of ∇u as the measure µ = µ(∇u)∈
M (Ω ×S1) with∫

Ω×S1
ϕ dµ =

∫
Ω

ϕ
(
x,−σ(x)⊥

)
d|∇u|,

for each ϕ ∈ C0(Ω ×S1).

One can easily see that x 7→
(
x,−σ(x)⊥

)
is measurable

(with respect to |∇u|) between Ω →Ω×S1. Thus, the func-
tional µ indeed defines a measure in M (Ω ×S1) which can
easily verified to be positive. Note again that the function ϕ

is only integrated on the corresponding tangential direction
−σ⊥.

Also, observe that the measures |∇u| and ∇u can be re-
covered from µ by∫

Ω

ϕ d|∇u|=
∫

Ω×S1
ϕ(x) dµ(x,ϑ)

for all ϕ ∈ C0(Ω), as well as, since −ϑ⊥⊥ = ϑ ,∫
Ω

ϕ · d∇u =
∫

Ω×S1
ϕ(x) ·ϑ⊥ dµ(x,ϑ)

for all ϕ ∈ C0(Ω , IR2). Here, ϑ ∈ S1 denotes the angular
component in the space Ω × S1, a notation we will fre-
quently use throughout the paper. In the next section, Sec-
tion 3, we aim at establishing functionals which, applied to
µ , incorporate, up to a certain extend, curvature informa-
tion from the level sets of u. For this purpose, we proceed
as follows. First, for a given metric ρ on S1× S1 we intro-
duce a “norm” on the space M (S1). We will then use this
norm to introduce a functional Tρ on M (Ω ×S1) with the
following property. For u being the characteristic function
of a polygon P and µ being the functional lifting of ∇u,
the penalty Tρ(µ) corresponds to summing up, over all ver-
tices, ρ(ϑ1,ϑ2) where ϑ1,ϑ2 are the unit directions associ-
ated with the line segments meeting in a vertex.
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In particular, this allows us to define a Tρ0 such that

Tρ0(µ) = #{vertices of P}

and a Tρ1 such that

Tρ1(µ) = ∑
x∈vertices in P

γ(x)

where γ(x) is the unsigned external angle in x, i.e., the abso-
lute value of the external angle in x. For the latter we will
also see that for u and µ the characteristic function of a
smooth set Ω ′ and the functional lifting of ∇u, respectively,
it holds that

Tρ1(µ) =
∫

∂Ω ′
|κ| dH 1

where κ denotes the curvature of the boundary of Ω ′. Af-
terwards, in Section 4, these notions will be used to define
relaxed functionals acting on images rather than the func-
tional lifting of the gradient. Such functionals turn out to
be proper, convex and lower semi-continuous and it will be
shown that they are also suitable for the solution of various
imaging problems.

3 A vertex penalization functional

Let us mention once again that our motivation is to derive
a suitable class of functionals which act, on the one hand,
on the functional lifting of the gradient of characteristic
functions and, on the other hand, are able to penalize the
“vertices” of the boundary of a set. We will, for this pur-
pose, discuss a suitable class of polygons. But tentatively,
for motivation, suppose that Ω = B1(0) is the unit disc and
µ ∈M (Ω ×S1) represents the integration on two unit line
segments meeting in 0. See Figure 2 for an example of a ver-
tex which is formed by two line segments with orientations
ϑ1,ϑ2 ∈ S1. Then∫

Ω×S1
ϕ dµ =

∫ 0

−1
ϕ(tϑ1,ϑ1) dt +

∫ 1

0
ϕ(tϑ2,ϑ2) dt

for each ϕ ∈C0(Ω ×S1). This corresponds to the functional
lifting of the gradient of a polygon with a single vertex in 0.
Now, consider the distributional directional derivative of µ

with respect to (−ϑ ,0). In order to compute this, we have
to test with (x,ϑ) 7→ ∇xψ(x,ϑ) ·ϑ for ψ ∈ C ∞

c (Ω ×S1):∫
Ω×S1

∇xψ(x,ϑ) ·ϑ dµ

=
∫ 0

−1

∂

∂ t
ψ(tϑ1,ϑ1) dt +

∫ 1

0

∂

∂ t
ψ(tϑ2,ϑ2) dt

= ψ(0,ϑ1)−ψ(0,ϑ2) = 〈δϑ1 −δϑ2 , ψ(0, ·)〉

where δϑ denotes the delta distribution at ϑ . Hence, in or-
der to penalize vertices of a polygon, we have to find suit-
able functionals acting on M (S1). Ideally, we would like

ϑ1

ϑ2

0

Fig. 2 Orientations of the line segments that form a vertex of a polygon
(blue). According to Definition 2.3, the orientations ϑ1,ϑ2 ∈ S1 are
given such that the characteristic function of the polygon is increasing
on the left-hand side of the line segments.

to prescribe the penalty for each difference of delta peaks,
i.e., each pair of orientations. As it turns out in Subsec-
tion 3.1, this is indeed possible for a certain class of metrics
on S1× S1. In some sense, the δϑ correspond to the “cor-
ners” of the “unit simplex” in M (S1) or, more precisely,
are the extremal points of the set of probability measures in
M (S1). Interpreting each element in S1 as a label, the prob-
lem is therefore to find a functional which measures the dis-
tance between these labels in a prescribed way. Therefore,
we speak of S1 as a continuous labeling space in analogy to
the finite labeling spaces utilized, for instance, for multiclass
labeling in image segmentation and stereo [7,31,25]. Hav-
ing discussed this, we address, in Subsection 3.2, how to de-
rive a vertex-penalizing functional to more general polygons
and, eventually, to a functional which acts on the functional
lifting of the gradient of characteristic functions.

3.1 The unit circle as a continuous labeling space

In the following, let ρ be given according to the following
assumption.

Assumption 3.1. Let ρ : S1×S1→ [0,∞[ such that

1. ρ defines a metric on S1,
2. ρ is lower semi-continuous, i.e., ρ = supi∈I ρi where I is

a non-empty index set and ρi ∈ C (S1×S1) is a continu-
ous metric for each i ∈ I.

As mentioned above, we would like to define a norm
on the space M (S1) for which the distance between two
delta peaks matches the given metric ρ . For this purpose,
we define the set

Cρ = {ϕ ∈ C (S1)
∣∣ϕ(η1)−ϕ(η2)≤ ρ(η1,η2)

for all (η1,η2) ∈ S1×S1} (3.1)

which is the predual unit ball of the weak* sequentially
lower semi-continuous norm ‖·‖ρ on M (S1), i.e., for µ ∈
M (S1),

‖µ‖ρ = sup
ϕ∈Cρ

〈µ, ϕ〉. (3.2)

Here, we say that a weak* sequentially lower semi-
continuous norm is a non-negative, weak* sequentially
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lower semi-continuous, positively homogeneous and posi-
tive definite functional which satisfies the triangle inequal-
ity but may also take the value ∞. The following proposition
shows that it is at least justified to call ‖·‖ρ a weak* sequen-
tially lower semi-continouos semi-norm.

Proposition 3.2. The functional ‖·‖ρ : M (S1)→ [0,∞] is
sequentially weak* lower semi-continuous, positively homo-
geneous and satisfies the triangle inequality.

Proof. By symmetry of ρ , we have that ϕ ∈ Cρ implies
−ϕ ∈Cρ . Hence,

‖µ‖ρ = sup
ϕ∈Cρ

|〈µ, ϕ〉| ≥ 0,

so ‖·‖ρ is non-negative. The sequential weak* lower semi-
continuity follows from the fact the functional is a point-
wise supremum of sequentially weak* continuous function-
als. For λ ∈ IR we moreoever see that, utilizing Cρ =−Cρ ,

‖λ µ‖ρ = sup
ϕ∈Cρ

〈|λ |µ, sgn(λ )ϕ〉

= |λ | sup
ϕ∈sgn(λ )Cρ

〈µ, ϕ〉 = |λ |‖µ‖ρ

establishing the positive homogeneity. Finally, if µ1,µ2 ∈
M (S1), then, for each ϕ ∈Cρ we have

〈µ1 +µ2, ϕ〉 ≤ ‖µ1‖ρ +‖µ2‖ρ

which implies the triangle inequality by taking the supre-
mum on the left-hand side.

Remark 3.3. The functional ‖µ‖ρ is only finite if
∫

S1 1 dµ =

0. Otherwise, since the constant functions are in Cρ ,

sup
ϕ∈Cρ

〈µ, ϕ〉 ≥ sup
c∈IR

∫
S1

c dµ = ∞.

Note that we did not yet show the positive definiteness
as the proof is more involved. We first like to establish the
identity

‖δϑ1 −δϑ2‖ρ = ρ(ϑ1,ϑ2)

for each ϑ1,ϑ2 ∈ S1. This is first done for continuous met-
rics.

Proposition 3.4. Let ρ : S1× S1 → [0,∞[ satisfy Assump-
tion 3.1. Then, for each ϑ1,ϑ2 ∈ S1 it holds that

sup
ϕ∈Cρ

ϕ(ϑ1)−ϕ(ϑ2) = ρ(ϑ1,ϑ2).

Proof. Note that according to the definition of Cρ in (3.1),
we have ϕ(ϑ1)−ϕ(ϑ2)≤ ρ(ϑ1,ϑ2) for all ϕ ∈Cρ , so

sup
ϕ∈Cρ

ϕ(ϑ1)−ϕ(ϑ2)≤ ρ(ϑ1,ϑ2).

For the converse inequality, first assume that ρ : S1× S1→
[0,∞[ is continuous. Then, ϕ∗ ∈ C (S1), given by ϕ∗(ϑ) =

ρ(ϑ ,ϑ2) is contained in Cρ : For η1,η2 ∈ S1 it holds that

ϕ
∗(η1)−ϕ

∗(η2) = ρ(η1,ϑ2)−ρ(η2,ϑ2)≤ ρ(η1,η2)

since ρ satisfies the triangle inequality. Hence,

sup
ϕ∈Cρ

ϕ(ϑ1)−ϕ(ϑ2)≥ ϕ
∗(ϑ1)−ϕ

∗(ϑ2) = ρ(ϑ1,ϑ2).

If ρ = supi∈I ρi for I being a non-empty index set and each
ρi being continuous, it follows, as each Cρi ⊂Cρ , that

sup
ϕ∈Cρ

ϕ(ϑ1)−ϕ(ϑ2)≥ sup
i∈I

sup
ϕ∈Cρi

ϕ(ϑ1)−ϕ(ϑ2)

≥ sup
i∈I

ρi(ϑ1,ϑ2) = ρ(ϑ1,ϑ2).

This shows the desired identity.

As an immediate consequence, we get the positive defi-
niteness of ‖·‖ρ .

Proposition 3.5. For ρ satisfying Assumption 3.1, the func-
tional ‖·‖ρ is positive definite.

Proof. Let µ ∈M (S1) such that ‖µ‖ρ = 0, i.e., 〈µ, ϕ〉 ≤ 0
for all ϕ ∈Cρ . It is then clear that with

V =
⋃

λ≥0

λCρ

it also follows that 〈µ, ϕ〉 ≤ 0 for all ϕ ∈V . We aim at prov-
ing that V is dense in C (S1). For this purpose, the prerequi-
sites of the Stone-Weierstraß theorem are verified [13, The-
orem 17.1]. First, from Proposition 3.4, it follows that Cρ

is separating as for each ϑ1,ϑ2 ∈ S1 with ϑ1 6= ϑ2, there is
an i ∈ I and a function ϕ ∈ Cρ such that ϕ(ϑ1)−ϕ(ϑ2) =

ρi(ϑ1,ϑ2) > 0. Moreover, Cρ obviously contains the con-
stant functions. Hence, V is separating and contains the con-
stant functions.

