Skip to main content
Log in

3D Searchless Fractal Video Encoding at Low Bit Rates

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The development of compression techniques is crucial for several applications that require efficient storage and transmission of large data volumes. Fractal theory has been used in image and video compression due to advantages such as resolution independence, high compression rate, fast decoding, among others. Fractal compression approaches explore the presence of self-similarity to remove data redundancy, allowing high compression while maintaining low quality degradation. Early fractal compression methods presented prohibitive encoding time related to the search for similar regions in the image or video. This work describes a low bit-rate 3D searchless fractal video encoder to perform fast compression with high visual fidelity. Experiments demonstrate that the results of the proposed approach are superior when compared to those obtained by state-of-the-art x264 video encoder at very low bit rates in high motion video sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. CIPR Sequences (2012). http://www.cipr.rpi.edu/resource/sequences/

  2. Test Media (2012). http://media.xiph.org/video/derf/

  3. x264 Video Encoder (2012). http://www.videolan.org/developers/x264.html

  4. Bani-Eqbal, B.: Enhancing the speed of fractal image compression. Opt. Eng. 34(6), 1705–1710 (1995)

    Article  Google Scholar 

  5. Barnsley, M.F.: Fractals Everywhere. Academic Press, San Diego (1988)

    MATH  Google Scholar 

  6. Caso, G., Obrador, P., Kuo, C.C.: Fast methods for fractal image encoding. In: SPIE Visual Communication and Image Processing, Taipei, Taiwan, vol. 2501, pp. 583–594. SPIE Press, Bellingham (1995)

    Google Scholar 

  7. Chabarchine, A., Creutzburg, R.: 3D fractal compression for real-time video. In: 2nd International Symposium on Image and Signal Processing and Analysis, Pula, Croatia, pp. 570–573 (2001)

    Google Scholar 

  8. Fisher, Y.: Fractal Image Compression—Theory and Application. Springer, New York (1994)

    MATH  Google Scholar 

  9. Fisher, Y., Rogovin, D., Shen, T.: Fractal (Self-VQ) encoding of video sequences. Vis. Commun. Image Process. 2308(1), 1359–1370 (1994)

    Google Scholar 

  10. Furao, S., Hasegawa, O.: A fast no search fractal image coding method. Signal Process. Image Commun. 19(5), 393–404 (2004)

    Article  Google Scholar 

  11. Hsu, K.C.C.: Novel prediction- and subblock-based algorithm for fractal image compression. Chaos Solitons Fractals 29(1), 215–222 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hurd, L., Gustavus, M., Barnsley, M.: Fractal video compression. In: Thirty-Seventh IEEE Computer Society International Conference (Digest of Papers, COMPCON Spring 1992), pp. 41–42 (1992)

    Chapter  Google Scholar 

  13. Jackson, D., Ren, H., Wu, X., Ricks, K.: A hardware architecture for real-time image compression using a searchless fractal image coding method. J. Real-Time Image Process. 1(3), 225–237 (2007)

    Article  Google Scholar 

  14. Jacquin, A.: Image coding based on a fractal theory of iterated contractive image transformations. IEEE Trans. Image Process. 1(1), 18–30 (1992)

    Article  Google Scholar 

  15. Kim, C., Kim, R., Lee, S.: Fractal coding of video sequence using circular prediction mapping and noncontractive interframe mapping. IEEE Trans. Image Process. 7(4), 601–605 (1998)

    Article  Google Scholar 

  16. Koli, N., Ali, M.: Lossy color image compression technique using fractal coding with different size of range and domain blocks. In: International Conference on Advanced Computing and Communications, Surathkal, India, pp. 236–239 (2006)

    Google Scholar 

  17. Koli, N., Ali, M.: A survey on fractal image compression key issues. Inf. Technol. J. 7(8), 1085–1095 (2008)

    Article  Google Scholar 

  18. Kovács, T.: A fast classification based method for fractal image encoding. Image Vis. Comput. 26(8), 1129–1136 (2008)

    Article  Google Scholar 

  19. Krause, P.: ftc—floating precision texture compression. Comput. Graph. 34(5), 594–601 (2010)

    Article  Google Scholar 

  20. Lai, C., Lam, K., Siu, W.: A fast fractal image coding based on Kick-out and zero contrast conditions. IEEE Trans. Image Process. 12(11), 1398–1403 (2003)

    Article  MathSciNet  Google Scholar 

  21. Lazar, M., Bruton, L.: Fractal block coding of digital video. IEEE Trans. Circuits Syst. Video Technol. 4(3), 297–308 (1994)

    Article  Google Scholar 

  22. Lee, C., Lee, W.: Fast fractal image block coding based on local variances. IEEE Trans. Image Process. 7(6), 888–891 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, H., Novak, M., Forchheimer, R.: Fractal-based image sequence compression scheme. Opt. Eng. 32(7), 1588–1595 (1993)

    Article  Google Scholar 

  24. de Lima, V., Schwartz, W.R., Pedrini, H.: Fast low bit-rate 3D searchless fractal video encoding. In: Conference on Graphics, Patterns and Images, Maceio, AL, Brazil (2011)

    Google Scholar 

  25. Øien, G., Lepsøy, S.: A Class of Fractal Image Coders with Fast Decoder Convergence, pp. 153–175. Springer, London (1995). Chap. Fractal Image Compression

    Google Scholar 

  26. Said, A.: Lossless Compression Handbook. Academic Press, San Diego (2003). Chap. Arithmetic Coding. Communications, Networking, and Multimedia

    Google Scholar 

  27. Saupe, D., Ruhl, M., Hamzaoui, R., Grandi, L., Marini, D.: Optimal hierarchical partitions for fractal image compression. In: IEEE International Conference on Image Processing, Chicago, IL, USA, pp. 737–741 (1998)

    Google Scholar 

  28. Tong, C., Pi, M.: Fast fractal image encoding based on adaptive search. IEEE Trans. Image Process. 10(9), 1269–1277 (2001)

    Article  Google Scholar 

  29. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  30. Weinberger, M., Seroussi, G., Sapiro, G.: LOCO-I: a low complexity, context-based, lossless image compression algorithm. In: Data Compression Conference, Snowbird, UT, USA, pp. 140–149 (1996)

    Google Scholar 

  31. Wu, X., Jackson, D., Chen, H.: Novel fractal image-encoding algorithm based on a full-binary-tree searchless iterated function system. Optical Engineering 44(10) (2005)

  32. Yao, Z., Wilson, R.: Hybrid 3D fractal coding with neighbourhood vector quantisation. EURASIP J. Appl. Signal Process. 2004, 2571–2579 (2004)

    Article  MATH  Google Scholar 

  33. Zhu, S., Wang, Z., Belloulata, K.: A novel fractal monocular and stereo video codec based on MCP and DCP. In: IEEE International Conference on Industrial Technology, pp. 168–172. Viña del Mar, Chile (2010)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to FAPESP, CAPES and CNPq for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helio Pedrini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lima, V., Schwartz, W.R. & Pedrini, H. 3D Searchless Fractal Video Encoding at Low Bit Rates. J Math Imaging Vis 45, 239–250 (2013). https://doi.org/10.1007/s10851-012-0357-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0357-8

Keywords

Navigation