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Abstract Contour tracking in adverse environments

is a challenging problem due to cluttered background,

illumination variation, occlusion, and noise, among

others. This paper presents a robust contour track-

ing method by contributing to some of the key is-

sues involved, including (a) a region functional for-

mulation and its optimization; (b) design of a ro-

bust and effective feature; and (c) development of

an integrated tracking algorithm. First, we formulate

a region functional based on robust Earth Mover’s

distance (EMD) with kernel density for distribution

modeling, and propose a two-phase method for its

optimization. In the first phase, letting the candidate

contour be fixed, we express EMD as the transporta-

tion problem and solve it by the simplex algorithm.

Next, using the theory of shape derivative, we make

a perturbation analysis of the contour around the

best solution to the transportation problem. This

leads to a partial differential equation (PDE) that

governs the contour evolution. Second, we design a

novel and effective feature for tracking applications.
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We propose a dimensionality reduction method by

tensor decomposition, achieving a low-dimensional

description of SIFT features called Tensor-SIFT for

characterizing local image region properties. Appli-

cable to both color and gray-level images, Tensor-

SIFT is very distinctive, insensitive to illumination

changes, and noise. Finally, we develop an integrated

algorithm that combines various techniques of the

simplex algorithm, narrow-band level set and fast

marching algorithms. Particularly, we introduce an

inter-frame initialization method and a stopping cri-

terion for the termination of PDE iteration. Experi-

ments in challenging image sequences show that the

proposed work has promising performance.

Keywords Contour tracking · Tensor-Decomposition ·

Shape Derivative · Earth Mover’s Distance (EMD) ·

Kernel Density.

1 Introduction

Contour tracking [3] has been an active research

topic thanks to its capability to follow the deformable

boundaries. It has widespread applications in various

fields such as medical image processing, intelligent

surveillance and human-machine interaction. The pi-

oneering work of contour tracking can be traced back

to Kass et al. [22]. They defined an energy functional

of the object boundary and solved the functional

http://arxiv.org/abs/1011.3174v1
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optimization problem using the calculus of varia-

tion (Euler-Lagragian equation). The resulting par-

tial differential equation (PDE) was solved by the

finite difference method that was iterated until con-

vergence.

Over the past two decades, a great deal of liter-

ature has been published and considerable advances

have been made in the field of contour tracking.

In terms of the type of information used, contour

tracking methods can be roughly divided into three

classes: boundary-based [5, 22] which depends on im-

age features along the object contour, region-based

[39, 47] which prefers the information within the

region enclosed by the object boundary, and those

based on combination of the both [59]. From the

perspective of contour representation, two kinds of

methods can be classified: parametric contour meth-

ods [44] where the contours are explicitly represented

by the parametric curves, and geometric contour ap-

proaches [5], where the contours are implicitly rep-

resented by zero level sets of some high dimensional

functions [37]. The former often has fast convergence

speed but provides less flexibility in handling curve

topology, whereas the latter tends to be computa-

tionally expensive but can naturally handle topolog-

ical deformation.

Despite the varying categorizations of and the

different techniques used in contour tracking meth-

ods, three of the key issues are required to be re-

searched: (a) how to formulate functionals and how

to optimize them; (b) how to seek effective features

for object representation; and (c) how to develop a

robust and accurate tracking algorithm.

As regards functional formulation, the classical

methods [5, 22] define the energy functionals that

involve terms of image features and the smoothness

constraint on the boundary curves. Other typical ap-

proaches are based on the Bayesian inference of re-

gion segmentation [10, 39], or based on the Mumford-

Shah functionals [6, 46]. In recent years, a class of

functionals has been presented independently that

measures the similarity or distance between the tar-

get and candidate models [16, 20, 57]. The common

methods for functional optimization use the calculus

of variations to derive the corresponding PDEs. For

some complex functionals involving region terms, de-

riving the corresponding PDEs via the calculus of

variation is nontrivial because Green’s theorem has

to be used to transform the region functionals into

boundary functionals [1]. However, using the theory

of shape derivatives [50], we can deal with such re-

gion functionals in a straightforward and principled

manner [1].

The Earth Mover’s Distance (EMD) [48], known

as the Wasserstein distance in mathematics [45], has

been proven to be a robust distance measure be-

tween two distributions, outperforming commonly

used probability measures such as Jeffrey divergence,

χ2 statistics, and L1 distance. Hence, in this paper,

we formulate a region functional based on EMD with

kernel density to represent the distributions for con-

tour tracking. Optimizing this functional is nontriv-

ial, and thus we propose a two-phase method for its

optimization. In the first phase, assuming the can-

didate shape is fixed, we express the EMD as the

transportation problem and solve it using the sim-

plex algorithm [30]. In the second phase, using the

theory of shape derivative, we make a perturbation

analysis of the candidate contour around the best

solution to the transportation problem. Thus, we de-

rive the PDE that governs the contour evolution.