Next, we like to verify that V is a subalgebra of C (S1).
For this purpose, let ϕ ∈ V and α ∈ IR. Then, ϕ = λϕ0 for
some λ ≥ 0 and ϕ0 ∈ Cρ . Since Cρ = −Cρ , it follows that
sgn(α)ϕ0 ∈ Cρ and hence, αϕ = |α|λ sgn(α)ϕ0 ∈ V . For
ϕ,ψ ∈ V we can find λ1,λ2 ≥ 0 and ϕ0,ψ0 ∈Cρ such that
ϕ = λ1ϕ0 and ψ = λ2ψ0. Therefore, for each ϑ1,ϑ2 ∈ S1, it
holds that

(ϕ +ψ)(ϑ1)− (ϕ +ψ)(ϑ2)

= λ1
(
ϕ0(ϑ1)−ϕ0(ϑ2)

)
+λ2

(
ψ0(ϑ1)−ψ0(ϑ2)

)
≤ (λ1 +λ2)ρ(ϑ1,ϑ2)
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implying that λ−1(ϕ +ψ) ∈ Cρ for any λ > λ1 + λ2 and,
consequently, that ϕ +ψ ∈V . Also,

(ϕψ)(ϑ1)− (ϕψ)(ϑ2) = λ1λ2

(
ψ0(ϑ1)

(
ϕ0(ϑ1)−ϕ0(ϑ2)

)
+ϕ0(ϑ2)

(
ψ0(ϑ1)−ψ0(ϑ2)

))
≤ λ1λ2

(
‖ϕ0‖∞ +‖ψ0‖∞

)
ρ(ϑ1,ϑ2)

from which follows that λ−1ϕψ ∈ Cρ for each λ >

λ1λ2
(
‖ϕ0‖∞ +‖ψ0‖∞

)
. Hence ϕψ ∈V .

The Stone-Weierstraß theorem now gives the density of
V in C (S1). As ϕ 7→ 〈µ, ϕ〉 is a continuous functional, it
follows that 〈µ, ϕ〉 ≤ 0 for all ϕ ∈ C (S1). This is only pos-
sible if µ = 0. Hence, ‖·‖ρ is positive definite.

The results of this section can be summarized in the fol-
lowing theorem.

Theorem 3.6. For ρ satisfying Assumption 3.1, ‖·‖ρ :
M (S1)→ IR∪{∞} defines a functional with the following
properties:

1. ‖·‖ρ is a weak* sequentially lower semi-continuous
norm,

2. for each ϑ1,ϑ2 ∈ S1, it holds that

‖δϑ1 −δϑ2‖ρ = ρ(ϑ1,ϑ2).

Proof. The first item follows from the Propositions 3.2
and 3.5 while the second is just another way of writing
Proposition 3.4.

Example 3.7. Let ρ0 : S1×S1→{0,1} be the discrete met-
ric, i.e. ρ0(ϑ1,ϑ2) = 0 if ϑ1 = ϑ2 and 1 otherwise. This met-
ric is admissible in the sense of Assumption 3.1 since

ρ0(ϑ1,ϑ2) = sup
λ>0

min(1,λ−1|ϑ1−ϑ2|).

The set Cρ0 then consists of all functions ϕ ∈ C (S1) for
which

max
ϑ1∈S1

ϕ(ϑ1)− min
ϑ2∈S1

ϕ(ϑ2)≤ 1.

This is exactly, up to a constant function, the ∞-ball of radius
1
2 , i.e.,

Cρ0 = 1IR+{‖ϕ‖∞ ≤ 1
2}= 1IR+{ϕ ∈ C ∞(S1),‖ϕ‖∞ ≤ 1

2}

where 1 denotes the function constant 1 and the closure is
being taken in C (S1). Consequently, for µ ∈M (S1) with∫

S1 1 dµ = 0 we have

sup
ϕ∈Cρ0

〈µ, ϕ〉 = sup
‖ϕ‖∞≤1/2

〈µ, ϕ〉 = 1
2‖µ‖M .

Hence, we can characterize ‖·‖ρ0 as follows (also see Re-
mark 3.3):

‖µ‖ρ0 =

{
1
2‖µ‖M if

∫
S1 1 dµ = 0

∞ otherwise.

Example 3.8. Choose ρ1 : S1 × S1 → [0,π] as the metric
measuring geodesic distances in S1. This can be expressed,
for instance, as

ρ1(ϑ1,ϑ2) = min {|t1− t2|
∣∣ϑi =

(
cos(ti),sin(ti)

)
for i = 1,2}.

The set Cρ1 then consists of all Lipschitz continuous func-
tions in C (S1) with Lipschitz constant not exceeding 1. This
set can also be characterized by:

Cρ1 = {ϕ ∈ C (S1)
∣∣ϕ ′(ϑ) exists

for almost every ϑ ∈ S1 and ‖ϕ ′‖∞ ≤ 1}

= {ϕ ∈ C ∞(S1)
∣∣ ‖ϕ ′‖∞ ≤ 1}

where the closure is again taken in C (S1). The functional
‖·‖ρ1 then corresponds to a dual Lipschitz norm.

3.2 Penalizing the vertices of a polygon

Let Ω ⊂ IR2 be a bounded Lipschitz domain. In the follow-
ing, we consider a connected polygon according to the fol-
lowing definition.

Definition 3.9. We say that a relatively closed polygon P⊂
Ω is an admissible polygon if

1. the line segments of P in Ω are (up to boundary points)
given by

[xi,yi] = {λxi +(1−λ )yi
∣∣ λ ∈ [0,1]}

for I ≥ 3 and x1, . . . ,xI ,y1, . . . ,yI ∈Ω ,
2. the vertices are distinct, i.e., the collection xi, i= 1, . . . , I,

as well as the collection yi, i = 1, . . . , I, are pairwise dis-
tinct,

3. the line segments are connected, i.e., for i = 1, . . . , I it
holds that xi+1 = yi if yi ∈ Ω and that yi and xi+1 lie on
the same connected component of ∂Ω if yi ∈ ∂Ω , where
xI+1 = x1,

4. the line segments [xi,yi] are pairwise disjoint for i =
1, . . . , I, i.e., the polygon does not intersect itself,

5. P lies on the left hand side with respect to the oriented
segments [xi,yi], i.e., for each x = λxi +(1−λ )yi with
1≤ i≤ I and λ ∈ ]0,1[ there exists a neighborhood of U
of x such that

P∩U = {z ∈U
∣∣ (z− x) · (yi− xi)

⊥ ≥ 0}.

This notion is illustrated in Figure 3. Note that the char-
acteristic function u = χP of each admissible polygon P
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P

x1

x2
x3

x4

x5

x6

P

x1

x2

x3

x4

y4

P x1

x2

x3

P

x1

x2

x3

x4

x5

admissible connected polygons not admissible

Fig. 3 Examples for polygons satisfying
and contradicting Definition 3.9. The end-
points yi are not marked if they coincide
with a xi+1.

is contained in BV(Ω) with the derivative acting on a test
function ϕ ∈ C0(Ω , IR2) according to

∫
Ω

ϕ · d∇u =
I

∑
i=1

∫ 1

0
|yi− xi|ϕ

(
xi(t)

)
·ϑ⊥i dt,

xi(t) = (1− t)xi + tyi, ϑi =
yi− xi

|yi− xi|
, i = 1, . . . , I.

(3.3)

Consequently, the functional lifting of ∇u according to Def-
inition 2.3 can be expressed as follows: For ϕ ∈ C0(Ω ×S1)

we have∫
Ω×S1

ϕ dµ =
I

∑
i=1

∫ 1

0
|yi− xi|ϕ

(
xi(t),ϑi

)
dt.

Now, as we already did in the beginning of the section, take a
function ψ ∈ C0(Ω ×S1) for which ∇xψ ∈ C0(Ω ×S1, IR2)

and test µ against the function ϕ ∈ C0(Ω ×S1) given by

ϕ(x,ϑ) = ∇xψ(x,ϑ) ·ϑ .

Then, with ϑI+1 = ϑ1,

∫
Ω×S1

ϕ dµ =
I

∑
i=1

∫ 1

0
|yi− xi|∇xψ

(
xi(t),ϑi

)
·ϑi dt

=
I

∑
i=1

∫ 1

0

∂

∂ t
ψ
(
xi(t),ϑi

)
dt

=
I

∑
i=1

ψ(yi,ϑi)−ψ(xi,ϑi)

= ∑
1≤i≤I,
yi∈Ω

ψ(yi,ϑi)−ψ(yi,ϑi+1).

(3.4)

Choosing a metric according to Assumption 3.1 and requir-
ing additionally that ψ(x, ·) ∈Cρ for each x ∈ Ω where Cρ

is chosen according to (3.1), we can deduce∫
Ω×S1

ϕ dµ ≤ ∑
1≤i≤I,
yi∈Ω

ρ(ϑi,ϑi+1).

Taking the supremum over these functions one would ex-
pect, in view of Theorem 3.6, that the right-hand side will
be attained. This motivates the following definition.

Definition 3.10. For ρ according to Assumption 3.1 and
µ ∈M (Ω ×S1), let

Tρ(µ) = sup
ψ∈Mρ (Ω)

∫
Ω×S1

∇xψ(x,ϑ) ·ϑ dµ(x,ϑ)

where

Mρ(Ω) = {ψ ∈ C0(Ω ×S1)
∣∣∇xψ ∈ C0(Ω ×S1, IR2),

ψ(x, ·) ∈Cρ for all x ∈ Ω}.

Remark 3.11. The functional Tρ can be interpreted as fol-
lows. Assume that µ is the product of the Lebesgue measure
with a C ∞(Ω ×S1) density µ0. Then, the integral in Defini-
tion 3.10 becomes, with ∇ϑ denoting the directional deriva-
tive with respect to (ϑ ,0),

∫
Ω×S1

∇xψ(x,ϑ) ·ϑ µ0(x,ϑ) d(x,ϑ)

=−
∫

Ω×S1
∇ϑ µ0(x,ϑ)ψ(x,ϑ) d(x,ϑ),

hence taking the supremum over all ψ ∈ Mρ(Ω) yields, in
view of (3.2),

Tρ(µ) =
∫

Ω

‖∇ϑ µ0(x, ·)‖ρ dx.

Generally, Tρ can thus be seen as a differentiation of µ , in
the distributional sense, with respect to −∇ϑ and the mea-
surement of the derivative in the ‖·‖ρ -sense in S1 as well as
in the Radon-norm sense in Ω .

Let us also note that Tρ defines a weak* lower semi-
continuous semi-norm on M (Ω ×S1).

Proposition 3.12. The functional Tρ is sequentially weak*
lower semi-continuous, positively homogeneous and satis-
fies the triangle inequality.

Proof. The statements can be deduced in analogy to Propo-
sition 3.2 by replacing Cρ with

{(x,ϑ) 7→ ∇xψ(x,ϑ) ·ϑ
∣∣ ψ ∈Mρ(Ω)}.

The crucial observation now is that indeed, for admissi-
ble polygons, the functional Tρ behaves like expected.
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Proposition 3.13. Let ρ be a metric satisfying Assump-
tion 3.1. For P being an admissible polygon, u = χP and
µ the lifting of ∇u it holds that

Tρ(µ) = ∑
1≤i≤I,
yi∈Ω

ρ

( yi− xi

|yi− xi|
,

yi+1− xi+1

|yi+1− xi+1|

)
.

Proof. As the vertices of P, i.e., y1, . . . ,yI are pairwise dis-
tinct, one can find an ε > 0 such that |yi− y j| > ε for each
1≤ i, j ≤ I and |yi− x|> ε for yi ∈Ω and x ∈ ∂Ω . Choose
a function ζ ∈ C ∞

c (Bε(0)) such that 0 ≤ ζ ≤ 1 as well as
ζ (0) = 1. Denote by L = {yi

∣∣ yi ∈Ω , i = 1, . . . , I} the set
of interior vertices and introduce ϑ 1,ϑ 2 : L→ S1 such that,
with ϑ1, . . . ,ϑI+1 according to (3.3), ϑ 1(y) = ϑi if y = yi as
well as ϑ 2(y)=ϑi+1 if y= yi. Then, for each ψ̄ ∈C (L×S1)

one can construct ψ : Ω ×S1→ IR as follows:

ψ(x,ϑ) = ∑
y∈L

ζ (x− y)ψ̄(y,ϑ).

One can easily see that ψ ∈ C0(Ω ×S1) with ψ|L×S1 = ψ̄

and ∇xψ ∈ C0(Ω ×S1). Now, suppose that ψ̄(y, ·) ∈Cρ for
each y ∈ L. Then, for each x ∈Ω there is at most one y such
that ζ (x−y)> 0. In case no such y exists, then ψ(x, ·) = 0∈
Cρ . Otherwise, for each η1,η2 ∈ S1 we have, as 0≤ ζ ≤ 1,

ψ(x,η1)−ψ(x,η2) = ζ (x− y)
(
ψ̄(y,η1)− ψ̄(y,η2)

)
≤ ρ(η1,η2)

implying that ψ(x, ·) ∈Cρ . We already saw in (3.4) that∫
Ω×S1

∇xψ(x,ϑ) ·ϑ dµ = ∑
y∈L

ψ
(
y,ϑ 1(y)

)
−ψ(y,ϑ 2(y)

)
.

From Proposition 3.4 it follows that we can choose for
each N ≥ 1 a ψ̄N ∈ C (L×S1) such that ψ̄N(y, ·) ∈Cρ and
ψ̄N
(
y,ϑ 1(y)

)
− ψ̄N

(
y,ϑ 2(y)

)
≥ ρ

(
ϑ 1(y),ϑ 2(y)

)
−1/N for

each y ∈ L. The corresponding ψN : Ω ×S1→ IR according
to the above construction are in Mρ(Ω) according to Defini-
tion 3.10, hence

Tρ(µ)≥ sup
N≥1

∑
y∈L

ρ
(
ϑ

1(y),ϑ 2(y)
)
− 1

N

= ∑
y∈L

ρ
(
ϑ

1(y),ϑ 2(y)
)
.

This gives the result as the converse inequality is immediate
by (3.4).

Example 3.14. For ρ0 the discrete metric, see Example 3.7,
it is easy to deduce that Tρ0(µ) corresponds to

Tρ0(µ) = #
{

yi ∈Ω

∣∣∣ yi− xi

|yi− xi|
6= yi+1− xi+1

|yi+1− xi+1|

}
which is the number of “genuine” vertices of P.

ϑ2 ϑ1

γ

P

y1

ϑ2

ϑ1

γ

P

y1

Fig. 4 Illustration of the undirected angle γ(yi) = ρ1(ϑ1,ϑ2) with line
segments meeting, in the end-point y1, at an angle less and greater than
π , respectively.

Example 3.15. For ρ1 the geodesic metric on S1, see Exam-
ple 3.8, we have for yi ∈Ω ,

ρ1

( yi− xi

|yi− xi|
,

yi+1− xi+1

|yi+1− xi+1|

)
= γ(yi)

where γ is the unsigned external angle, i.e., the absolute
value of the external angle, between the line segments of P
meeting in yi, see Figure 4 for an illustration. Consequently,

Tρ1(µ) = ∑
1≤i≤I
yi∈Ω

γ(yi)

and in particular, for a convex polygon P whose vertices are
entirely contained in Ω it follows that Tρ1(µ) = 2π since the
external angle is non-negative in each vertex.

The last example gives the intuition that Tρ1(µ) mea-
sures the total curvature. Indeed, if we replace each polygon
corner by smoothly connecting the line segments meeting in
yi via a circular arc Ai corresponding to a radius r > 0, then
the length of that arc would be γ(yi)r and the absolute value
of the curvature |κ| of Ai would be 1

r , hence∫
Ai

|κ| dH 1 = γ(yi).

In this sense, Tρ1(µ) measures the total curvature of the
polygon P. If P is not a polygon, but a set whose bound-
ary can be parametrized by a smooth curve, then this can
also be made precise. Likewise the fact that Tρ0 counts the
vertices of a polygon can be generalized in the way that if P
has a smooth curved boundary (which might be interpreted
as the limit case of a polygon with infinitely many vertices)
then Tρ0(µ) = ∞

Proposition 3.16. Let ρ0 be the discrete and ρ1 be the
geodesic metric on S1. Let P⊂Ω with piecewise C 2 bound-
ary ∂P ⊂ Ω , i. e. ∂P contains a set x1, . . . ,xI of vertices
which are connected by C 2 arcs. For simplicity, assume ∂P
to be homeomorphic to S1. Then, for µ being the lifted gra-
dient of the characteristic function χP, it holds that

Tρ0(µ) =

#{xi |∂P is not C 1 at xi}
if κ = 0 on

∂P\{x1, . . . ,xI},
∞ else,

Tρ1(µ) =
∫

∂P\{x1,...,xI}
|κ| dH 1 + ∑

1≤i≤I
γ(xi) ,
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where κ is the curvature of the curve ∂P and γ(xi) its un-
signed external angle at xi.

Proof. We can parameterize ∂P by arclength via a con-
tinuous function x : [0,L[→ Ω which can be periodically
extended to IR and which is twice differentiable except at
points s1, . . . ,sI ∈ [0,L[ with s1 < .. . < sI and x(si) = xi.
Without loss of generality we may assume s1 = 0, and we
introduce sI+1 = L and S = {s1, . . . ,sI}. Also, we assume
x to be oriented such that P locally lies left of it. The
parametrization x satisfies |x′(s)|= 1 for all s∈ [0,L[\S, and
the curvature can be expressed as κ(x(s)) = x′(s)⊥ ·x′′(s) for
all s ∈ [0,L[\S.

Note that |∇χp| = H 1 x ∂P and that the density σ of
∇χP with respect to |∇χP| satisfies σ

(
x(s)

)
= x′(s)⊥ for al-

most every s∈ [0,L[\S. Therefore, the lifting µ corresponds
to∫

Ω×S1
ϕ dµ =

I

∑
i=1

∫ si+1

si

ϕ
(
x(s),x′(s)

)
ds.

By the fundamental theorem of calculus we have

ψ
(
x(si+1),x′(si+1)

−)−ψ
(
x(si),x′(si)

+
)

=
∫ si+1

si

∂

∂ s
ψ
(
x(s),x′(s)

)
ds

=
∫ si+1

si

∇xψ
(
x(s),x′(s)

)
· x′(s) ds

+
∫ si+1

si

∂

∂ϑ
ψ
(
x(s),x′(s)

)
· x′′(s) ds ,

where x′(si)
± denotes the derivative from the right and from

the left, respectively.
Example 3.14 shows Tρ0(µ) = #{xi |∂P is not C 1 at xi}

if ∂P is polygonal, i. e. it has only straight line segments
with κ = 0. Else there is some s ∈ [0,L[\S with κ(x(s)) 6= 0
(κ(x(s)) > 0 without loss of generality), and by continu-
ity there is a non-singleton interval [sl ,su] ⊂ [0,L[ \ S on
which κ(x(s))> κ̂ for some κ̂ > 0. Denote by ρ̂ : S1×S1→
]−π,π] the signed angle function, i.e.,

ρ̂(ϑ1,ϑ2) =

ρ1(ϑ1,ϑ2)
if the geodesic from ϑ1

to ϑ2 is counterclockwise,
−ρ1(ϑ1,ϑ2) else,

where we agree always to choose the counterclockwise
geodesic in the ambiguous case. It is easy to see that
ψ̃
(
x(s),ϑ

)
= ρ̂

(
x′(s),ϑ

)
can be extended to a C 1-function

in a neighborhood U of {(x(s),x′(s))
∣∣ s ∈ [sl ,su]}. Choosing

a suitable smooth cutoff function η : Ω × S1 → [0,1] such
that suppη ⊂U , η

(
x(s),x′(s)

)
= 1 and ∂η

∂ϑ

(
x(s),x′(s)

)
= 0

for s ∈ [sl ,su], we can achieve that for each λ ∈ IR,

ψλ : Ω ×S1→ IR, ψλ (x,ϑ) = 1
2 η(x,ϑ)sin

(
λψ̃(x,ϑ)

)

is in C 1
0 (Ω ×S1). Hence, ψλ ∈ Mρ0 for each λ ∈ IR, and

consequently,

Tρ0(µ)≥ sup
λ∈IR

I

∑
i=1

∫ si+1

si

∇xψλ

(
x(s),x′(s)

)
· x′(s) ds

= sup
λ∈IR
−

I

∑
i=1

∫ si+1

si

∂

∂ϑ
ψλ

(
x(s),x′(s)

)
· x′′(s) ds

≥ sup
λ∈IR

λ

2

∫ su

sl

x′(s)⊥ · x′′(s) ds

≥ sup
λ∈IR

λ

2
(su− sl)κ̂ = ∞ .

As for Tρ1 , suppose that ψ ∈C 1
0 (Ω ×S1) with ‖ ∂ψ

∂ϑ
‖∞ ≤

1. For each (x,ϑ)∈Ω×S1, ∂ψ

∂ϑ
(x,ϑ) = c(x,ϑ)ϑ⊥ for some

c ∈ C0(Ω ×S1) with ‖c‖∞ ≤ 1, hence

I

∑
i=1

∫ si+1

si

∇xψ
(
x(s),x′(s)

)
· x′(s) ds

=
I

∑
i=1

ψ
(
x(si+1),x′(si+1)

−)−ψ
(
x(si),x′(si)

+
)

−
∫ si+1

si

∂

∂ϑ
ψ
(
x(s),x′(s)

)
· x′′(s) ds

=
I

∑
i=1

ψ
(
x(si),x′(si)

−)−ψ
(
x(si),x′(si)

+
)

−
∫ si+1

si

c
(
x(s),x′(s)

)
κ
(
x(s)

)
ds,

where x′(s1)
− and x′(sI)

+ have to be interpreted as x′(sI)
−

and x′(s1)
+, respectively. By Example 3.8, to obtain Tρ1(µ)

it suffices to test with each of the above ψ so that

Tρ1(µ)≤
I

∑
i=1

ρ1
(
x′(si)

−,x′(si)
+
)
+
∫ si+1

si

∣∣κ(x(s))∣∣ ds

=
I

∑
i=1

γ(xi)+
∫

∂P\x(S)
|κ| dH 1.

To prove that the value on the right-hand side is attained,
consider the function ψ̃ : ∂P×S1→ IR defined by

ψ̃
(
x(s),ϑ

)
=


−sgn(κ(x(s)))ρ̂

(
x′(s),ϑ

)
if s ∈ [0,L[\S and ρ1

(
x′(s),ϑ

)
< π

2 ,

−sgn(κ(x(s)))ρ̂
(
ϑ ,−x′(s)

)
if s ∈ [0,L[\S and ρ1

(
x′(s),ϑ

)
≥ π

2 ,

−ρ1
(
x′(s)−,ϑ

)
if s ∈ S.

Obviously, ψ̃
(
x(s), ·

)
∈Cρ1 with

∂ψ̃

∂ϑ

(
x(s),x′(s)

)
=−sgn(κ(x(s)))x′(s)⊥

and

ψ̃
(
x(si),x′(si)

−)− ψ̃
(
x(si),x′(si)

+
)
= ρ1

(
x′(si)

−,x′(si)
+
)
.
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However, as sgn(κ) is not necessarily continuous, ψ̃ is in
general not smooth, so that it cannot be extended to a func-
tion in Mρ1 . Nevertheless, ψ̃ can readily be approximated by
functions ψN ∈Mρ1 such that

lim
N→∞

∂ψN

∂ϑ

(
x(s),x′(s)

)
=−sgn(κ(x(s)))x′(s)⊥

for a.e. s ∈ [0,L[\S,

lim
N→∞

ψ
N(x(si),x′(si)

−)−ψ
N(x(si),x′(si)

+
)

= ρ1
(
x′(si)

−,x′(si)
+
)
, i = 1, . . . , I.

Consequently,

Tρ1(µ)≥ lim
N→∞

I

∑
i=1

ψ
N(x(si),x′(si)

−)−ψ
N(x(si),x′(si)

+
)

+
∫ si+1

si

∂ψN

∂ϑ

(
x(s),x′(s)

)
ds=

I

∑
i=1

γ(xi)+
∫

∂P\x(S)
|κ| dH 1

by uniform boundedness and pointwise a.e. conver-
gence.

Remark 3.17. Let us finally mention some connection of
Tρ1 to the total cyclic variation from [37]. Identifying S1 ∼
[0,2π[, it can be defined for functions v : Ω → S1 of special
bounded variation on the domain Ω ⊂ IRd by setting

TVS1(v) =
∫

Ω

|∇v| dx+
∫

Sv

ρ1(v+,v−) dH d−1

where Sv denotes the jump set of v and v− and v+ are its
values on each side of the jump set. In the setting of Propo-
sition 3.16, i.e., P ⊂ Ω with piecewise smooth boundary, µ

the lifted gradient of χP and x : [0,L[→ Ω as in the proof,
we see that for v = x′ we have TVS1(v) = Tρ1(µ). Note that
TVS1 has to be interpreted in dimension one in order to make
sense. As the authors show in [37], in terms of the sublevel
set relaxation χ{ϑ<v(s)} on [0,L[× [0,2π[, it can also be writ-
ten in a dual formulation:

TVS1(v) = sup
ϕ∈C ∞

# ([0,L[×[0,2π[)

‖ϕ‖∞≤1,
∫ 2π

0 ϕ dϑ=0

∫ L

0

∫ v(s)

0

∂ϕ

∂ s
(s,ϑ) dϑ ds

where C ∞
# ([0,L[× [0,2π[) denotes the set of arbitrarily

differentiable periodic functions. Employing integration
by parts with respect to ϑ and substituting ψ(s,ϑ) =∫

ϑ

0 ϕ(s, t) dt as well as µ̃ = −∂ϑ χ{ϑ<v(s)} the supremum
can be rewritten to

TVS1(v) = sup
ψ∈C ∞

# ([0,L[×[0,2π[)
‖∂ϑ ψ‖∞≤1, ψ( · ,0)=0

∫ L

0

∫ 2π

0

∂ψ

∂ s
dµ̃(s,ϑ).

Up to periodic boundary conditions and density, the set over
which the supremum is taken coincides with Mρ1(]0,L[)

from Definition 3.10 (also see Example 3.8). In order to ob-
tain the functional in [37] for general Ω ⊂ IRd , one has to
choose the dual formulation

TVS1(v) = sup

ψ∈C ∞
c (Ω×[0,2π[,IRd)
‖∂ϑ ψ‖∞≤1

∫
Ω

∫ 2π

0
divx ψ d∂ϑ (χ{ϑ<v(x)})(x,ϑ).

If d = 2, one could be tempted with plugging in a v such that
−∂ϑ (χ{ϑ<v(x)}) = µ , the gradient lifting of χP. In this case,
however, µ is too singular, leading to an infinite supremum.
In fact, to make such a supremum coincide with Tρ1 one has
to take scalar test functions ψ and test against ∇xψ ·ϑ as it
is done in Definition 3.10.

4 Generalization and convex relaxation

So far we have considered the vertex penalization functional
only for characteristic functions of polygons or sets with
piecewise smooth boundary. We would now like to general-
ize it to a preferably large class of functions. Throughout the
section, we assume that ρ is an admissible metric according
to Assumption 3.1 and that Ω is a bounded Lipschitz do-
main.

The first observation is obvious: For binary u ∈ BV(Ω),
the functional lifting µ according to Definition 2.3 is in
M (Ω ×S1), therefore, Tρ(µ) still makes sense. As we in-
terpret Tρ as a functional which penalizes object boundaries,
it would be meaningful to have a functional which acts on
the sublevel sets of a function u ∈ BV(Ω) analogous to,
for example, (1.3). Denoting by µt the functional lifting of
∇(χ{u<t}), this corresponds to, letting α,β > 0,

Rα,β
ρ (u) =

∫
IR

α‖µt‖M +βTρ(µt) dt (4.1)

where ‖µt‖M corresponds to the perimeter of the sublevel
set {u < t}. Indeed, this makes sense for images of bounded
variation, since almost every ∇(χ{u<t})∈M (Ω , IR2). How-
ever, similarly to the well-known curvature-dependent func-
tionals like, for instance, Euler’s elastica, this functional is
hard to tract algorithmically, in particular, in terms of global
minimization. This is due to non-convexity which is caused
by two non-linear operations since Tρ(µ) is convex in µ .
These can be identified to be the operation which extracts
the sublevel sets, i.e., (u, t) 7→ χ{u<t} as well as the func-
tional lifting operation u 7→ µ(∇u). Our goal is therefore to
relax the functional R according to (4.1) such that it becomes
convex, lower semi-continuous and admits a structure that
is suitable for global optimization in terms of computational
tractability.
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4.1 Relaxing the sublevel set formulation

The first step of relaxation is to get rid of the sublevel set
operation. For this purpose, observe that the coarea formula
gives, for u ∈ BV(Ω) and ϕ ∈ C0(Ω , IR2),∫

Ω

ϕ ·σ d|∇u|=
∫

IR

∫
∂ ∗{u<t}

ϕ(x) ·νt(x) dH 1(x) dt

where, σ is again the density of ∇u with respect to |∇u|,
∂ ∗ denotes the essential boundary and νt is the generalized
outer normal to {u < t}, see for instance [1]. This implies
that ν : (x, t) 7→ νt(x) extended by 0 outside of ∂ ∗{u < t} can
be regarded as a H 1⊗L 1 measurable function on Ω × IR.
Disintegration then gives, for |∇u|-almost every x ∈ Ω , a
probability measure µx ∈M (IR) such that∫

IR
ν(x, t) dµx(t) = σ(x).

Now, |σ(x)| = 1 also holds |∇u|-almost everywhere, and
since |ν(x, t)| is either 1 or 0 it follows that

1 = |σ(x)| ≤
∫

IR
|ν(x, t)| dµx(t) =

∫
IR
|ν(x, t)|2 dµx(t)≤ 1

which implies with Jensen’s inequality and the fact that the
squared Euclidean norm | · |2 is strictly convex that t 7→
ν(x, t) has to be constant µx-almost everywhere. Conse-
quently, ν(x, t) = χsupp µx(t)σ(x) holds H 1 ⊗L 1-almost
everywhere on Ω × IR.

This implies for the functional lifting µ of ∇u by virtue
of the coarea formula, the definitions of µt , i.e., the func-
tional liftings of ∇(χ{u<t}) = νtH 1 x∂ ∗{u < t}:∫

Ω×S1
ϕ dµ =

∫
Ω

ϕ
(
x,−σ(x)⊥

)
d|∇u|

=
∫

IR

∫
∂ ∗{u<t}

ϕ
(
x,−σ(x)⊥

)
dH 1 dt

=
∫

IR

∫
∂ ∗{u<t}

ϕ
(
x,−ν(x, t)⊥

)
dH 1 dt

=
∫

IR

∫
Ω×S1

ϕ dµt dt

for each ϕ ∈C0(Ω ×S1). Hence, the functional lifting oper-
ation respects, in a certain sense, the level sets of u. Con-
sequently, in view of Definition 3.10 if we test µ with a
ψ ∈Mρ(Ω), then∫

Ω×S1
∇xψ(x,ϑ) ·ϑ dµ(x,ϑ)

=
∫

IR

∫
Ω×S1

∇xψ(x,ϑ) ·ϑ dµt(x,ϑ) dt

≤
∫

IR
Tρ(µt) dt.

Likewise,

α‖µ‖M =
∫

Ω

α dµ =
∫

IR

∫
Ω×S1

α dµt dt =
∫

IR
α‖µt‖M dt.

Therefore, we have, for each u ∈ BV(Ω),

α‖µ‖M +βTρ(µ)≤ Rα,β
ρ (u). (4.2)

In other words: Plugging in the functional lifting of ∇u for
general u ∈ BV(Ω) instead of the sublevel sets gives a re-
laxation of Rα,β

ρ .

4.2 Relaxing the functional lifting

Next, we derive a suitable convex relaxation for the func-
tional lifting operation. For this purpose, consider the graph
of u 7→ µ , i.e.,

G∇ = {(u,µ) ∈ BV(Ω)×M (Ω ×S1)
∣∣µ is the functional

lifting of ∇u}.

The convex relaxation of this graph would be the closed
convex hull of G∇ in an appropriate topology. Clearly, this
set exists in an abstract sense but is, however, not compu-
tationally accessible. We therefore seek a suitable convex
set which contains G∇. For this purpose, observe that if
u∈BV(Ω), then µ is always a positive measure, i.e., µ ≥ 0.
Additionally, for each ϕ ∈C ∞

c (Ω , IR2) it holds, by definition
of the gradient lifting µ as well as the distributional deriva-
tive,∫

Ω

udivϕ dx =−
∫

Ω

ϕ ·σ d|∇u|

=−
∫

Ω×S1
ϕ(x) ·ϑ⊥ dµ(x,ϑ)

and, consequently,∫
Ω

udivϕ dx+
∫

Ω×S1
ϕ(x) ·ϑ⊥ dµ(x,ϑ) = 0.

These two properties are necessary for (u,µ) ∈ G∇, there-
fore the set

M∇ =
{
(u,µ) ∈ L1(Ω)×M (Ω ×S1)

∣∣∣µ ≥ 0,∫
Ω

udivϕ dx+
∫

Ω×S1
ϕ(x) ·ϑ⊥ dµ(x,ϑ) = 0

for all ϕ ∈ C ∞
c (Ω , IR2)

}
(4.3)

is a superset of G∇. We take this as a relaxation although, of
course, there may exist other choices which provide a tighter
relaxation. Let us note some basic properties of M∇.

Proposition 4.1. The set M∇ according to (4.3) is non-
empty, convex and sequentially closed with respect to
weak convergence in L1(Ω) and weak* convergence in
M (Ω ×S1). Morevoer, for each (u,µ) ∈M∇ it follows that
u ∈ BV(Ω).
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Proof. Obviously, M∇ is non-empty and convex. For a se-
quence {(un,µn)} in M∇ for which un ⇀ u in L1(Ω) and
µn ∗

⇀ µ in M (Ω ×S1) for (u,µ) ∈ L1(Ω)×M (Ω ×S1)

there holds for each ψ ∈ C0(Ω ×S1) with ψ ≥ 0 that∫
Ω×S1

ψ dµ = lim
n→∞

∫
Ω×S1

ψ dµ
n ≥ 0

since each µn is positive. This in fact characterizes pos-
itive measures, hence µ ≥ 0. Analogously, as the chosen
convergence implies convergence of the integrals, for each
ϕ ∈ C ∞

c (Ω , IR2)∫
Ω

udivϕ dx+
∫

Ω×S1
ϕ(x) ·ϑ⊥ dµ(x,ϑ)

= lim
n→∞

∫
Ω

un divϕ dx+
∫

Ω×S1
ϕ(x) ·ϑ⊥ dµ

n(x,ϑ) = 0.

Thus, M∇ is closed in the claimed sense. Finally, note that
for each (u,µ) ∈M∇ and ϕ ∈ C ∞

c (Ω , IR2) with ‖ϕ‖∞ ≤ 1 it
holds that∫

Ω

udivϕ dx≤
∫

Ω×S1
|ϕ(x) ·ϑ⊥| dµ(x,ϑ)≤ ‖µ‖M

meaning that u is of bounded variation, i.e., u∈BV(Ω).

In view of Subsection 4.1, the idea for the relaxation of
R is now to plug into Tρ , for a u ∈ L1(Ω), all corresponding
µ such that (u,µ) ∈M∇ and take the infimum. This gives:

Definition 4.2. Let α > 0 and β > 0. For u ∈ L1(Ω) define

Rα,β
ρ (u) = inf

µ∈M (Ω×S1)
(u,µ)∈M∇

α‖µ‖M +βTρ(µ)

where we set the infimum of the empty set to ∞.

Remark 4.3. In [34,35], Schoenemann et al. proposed relax-
ations of curvature-penalizing functionals on graphs which
represent discretized images. They introduce a variable yl1,l2

for each oriented pair (l1, l2) of adjacent graph edges and
express the functional in terms of these variables. Although
this approach is inherently discrete, some connections to our
continuous model may be established. On the one hand, a
possible counterpart of (yl1,l2)l1,l2 in our model would be an
extension of the measure µ which also incorporates curva-
ture information in addition to position and orientation of the
image edges. The consistency between measure µ and im-
age u is expressed as the constraint (u,µ)∈M∇ which paral-
lels the so-called surface continuation constraint in [35]. Re-
ducing the consistency to one single linear constraint repre-
sents one principal source of convex relaxation in both mod-
els, the other being the joint treatment of all sublevel sets as
discussed above.

Definition 4.2 yields a functional with convenient prop-
erties.

Proposition 4.4. The functional Rα,β
ρ : L1(Ω) → [0,∞]

is lower semi-continuous, convex and positively one-
homogeneous, i.e., Rα,β

ρ (λu) = λRα,β
ρ (u) for λ ≥ 0 and

u ∈ L1(Ω). It moreover obeys the estimate

α TV≤ Rα,β
ρ ≤ Rα,β

ρ .

Proof. First note that α‖µ‖M +βTρ(µ) ≥ 0 for each µ ∈
M (Ω ×S1) by Definition 3.10 and consequently, Rα,β

ρ (u)∈
[0,∞] for each u ∈ L1(Ω). The lower semi-continuity can
be deduced as follows. For {un} a converging sequence
in L1(Ω) with limit u ∈ L1(Ω), choose, for each n, cor-
responding minimizing sequences {(µn)m} in M (Ω ×S1),
i.e.,

(
un,(µn)m

)
∈M∇ and

lim
m→∞

α
∥∥(µn)m∥∥

M
+βTρ

(
(µn)m)= Rα,β

ρ (un).

We can assume without loss of generality that {Rα,β
ρ (un)}

is a sequence in [0,∞[ which converges to a finite value.
Consider a diagonal sequence of {(µn)m}, denoted by {µ̃n},
such that

α‖µ̃n‖M +βTρ(µ̃
n)≤ Rα,β

ρ (un)+ 1
n for all n≥ 1.

This sequence is bounded as, for n≥ 1,

‖µ̃n‖M ≤ α
−1
(

α‖µ̃n‖M +βTρ(µ̃
n)
)

≤ α
−1
(

sup
n≥1

Rα,β
ρ (un)+1

)
< ∞.

Hence, there exists a subsequence, also denoted by {µ̃n},
and a µ ∈M (Ω ×S1) with µ̃n ∗

⇀ µ . From the closedness
property stated in Proposition 4.1 it follows that (u,µ)∈M∇.
Consequently, as ‖·‖M as well as Tρ are sequentially weak*
lower semi-continuous, see Proposition 3.12,

α‖µ‖M +βTρ(µ)≤ liminf
n→∞

α‖µ̃n‖M +βTρ(µ̃
n)

= lim
n→∞

Rα,β
ρ (un)

which implies the desired lower semi-continuity.
For the convexity, assume that u1,u2 ∈ L1(Ω) such that

Rα,β
ρ (u1) < ∞ as well as Rα,β

ρ (u2) < ∞. Denote by {(µ1)n}
and {(µ2)n} the corresponding minimizing sequences, i.e.,(
ui,(µ i)n

)
∈M∇ and α

∥∥(µ i)n
∥∥

M
+βTρ

(
(µ i)n

)
→ Rα,β

ρ (ui)

as n→ ∞ for i = 1,2. Then, for an arbitrary λ ∈ [0,1] we
have, by convexity of M∇, that for each n(
λu1 +(1−λ )u2,λ (µ1)n +(1−λ )(µ2)n) ∈M∇

and, consequently, with the convexity of Tρ (which follows
from the positive homogeneity and triangle inequality, see



Convex relaxation of a class of vertex penalizing functionals 13

Proposition 3.12),

Rα,β
ρ

(
λu1 +(1−λ )u2)
≤ liminf

n→∞
α
∥∥λ (µ1)n +(1−λ )(µ2)n∥∥

M

+βTρ

(
λ (µ1)n +(1−λ )(µ2)n)

≤ λ

(
lim
n→∞

α
∥∥(µ1)n∥∥

α
+βTρ

(
(µ1)n))

+(1−λ )
(

lim
n→∞

α
∥∥(µ2)n∥∥

M
+βTρ

(
(µ2)n))

= λRα,β
ρ (u1)+(1−λ )Rα,β

ρ (u2).

The positive one-homogeneity can be seen as follows.
First observe that Rα,β

ρ (0)= 0 since (0,0)∈M∇ and Tρ(0)=

0. This shows in particular that Rα,β
ρ is proper. For λ > 0,

u∈ L1(Ω) we see that (λu,λ µ)∈M∇ if and only if (u,µ)∈
M∇ and by positive homogeneity of ‖·‖M as well as Tρ (see
Proposition 3.12) it follows

Rα,β
ρ (λu) = inf

λ µ∈M (Ω×S1)
(λu,λ µ)∈M∇

α‖λ µ‖M +βTρ(λ µ)

= λ inf
µ∈M (Ω×S1)
(u,µ)∈M∇

α‖µ‖M +βTρ(µ) = λRα,β
ρ (u).

Finally, note that for each u ∈ BV(Ω) we have, by def-
inition of M∇ and as Tρ ≥ 0, for µ ∈ M (Ω ×S1) with
(u,µ) ∈M∇ and ϕ ∈ C ∞

c (Ω , IR2) with ‖ϕ‖∞ ≤ 1 that

α

∫
Ω

udivϕ dx≤ α

∫
Ω×S1

|ϕ(x) ·ϑ⊥| dµ

≤ α‖µ‖M +βTρ(µ).

Taking the supremum over all the above ϕ and the infimum
over all the above µ then yields α TV(u) ≤ Rα,β

ρ (u). If u /∈
BV(Ω), then there exists no µ such that (u,µ)∈M∇: Other-
wise, it would follow, by Proposition 4.1, that u ∈ BV(Ω),
a contradiction. Therefore, α TV(u) = ∞ = Rα,β

ρ (u) as we
agreed that the infimum over the empty set is infinity. At
last, if u ∈ BV(Ω), then the gradient lifting µ according
to Definition 2.3 exists and (u,µ) ∈ M∇, hence, according
to (4.2),

Rα,β
ρ (u)≤ α‖µ‖M +βTρ(µ)≤ Rα,β

ρ (u).

In case u /∈ BV(Ω), the coarea formula gives, for µt being
the functional lifting of ∇(χ{u<t}),

∞ = α TV(u) =
∫

IR
α‖µt‖M dt ≤ Rα,β

ρ (u)

which concludes the proof.

Of course, the metrics ρ0 and ρ1 introduced in Exam-
ples 3.7 and 3.8, respectively, can be used for Rα,β

ρ . Depend-

ing on the choice, we call the resulting functionals TVXα,β
0

and TVXα,β
1 , respectively. Let us take a closer look at those

functionals in the following examples.

Example 4.5. First, consider Rα,β
ρ0

, the relaxed functional
associated with the discrete metric ρ0. Remembering the
characterization of Cρ0 from Example 3.7 and using mol-
lification as well as smooth cut-off techniques, we see that

M̃ρ0(Ω) = {(x,ϑ) 7→ ψ(x,ϑ)+ϕ(x) |ψ ∈ C ∞
c (Ω ×S1),

‖ψ‖∞ ≤ 1
2 , ϕ ∈ C ∞

c (Ω)}

is densely contained in Mρ0 according to Definition 3.10.
Introduce ∇ϑ µ as the distributional directional derivative of
µ with respect to (ϑ ,0) (see also Remark 3.11) which is
uniquely determined by

〈∇ϑ µ, ψ〉 =−
∫

Ω×S1
∇xψ(x,ϑ) ·ϑ dµ

for all ψ ∈C ∞
c (Ω ×S1). With this notion and using M̃ρ0(Ω)

instead of Mρ0(Ω), we can express Tρ0 as

Tρ0(µ) = sup
ψ∈C ∞

c (Ω×S1)

‖ψ‖∞≤ 1
2

∫
Ω×S1

∇xψ(x,ϑ) ·ϑ dµ(x,ϑ)

+ sup
ϕ∈C ∞

c (Ω)

∫
Ω×S1

∇xϕ(x) ·ϑ dµ(x,ϑ).

The first supremum amounts to 1
2‖∇ϑ µ‖M with infinity at-

tained if ∇ϑ µ is not in M (Ω ×S1). Regarding the second
supremum, assume that (u,µ)∈M∇, so for each ϕ ∈C ∞

c (Ω)

we have∫
Ω×S1

∇ϕ(x) ·ϑ dµ(x,ϑ) =
∫

Ω×S1
∇ϕ(x)⊥ ·ϑ⊥ dµ(x,ϑ)

=−
∫

Ω

udiv
(
(∇ϕ)⊥

)
dx = 0

since div
(
(∇ϕ)⊥

)
= curl∇ϕ = 0. Hence, the supremum is

actually 0 and the relaxed functional TVXα,β
0 = Rα,β

ρ0
may

be described as follows:

TVXα,β
0 (u) = inf

µ∈M (Ω×S1)
(u,µ)∈M∇

α‖µ‖M + β

2 ‖∇ϑ µ‖M . (4.4)

Example 4.6. Let us now turn to Rα,β
ρ1

with the geodesic
metric ρ1 according to Example 3.8. First, introduce for each
ψ ∈ C ∞(Ω ×S1) the projection

(πxψ)(x) =
∫

S1
ψ(x,ϑ) dϑ .
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In the case of ρ1, the set

M̃ρ1(Ω) = {(x,ϑ) 7→ ψ(x,ϑ)+ϕ(x)
∣∣ψ ∈ C ∞

c (Ω ×S1),

πxψ = 0, ‖∂ϑ ψ‖∞ ≤ 1, ϕ ∈ C ∞
c (Ω)}

can be identified to be sufficient to test with in Defini-
tion 3.10 in order to obtain Tρ1 . Consequently, TVXα,β

1 =

Rα,β
ρ1

may be written as

TVXα,β
1 (u) = inf

µ∈M (Ω×S1)
(u,µ)∈M∇

sup
ψ∈C ∞

c (Ω×S1)
πxψ=0
‖∂ϑ ψ‖∞≤1

α‖µ‖M +β 〈∇ϑ µ, ψ〉

(4.5)

again since supϕ∈C ∞
c (Ω)

∫
Ω×S1 ∇xϕ(x) ·ϑ dµ(x,ϑ) = 0 for

(u,µ) ∈ M∇ (see Example 4.5). Strictly speaking, the con-
straint πxψ = 0 is unnecessary (M̃ρ1(Ω) does not change
if this constraint is neglected); it only serves to remove the
ambiguity associated with adding an offset to ψ(x, ·) and
thereby reduces the space of allowed test functions which
might lead to better numerical stability. Informally, one can
also use Fenchel-Rockafellar duality to turn the supremum
into an infimum. Denoting by ∂ϑ ν the distributional par-
tial derivative of a ν ∈M (Ω ×S1) with respect to the S1-
direction, this results in

TVXα,β
1 (u) = inf

µ∈M (Ω×S1)
(u,µ)∈M∇

inf
ν∈M (Ω×S1)
∂ϑ ν+∇ϑ µ=0

α‖µ‖M +β‖ν‖M .

However, this interpretation is currently just an informal ob-
servation.

4.3 Application to imaging problems

We conclude the section by showing basic existence and
uniqueness results for imaging problems regularized with
Rα,β

ρ followed by examples from imaging.

Theorem 4.7. Let G : L2(Ω)→ ]−∞,∞] be bounded from
below, convex, lower semi-continuous and such that

G(un)→ ∞ whenever


|
∫

Ω
un dx| → ∞ and

{‖un−|Ω |−1 ∫
Ω

un dx‖2}
is bounded.

Then, for each α > 0 and β > 0 there exists a solution u∗ of
the variational problem

min
u∈L2(Ω)

G(u)+Rα,β
ρ (u). (4.6)

In case that G is strictly convex, the solution is unique if the
minimum is finite.

Proof. In order to prove the result, we use the direct method.
If the objective functional F = G+Rα,β

ρ is constant ∞, the
statement is trivial. Hence, we assume in the following that
the objective functional F is proper. From the assumptions
on G as well as Proposition 4.1 it is immediate that it is
also bounded from below, hence, there exists a minimizing
sequence {un} whose functional values {F(un)} converge
to the infimum of F which is finite. Consequently, as

α TV≤ Rα,β
ρ ≤ F− inf

u∈L2(Ω)
G(u)

according to Proposition 4.1, {TV(un)} is bounded. Now,
with the Poincaré-Friedrichs inequality for TV (see, for in-
stance, [17]), it holds that, for a suitable C > 0,∥∥∥un− 1

|Ω |

∫
Ω

un dx
∥∥∥

2
≤C sup

n∈IN
TV(un)< ∞

The assumption on G now tells us that, {
∫

Ω
un dx} is

bounded since otherwise, for a subsequence, G(un) → ∞

which implies F(un)→ ∞, a contradiction. Consequently,
we have

‖un‖2 ≤ sup
n∈IN
|Ω |−1/2

∣∣∣∫
Ω

un dx
∣∣∣+∥∥∥un− 1

|Ω |

∫
Ω

un dx
∥∥∥

2

< ∞

which implies that there exists a weakly convergent subse-
quence, still denoted by {un}with limit u∗ ∈ L2(Ω). Since G
and Rα,β

ρ are convex and lower semi-continuous (by assump-
tion and Proposition 4.1, respectively), we can conclude, as
usual:

F(u∗)≤ liminf
n→∞

F(un) = inf
u∈L2(Ω)

F(u)

which implies that u∗ is a minimizer. In case that G is strictly
convex and that the minimum is finite, the uniqueness of the
minimizer follows by virtue of the standard contradiction
argument.

Example 4.8. The problem of binary image segmentation,
i.e., partioning the domain Ω in foreground and background,
aims at minimizing, in the convex relaxed form, the func-
tional

G(u) =
∫

Ω

f u dx+ ιC(u),

C = {u ∈ L2(Ω)
∣∣ 0≤ u(x)≤ 1 a.e. in Ω}.

Here, ιC denotes the indicator functional with respect to C,
i.e., ι(u) = 0 if u ∈C and ι(u) = ∞ otherwise. Furthermore,
f ∈ L1(Ω) is an external segmentation field that is negative
in points which are more likely to be background and pos-
itive in points which are more likely to be foreground. We
would like to regularize this problem with Rα,β

ρ , i.e., solve

min
u∈L2(Ω)

0≤u≤1 a.e.

∫
Ω

f u dx+Rα,β
ρ (u). (4.7)
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In order to apply Theorem 4.7, verify that G(u)≥−‖ f‖1 for
all u such that u(x) ∈ [0,1] a.e. and that G is convex. More-
over, for a sequence {un} in L2(Ω) with |

∫
Ω

un dx| → ∞

it holds that ιC(un) = ∞ for all but finitely many n since
otherwise, |

∫
Ω

un dx| ≤ |Ω | for infinitely many n, a contra-
diction. Consequently, G(un)→ ∞ as n→ ∞. Finally, G is
lower semi-continuous: For each converging sequence {un}
in L2(Ω) with un(x)∈ [0,1] a.e. for all n and limit u∈ L2(Ω)

we can find a pointwise a.e. converging subsequence (not re-
labeled). Thus the limit u has to satisfy u(x) ∈ [0,1] a.e. and
as | f un| ≤ | f | a.e., Lebesgue’s dominated convergence the-
orem yields

lim
n→∞

∫
Ω

f un dx =
∫

Ω

f u dx.

The subsequence was arbitrary, hence G(u) ≤
liminfn→∞ G(un). This shows the applicability of The-
orem 4.7, consequently, (4.7) has a solution.

Example 4.9. For the problem of denoising an image, we
consider data fidelity functionals G which correspond to the
usual Lp discrepancy: For 1≤ p≤ 2 let

G(u) =
1
p

∫
Ω

|u− f |p dx.

Here, f ∈ Lp(Ω) denotes the noisy image. Obviously, G is
non-negative, convex, continuous and satisfies G(un)→∞ if
|
∫

Ω
un dx| → ∞ since

‖un− f‖p
p ≥ 21−p‖un‖p

p−‖ f‖p
p

≥ (2|Ω |)1−p
∣∣∣∫

Ω

un dx
∣∣∣p−‖ f‖p

p.

Hence, Theorem 4.7 is applicable meaning that the denois-
ing problem

min
u∈L2(Ω)

1
p

∫
Ω

|u− f |p dx+Rα,β
ρ (u) (4.8)

has a solution. In case p > 1, the solution is unique.

Example 4.10. Let us consider the inpainting problem for
an incomplete image f ∈ L2(Ω ′) given only on a non-null
subset Ω ′ of Ω . Using the regularizer Rα,β

ρ , the goal is to
minimize the functional

min
u∈L2(Ω)
u|

Ω ′= f

Rα,β
ρ (u). (4.9)

The corresponding data term G : L2(Ω)→ ]−∞,∞] reads as

G(u) =

{
0 if u|Ω ′ = f ,

∞ else.

It is easy to see that G is bounded from below and con-
vex. The lower semi-continuity follows from the fact that
the pointwise a.e. constraints u(x) = f (x) on Ω ′ form

a closed subset of L2(Ω). Now let {un} be given such
that

∣∣∫
Ω

un dx
∣∣→ ∞ and that

{∥∥un−|Ω |−1 ∫
Ω

un dx
∥∥

2

}
is

bounded. Suppose that un|Ω ′ = f for infinitely many n,
without loss of generality, we may assume that this is the
case for the whole sequence {un}. Denote by vn = un −
|Ω |−1 ∫

Ω
un dx and observe that, as un|Ω ′ = f ,

sup
n∈IN

∣∣∣∫
Ω

un dx
∣∣∣= sup

n∈IN

∣∣∣ |Ω ||Ω ′|
∫

Ω ′
( f − vn) dx

∣∣∣
≤C sup

n∈IN

(
‖ f‖2 +‖vn‖2

)
< ∞

which is a contradiction. Hence, un|Ω ′ = f for only finitely
many n and, consequently, G(un)→∞. By Theorem 4.7, we
have existence of a minimizer. However, the minimum will
only be finite if the data f is regular enough, i.e., if there is
a u ∈ L2(Ω) such that u|Ω ′ = f and Rα,β

ρ (u)< ∞.

5 Numerical Results

In this section we give a finite differences discretization of
the imaging problems (4.6) and we show how to efficiently
minimize the resulting saddle-point problems. In particular,
we will present applications to the imaging problems intro-
duced in Section 4: image segmentation, image restoration
and inpainting.

5.1 Discrete Setting

An image u will be discretized using a two-dimensional reg-
ular Cartesian grid of size M×N:{
(ih, jh)

∣∣1≤ i≤M,1≤ j ≤ N
}
,

where M and N denote the height and width of the image,
h denotes the size of the spacing and (i, j) denote the in-
dices of the discrete locations (ih, jh) in the image domain.
Likewise, the discretized version of the lifted quantity µ will
be discretized on a three-dimensional Cartesian grid of size
M×N×K:{
(ih, jh,kg)

∣∣1≤ i≤M,1≤ j ≤ N,1≤ k ≤ K
}
,

where K denotes the number of discrete points on the unit
circle S1 and g denotes the spacing.

Next we describe the finite differences approximations
of the different linear operators we will need to define the
discrete versions of the proposed energy functionals. The
linear operator A ∈ IR2MN×MN is a discretized version of
the derivative operator. We use standard forward differences
with Neumann boundary conditions

(Au)i, j =

(
(Au)1

i, j
(Au)2

i, j

)
,
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Fig. 5 Finite differences scheme to discretize the directional deriva-
tives. We use a non-local finite differences scheme to better capture
boundary directions that cannot be well represented by a regular grid.

where

(Au)1
i, j =


ui+1, j−ui, j

h
if i < M

0 if i = M
,

(Au)2
i, j =


ui, j+1−ui, j

h
if j < N

0 if j = N
.

The discretization of the directional derivative operators
∇

ϑ⊥ is critical since a standard finite differences scheme
for non grid-aligned directions might not exactly hit the
grid points. We therefore use a non-local finite differences
scheme in combination with a linear interpolation to elimi-
nate interfering dissipation effects as much as possible. Let
ϑk = (ϑ 1

k ,ϑ
2
k ) ∈ S1, k = 1, . . . ,K be uniformly distributed

points on the unit circle. We compute the displacement vec-
tor for the finite differences scheme of the directional deriva-
tives from ϑk by rescaling it such that its smaller component
is equal to one. The respective rescaling constants are com-
puted via

δk =

{
min{|ϑ 1

k |, |ϑ 2
k |} if ϑk modπ/2 6= 0

1 else
.

The final displacement vectors tk = (t1
k , t

2
k ) are computed as

tk = ϑk/δk. See Figure 5 for an example of the displacement
vectors tk for K = 16 directions. The finite differences ap-
proximation of the directional derivative operator is a linear
operator B ∈ IRMNK×MNK which is defined as

(Bµ)i, j,k =
µi+t1

k , j+t2
k ,k
−µi, j,k

|tk|
,

where µi+t1
k , j+t2

k ,k
refers to the result of a linear interpolation

with zero boundary conditions.

We will also need to discretize the derivative operator
in label direction. It is defined as the linear operator C ∈
IRMNK×MNK . We again use simple forward differences with
periodic boundary conditions

(Cµ)i, j,k =


µi, j,k+1−µi, j,k

g
if k < K

µi, j,1−µi, j,k

g
if k = K

.

Finally we will need to discretize the linear constraint in
the set M∇ (see (4.3)), that relates the discrete image gradient
Au to the lifted quantity µ . The issue here is that the image
gradient is computed at half grid points while µ is defined
on grid points. We found it best to relate the image gradient
with µ linearly interpolated at the corresponding half points.
We therefore define a linear operator D ∈ IR2MN×MNK by

(Dµ)i, j =

(
(Dµ)1

i, j
(Dµ)2

i, j

)
,

where

(Dµ)1
i, j,k =


g
2

K

∑
k=1

(−ϑ
⊥
k )1(µi+1, j,k +µi, j,k) if i < M

g
2

K

∑
k=1

(−ϑ
⊥
k )1

µi, j,k if i = M
,

and

(Dµ)2
i, j,k =


g
2

K

∑
k=1

(−ϑ
⊥
k )2(µi, j+1,k +µi, j,k) if j < N

g
2

K

∑
k=1

(−ϑ
⊥
k )2

µi, j,k if j = N
.

5.2 Discrete energies

Having defined the discrete operators we are now ready to
define the discrete versions of (4.6). For simplicity we will
assume h = g = 1 for the rest of this section. We denote by
u ∈ IRMN the discrete image, by µ ∈ IRMNK the lifted gradi-
ent and by ψ ∈ IRMNK the dual variable. Now, combining the
general model (4.6) with the functionals of Definition 3.10
and Definition 4.2 we arrive at the convex-concave saddle
point problem

min
(u,µ)∈M∇

max
ψ∈Mρ

G(u) + α ∑
i, j,k

µi, j,k +β 〈Bµ,ψ〉 (5.1)

where according to (4.3) the discrete variant of the convex
set M∇ is defined as

M∇ =
{
(µ,u)

∣∣µi, j,k ≥ 0, (Au)i, j = (Dµ)i, j
}
.
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According to Example 4.5 and Example 4.6 and the discrete
variants of the convex sets Mρ are defined as

TVXα,β
0 : Mρ0 =

{
ψ

∣∣∣ |ψi, j,k| ≤
1
2
, ∀i, j,k

}
(5.2)

TVXα,β
1 : Mρ1 =

{
ψ

∣∣∣ |(Cψ)i, j,k| ≤ 1 , ∀i, j,k,

∑
k

ψi, j,k = 0 , ∀i, j
}
. (5.3)

5.3 Numerical optimization

We use the first-order primal-dual algorithm proposed in [9]
which can be used to minimize convex problems with known
saddle-point structure of the the general form

min
x∈X

max
y∈Y
〈K x,y〉+G (x)−F ∗(y) , (5.4)

where X and Y are finite-dimensional vector spaces K is a
linear operator and G and F ∗ are proper, convex and lower
semi-continuous functions. See [9] for more information.
The most important restriction of the algorithm is that G
and F ∗ need to be of simple structure, in the sense that their
proximity operators have to be easy to compute. We also
make use of the diagonal preconditioning technique [30] that
has been shown to perform better on problems with compli-
cated K and avoids computing ‖K ‖. Following [30], we
assume that K ∈ IRm×n and compute the diagonal precon-
ditioning matrices T ∈ IRn×n and S ∈ IRm×m according to
the rules

Tb,b =
1

∑
m
a=1 |Ka,b|

, Sa,a =
1

∑
n
b=1 |Ka,b|

. (5.5)

In recent work [23], it has been shown that the primal-dual
algorithm [9] can be written in form of a proximal point al-
gorithm [32], which can be generalized by means of an addi-
tional overrelaxation step [21,15], which is controlled by an
overrelaxation parameter γ . Very recently it has been shown
in [6] that indeed, the overrelaxation step speeds up the con-
vergence of the algorithm.

The basic iterations of the algorithm are as follows: Set
x = 0, y = 0, choose T , S according to (5.5) and γ ∈ [0,1[.
For l ≥ 0 let

xl+ 1
2 = proxT ,G

(
xl−T K T yl

)
yl+ 1

2 = proxS ,F ∗

(
yl +S K (2xl+ 1

2 − xl)
)

(xl+1,yl+1) = (xl+ 1
2 ,yl+ 1

2 )+ γ(xl+ 1
2 − xl ,yl+ 1

2 − yl) .

(5.6)

According to [30], the proximal mappings including the pre-
conditioning are defined as

proxT ,G (x̂) = argmin
x

1
2
〈
T −1(x− x̂),x− x̂

〉
+G (x),

proxS ,F ∗(ŷ) = argmin
y

1
2
〈
S −1(y− ŷ),y− ŷ

〉
+F ∗(y).

For more details see [30]. As shown in [9], the algorithm
converges with rate O(1/l) for the averages x̄ = (∑l xl)/l
and ȳ = (∑l yl)/l but we found it more efficient to use the
final iterates xl and yl instead. The overrelaxation parameter
is set to γ = 0.9 in all experiments. We stop the iteration as
soon as the quantities ‖xl− xl−1‖ and ‖yl− yl−1‖ are below
a certain threshold.

In order to make the algorithm (5.6) applicable to the
constrained problem (5.1) we have to transform it into the
generic form (5.4). This is shown in the next sections.

5.3.1 The functional TVXα,β
0

In this section we specialize to the functional that utilizes
the discrete metric ρ0. Observe that the set Mρ0 is of sim-
ple structure, meaning that we can efficiently project on
this set. However, the set M∇ is more complicated, so that
we have to perform an operator splitting. We introduce La-
grange multipliers φ ∈ IRMN to account for the linear con-
straints Au = Dµ , which gives the saddle-point problem

min
u,µ

max
ψ,φ

α ∑
i, j,k

µi, j,k + β 〈Bµ,ψ〉 + 〈Au−Dµ,φ〉 + G(u)

s.t. µi, j,k ≥ 0, |ψi, j,k| ≤
1
2

(5.7)

Now, we set x = (µ,u)T and y = (ψ,φ) and define the
linear operator K ∈ IRm×n, where m = MNK + 2MN and
n = MNK +MN as

K =

(
βB 0
−D A

)
.

Furthermore we define the functions G and F ∗ on the ex-
tended vectors x and y, respectively, as

G (x) = α ∑
i, j,k

µi, j,k + ι[0,∞)MNK (µ)+G(u), (5.8)

F ∗(y) = ι[− 1
2 ,

1
2 ]

MNK (ψ) , (5.9)

where ιS is again the indicator functional associated with the
set S. The proximity operators with respect to G and F ∗ are
identified as

x = proxT ,G (x̂) (5.10)

⇐⇒
µi, j,k = max(0, µ̂i, j,k−αT µ

i, j,k)

u = proxT u,G ,

and

y = proxS ,F ∗(ŷ) (5.11)

⇐⇒
ψi, j,k = max(− 1

2 ,min( 1
2 , ψ̂i, j,k))

φi, j,k = φ̂i, j,k ,

where T and S are the preconditioning matrices and by
a slight abuse of notation we denote for example by T µ
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the submatrix of T that corresponds to the vector µ and by
T µ

i, j,k the entry of T µ that corresponds to the element µi, j,k.
With the above transformations we can now cast (5.7) into
the generic form (5.4).

5.3.2 The functional TVXα,β
1

Let us now turn to the geodesic metric ρ1. The main differ-
ence to the previous model is that the convex set Mρ1 in (5.3)
includes an additional linear operator and hence the projec-
tion onto this set is not simple. Besides the Lagrange multi-
pliers φ that account for the linear constraint Au = Dµ , we
additionally introduce an auxiliary vector ζ ∈ IRMNK and
attach another set of Lagrange multipliers ν ∈ IRMNK to ac-
count for the linear constraint Cψ = ζ . Note that the con-
straint ∑k ψi, j,k = 0 in Mρ1 does not require any additional
treatment since a projection onto this set can be performed
efficiently by subtracting its average. We therefore arrive at
the following saddle-point problem

min
u,µ,ν

max
ψ,φ ,ζ

α ∑
i, j,k

µi, j,k + β 〈Bµ,ψ〉 + 〈Au−Dµ,φ〉

+ 〈Cψ−ζ ,ν〉 + G(u)

s.t. µi, j,k ≥ 0, |ζi, j,k| ≤ 1, ∑
k

ψi, j,k = 0. (5.12)

Similarly to above we set x = (µ,ν ,u)T and y = (ψ,ζ ,φ)

and define the matrix K ∈ IRm×n, where m= 2MNK+2MN
and n = 2MNK +MN as

K =

βB CT 0
0 −I 0
−D 0 A

 ,

where I ∈ IRMNK×MNK denotes the diagonal matrix with all
diagonal entries equal to 1.

Likewise to the previous model we can easily identify
the functions G and F∗ in the generic form (5.4) as

G (x) = α ∑
i, j,k

µi, j,k + ι[0,∞)MNK (µ)+G(u), (5.13)

F ∗(y) = ιZ(ψ)+ ι[−1,1]MNK (ζ ) , (5.14)

where Z = {ψ : ∑k ψi, j,k = 0, ∀i, j} and the corresponding
proximity operators are given by

x = proxT ,G (x̂) (5.15)

⇐⇒
µi, j,k = max(0, µ̂i, j,k−αT µ

i, j,k)

νi, j,k = ν̂i, j,k

û = proxT u,G(û) ,

and

y = proxS ,F ∗(ŷ) (5.16)

⇐⇒
ψi, j,k = ψ̂i, j,k−

(
∑
k

ψ̂i, j,k

)
/K

ζi, j,k = max(−1,min(1, ζ̂i, j,k))

φi, j,k = φ̂i, j,k ,

such that (5.12) can be cast into the generic form (5.4).

5.4 Application to imaging problems

In this section we show preliminary results of the finite dif-
ferences implementation of the general imaging model (4.6).
For simplicity, we will set α = 0.1 and β = 1 for the regular-
izer TVXα,β

0,1 in all experiments and hence we will skip the
superscripts α and β for notational convenience. A study
of the effects of varying the weights α and β is left for fu-
ture work. For comparison we will also implement pure total
variation regularization (TV), which can be easily realized
by setting α = 1 and β = 0. Finally, unless mentioned dif-
ferently, we will set the discretization accuracy of the unit
circle to K = 32 equally distributed points.

5.4.1 Binary image segmentation

In our first application we apply the proposed functional as
a regularizer for binary image segmentation problems. As
shown in Example 4.8, we use a simple linear data term of
the form

G(u) = λ ∑
i, j

fi, jui, j + ι[0,1]MN (u) ,

where f ∈ IRMN is an external segmentation field that is neg-
ative if a pixel is more likely to be background and positive if
a pixel is more likely to be foreground. The parameter λ > 0
is used to control the weight of the data term with respect to
the regularization term. The proximity operator with respect
to G is given by

u= proxT u,G(û)⇐⇒ ui, j =max(0,min(1, ûi, j−λT u
i, j fi, j)) .

In the first segmentation experiment we study the ef-
fect of varying the number of discrete orientations K. Fig-
ure 6 shows the result of applying the proposed regulariz-
ers to an image segmentation problem. The segmentation
field is computed as fi, j = (Ii, j− µ f )

2− (Ii, j− µb)
2, where

I ∈ IRMN is the input image and µ f ,b are the mean val-
ues of the fore- and background regions. We set µ f = 0.0,
µb = 0.5 and λ = 1. As expected, for a low number of ori-
entations e.g. K = 4 and 8, the segmentation results favor
certain directions. For a larger number of orientations e.g.
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(a) Input image

(b) TVX0, K = 4 (c) TVX0, K = 8 (d) TVX0, K = 16 (e) TVX0, K = 32

(f) TVX1, K = 4 (g) TVX1, K = 8 (h) TVX1, K = 16 (i) TVX1, K = 32

(j) SC, K = 8, p = 1 (k) SC, K = 8, p = 2 (l) SC, K = 16, p = 1 (m) SC, K = 16, p = 2

Fig. 6 Effect of varying the number
of discrete orientations K. (a) shows
the input image and (b)-(i) show the
segmented images. (j)-(m) show re-
sults of the discrete approach [34]
(SC) for different numbers of dis-
crete orientations and different ex-
ponents p in the elastica functional.

K = 16 and K = 32, the model behaves almost isotropically.
Note that for K = 4 the behavior of TVX0 and TVX1 is al-
most identical. One can also observe that the vertex count-
ing functional leads to a strong preference of a polygonal
shape, while the total curvature functional leads to smoother
shapes. For comparison, we provide in the last row of Fig-
ure 6 some results of the discrete approach of Schoenemann
and Cremers [34]. We used the primal dual algorithm [30]
as a solver and implemented the algorithmic scheme on a
graphics processing unit (GPU). We again used α = 0.1 for
the weight of the length term and β = 1 for the weight of
the curvature term. In contrast to our TVX functionals, the
approach of [34] can handle more general curvature depend-
ing functionals, and hence we ran the algorithm for differ-
ent exponents p in the elastica functional. Running times
for K = 16 discrete orientations where around 40 minutes
on a Nvidia GTX 480 GPU. For comparison, a Matlab im-
plementation of our approach takes around 5 minutes for
problems with the same number of discrete orientations. Vi-

sually, the results of both approaches are comparable, al-
though our approach leads to less strong orientation artifacts
(see, for example, the results for K = 16). Furthermore we
observed that Schoenemann’s and Cremers’s approach leads
to strong edge cancellation artifacts for K = 16 orientations.
This can, for instance, be seen from the spiky corners at
the head of the cameraman which are, in fact, connected
by overlapping edges. Due to memory restrictions, we were
not able to perform experiments for K = 32 discrete orien-
tations.

In the second experiment, we investigate the difference
between the total vertex regularization models TVX0,1 and
standard total variation based regularization TV. Figure 7
show the differences between the different model by vary-
ing the parameter λ . The segmentation force was computed
as fi, j = 0.5− Ii, j. Pure total variation regularization (TV)
leads to a strong shrinkage of the objects since it penalizes
the total length of the object boundary. TVX0-based regu-
larization penalizes the number of vertices of the segmenta-
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(a) Input image

(b) TV, λ = 1 (c) TV, λ = 0.5 (d) TV, λ = 0.25

(e) TVX0, λ = 1 (f) TVX0, λ = 0.5 (g) TVX0, λ = 0.25

(h) TVX1, λ = 1 (i) TVX1, λ = 0.5 (j) TVX1, λ = 0.25

Fig. 7 Comparison between TV, TVX0 and
TVX1 regularization for different parameters λ .
(a) shows the input image and (b)-(j) show the
segmented images. While TV based regulariza-
tion leads to a strong shrinkage of the objects,
TVX0 and TVX1 based regularization much
better preserve elongated structures. Note that
TVX0 leads to the development of simple polyg-
onal structures.

tion boundary and hence leads to a simplification in terms
of polygonal structures with a minimum number of vertices.
TVX1-based regularization yields to smooth object bound-
aries while preserving to some extent long elongates struc-
tures. For a stronger regularization, one can observe less bi-
nary results which is explained by the non-uniqueness of the
minimizer and the less tightness of the relaxation for weaker
data terms.

5.4.2 Image denoising

Next, we consider the task of image denoising (see also Ex-
ample 4.9 for more information). In the first denoising ex-
ample we assume the image to be corrupted by Gaussian
noise and hence a squared `2 norm gives a suitable data
model:

G(u) =
λ

2
‖u− f‖2

2 ,
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where f ∈ IRMN is the noisy image and λ > 0 is a regular-
ization parameter. The proximity operator with respect to G
is given by

u = proxT u,G(û)⇐⇒ ui, j =
ûi, j +λT u

i, j fi, j

1+λT u
i, j

.

Figure 8 shows the results of denoising an image that
has been degraded by Gaussian noise of standard devia-
tion σ = 0.1. For TV regularization we set λ = 15 and for
TVX1 regularization where we set λ = 4. We observe that
the TVX1 model leads to a better continuation of line-like
structures and hence to an improved denoising quality.

In the second denoising example we consider the case of
impulse noise such as salt and pepper noise. In this case, a
`1 data term is known to perform better. It is defined as

G(u) = λ‖u− f‖1 ,

and the corresponding proximity operator is given by the
well-known shrinkage formula

u = proxT u,G(û)⇐⇒

ui, j =


ûi, j−λT u

i, j if ûi, j− fi, j > λT u
i, j

ûi, j +λT u
i, j if ûi, j− fi, j < −λT u

i, j
fi, j if |ûi, j− fi, j| ≤ λT u

i, j.

Figure 9 shows the results of denoising a natural image that
has been corrupted by 25% salt and pepper noise. For the
TV model we set λ = 2.5 and for the TVX1 we set λ = 1.5.
The results show that in this example, the TVX1 regularizer
performs significantly better than the standard TV regular-
izer. The reason for the improvement is twofold. Firstly, the
noisy pixels strongly contribute to the total number of ver-
tices of the image and hence can be effectively removed by
the regularizer. Secondly, the image contains a lot of line-
like structures which are nicely preserved by the TVX1 reg-
ularizer.

5.4.3 Image inpainting

In the last application we investigate the proposed regular-
izers for image inpainting. Similar to Example 4.10 let us
denote by Ω = {(i, j)

∣∣1≤ i≤M, 1≤ j ≤ N} the index set
of the discrete image f ∈ IRMN and by Ω ′ ⊂ Ω the index
set of given image pixels. We consider the following data
model:

G(u) = ∑
(i, j)∈Ω ′

ι{ fi, j}(ui, j) .

The corresponding proximity operator is given by

u = proxT u,G(û)⇐⇒ ui, j =

{
ûi, j if (i, j) ∈Ω \Ω ′

fi, j if (i, j) ∈Ω ′.

Figure 10 shows the result of an inpainting problem with
95% lost pixels. TVX0 and TVX1 perform significantly bet-
ter than standard TV inpainting. The improved performance
of the vertex penalizing functionals is mainly contributed to
their ability to complete object boundaries. We can also see
that while TVX0 prefers polygonal shapes, TVX1 leads to
smoother and hence more natural boundaries.

6 Conclusions

In this paper, we proposed and studied functionals that pe-
nalizes a metric defined on the vertices of the level lines of
a two dimensional image.

The quintessential starting point of this work was formed
by a generic class of functionals on polygons which penalize
the polygon vertices. Each functional depends on a metric on
S1 and is defined as the sum over all polygon vertices xi of
the metric distance between the orientations of the polygon
segments meeting in xi. These functionals can be reformu-
lated as a sum of certain line integrals along the polygon
segments, an observation which leads to an equivalent ex-
pression using so-called functional lifting of the gradient of
the polygon’s characteristic function. This new formulation
lends itself as a generalization of the functional to general
gray scale images for which the functional is related to pe-
nalizing the curvature of the image level lines.

The discrete and the geodesic metric have exemplarily
been considered as two special cases of metrics on S1. The
corresponding functionals on polygons respectively count
the number of vertices or sum up the absolute values of all
external vertex angles. While the first functional yields in-
finity for non-polygonal shapes, the second also has a mean-
ing for shapes with curved boundaries in which case it com-
putes the total absolute curvature of the boundary. Conse-
quently, in applications the functionals can be observed to
prefer polygonal and convex shapes, respectively.

To enable global minimization and hence the applicabil-
ity to general imaging problems, we proposed a convex re-
laxation that separately treats two nonlinear operations that
are involved in the functional: The extraction of all image
level lines and the functional lifting of the image gradient.
It is still an open problem whether and how a tighter con-
vex relaxation can be found. For practical implementation of
the functionals, we proposed a finite differences approxima-
tion of the energies and minimized it using a preconditioned
first-order primal dual algorithm. We showed promising re-
sults for binary image segmentation, image denoising and
the recovery of lost image information.

A natural next step for future investigation would be
to consider intermediate metrics such as for instance the
pointwise minimum of the discrete and the geodesic met-
ric, which for a given shape would lead to an approximation
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(a) Original image (b) Noisy image, PSNR=20.00

(c) TV, PSNR=29.60 (d) TVX1, PSNR=29.83

Fig. 8 Denoising of an image degraded by
Gaussian noise. (a) and (b) show the original
and the noisy image that has been degraded
by adding Gaussian noise of standard devia-
tion σ = 0.1. (c) and (d) show the results of
TV and TVX1 denoising. Observe that the
TVX1 regularizer leads to a better continu-
ation of line-like structures which improves
the denoising quality.

(a) Original image (b) Noisy image, PSNR=10.97

(c) TV, PSNR=23.93 (d) TVX1, PSNR=25.13

Fig. 9 Denoising of an image degraded by
salt and pepper noise. (a) and (b) show the
original image and the noisy image that
has been degraded by 25% salt and pepper
noise. (c) and (d) show the results of TV and
TVX1 denoising. Note that the TVX1 model
effectively removes the noise while nicely
preserving line-like structures.

of the total absolute curvature of all smooth arcs plus the
number of vertices. Another possibility would consist in the
use of inhomogeneous metrics (for example by dilating dis-
tances only in certain regions of S1). Such metrics would
make directional changes of level lines more difficult in cer-
tain directions, which might be of interest for example if an
image exhibits many lines along certain predominant ori-
entations. In principle one could even relax the restriction

of using metrics on S1 which might enable to give prefer-
ence to certain vertex angles or certain combinations of line
orientations. However, the structure of the functionals only
allows to penalize curvature of image level lines in a pos-
itively one-homogeneous manner. Therefore, the approach
cannot be employed to approximate for instance the Will-
more functional or similar functionals, which is a topic of
further investigation.
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(a) Original image (b) 95% lost pixels

(c) TV, PSNR=20.97 (d) TVX0, PSNR=23.35 (e) TVX1, PSNR=24.00

Fig. 10 Recovery of lost information in
an image. (a) and (b) show the origi-
nal image and the image where 95% of
the pixels are lost. (c)-(e) show the re-
sults of TV, TVX0 and TVX1 inpaint-
ing. One can observe that the proposed
regularizers are much more efficient in
recovering lost information in natural
images.

An extension of the proposed approach to three dimen-
sions is not straightforward (one might for example think of
penalizing the edge lengths or vertex numbers of polyhedra).
The functional lifting of image gradients can be performed
(note that σ⊥ would have to be replaced by σ in Defini-
tion 2.3), but it is not obvious how to obtain information
about image level set edges via testing the lifted image gra-
dients with smooth functions. One might for example think
of employing Stokes’ theorem and replacing the directional
derivative in Definition 3.10 by curlψ(x,ϑ) ·ϑ for certain
smooth test functions ψ : Ω ×S2→ IR3.

Finally, future work will concentrate on the study of the
proposed functionals in the context of more complex imag-
ing problems such as multi-label image segmentation [7],
disocclusion models [29] and general inverse problems.
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