The features often used in contour tracking are

image gradient, color, texture, optical flows, or inter-

frame difference. Earlier works have focused on gra-

dients [5, 22] of the boundary delineating the ob-

ject and the background. However, in cluttered im-

ages or texture images, the object boundary may

be undistinguishable from the background. In addi-

tion, the image gradients are susceptible to noises

present in the image. Probabilistic modeling of color

is very common in the contour tracking papers [16].

As color features are sensitive to illumination vari-

ations, an online model update is usually required

for robust tracking [31]. Under the assumptions of

brightness constancy and smoothness [15], optical

flows describing the apparent motion of appearance
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can be effectively used [18]. For videos captured by

a still camera, inter-frame differences are useful for

moving object tracking [38], whereas the global mo-

tion of the camera has to be estimated to compen-

sate for the object motion [19] for videos captured

by mobile cameras. For enhancing the discriminating

power of image features, Brox et al. [4] investigated

combination of color, texture, and motion in the ac-

tive contour framework.

This paper proposes a novel and effective feature

called tensor-SIFT for contour tracking application.

SIFT features [28, 29] have proven to be very effec-

tive in describing local image characteristics. How-

ever, the high dimensionality of SIFT features limits

its application in tracking fields. Hence, we introduce

a tensor decomposition method for its dimensional-

ity reduction. The resulting low dimensional feature,

which is applicable to both color and gray-level im-

ages, is very distinctive and insensitive to illumina-

tion change and noise. The idea is that we regard

SIFT features as a tensor (SIFT-As-Tensor), and

thus tensor decomposition [23] can be applied which

captures multi-factor (i.e.,two-dimensional spatial lay-

out and phase histogram) relationships inherently

present in the image data [53, 54]. In contrast, the

methods of vectorizing SIFT features (SIFT-As-Vector)

can only capture one-factor of the histogram infor-

mation while losing the two-dimensional spatial lay-

out in the data.

Based on the functional formulation and Tensor-

SIFT described previously, we finally develop an in-

tegrated contour tracking algorithm. This algorithm

combines multiple techniques intended for effective

contour evolution, including the simplex algorithm

[30], and the level set algorithm, and the re-initialization

algorithm of fast marching [36, 49]. Particularly, we

introduce an inter-frame initialization scheme. This

scheme exploits the mean shift iteration to initial-

ize the current frame by the tracking result at the

previous frame. It can provide a more accurate ini-

tial contour and is helpful in avoiding possible lo-

cal minimum in the functional. We also introduce a

stopping criterion for terminating the PDE iteration.

The criterion fits the most recent EMD values with

straight lines, and terminates the iteration when the

line slope does not decrease any more. The itera-

tion is also halted if the area variation between two

consecutive frames is large, considering the spatio-

temporal continuity.

The remainder of the paper is organized as fol-

lows. Section 2 begins with an overview of the lit-

erature related to the paper. Section 3 explores the

novel feature of Tensor-SIFT. Section 4 formulates

the region functional and proposes a two-phase method

for its optimization. Section 5 introduces an inte-

grated contour tracking algorithm and analyzes its

computational cost. Section 6 presents the exper-

iments and the corresponding discussions. Finally,

the concluding remarks are given in section 7.

2 Related Work

This section reviews the studies that are related to

this paper, including sudies on the EMD, on SIFT

features, and on tensor decomposition.

2.1 Transportation Problem and EMD

The transportation problem, also known as the Monge-

Kantorivich problem, can be traced back to the 18th

century [33]; it was reformulated and extended by

Kantorovich [21] as a minimal distance problem (called

Wasserstein distance) between two probability mea-

sures. Over the past years, it has been widely inves-

tigated and has found a variety of applications in

many fields [45]. The discrete transportation prob-

lem is well studied in linear programming and can

be solved by the simplex algorithm [30].

One of the first papers published is Peleg et al.

[43], which introduced the transportation problem

into image processing. The authors measured the

distance between two gray-level images for image

matching. Haker et al. [17] computed image reg-

istration and warping maps based on the Monge-

Kantorovich theory of optimal mass transport and
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developed an efficient PDE for solving the Wasser-

stein distance. Rubner et al. [48] proposed a cross-bin

probability measure, EMD, for distributions match-

ing in content-based image retrieval. They showed

the distinct advantages of the EMD over the other

commonly used point-wise probability measures [48].

As EMD computation in high dimensional cases is

computationally expensive, recent research efforts are

devoted to presenting new EMD variants and/or to

developing fast algorithms for EMD computation [26,

41, 42]. In the one-dimensional case the closed-form

solution of EMD (Wasserstein distance) is used in

a region-based contour model for image segmenta-

tion [35]. Application of EMD to object tracking

was studied by Zhao et al. [58]. In this study, by de-

scribing the object shapes with ellipses, they adopted

EMD to compare the reference and candidate mod-

els, and proposed an efficient gradient descent method

called differential EMD (DEMD) to estimate the

translation of elliptical objects.

Our work is similar to that of Ni et al. [35] in the

sense that both nonparametric density and region-

based Wasserstein distance are used in the active

contour framework. The main difference is that in a

multiple-dimensional case such as ours, the closed-

form solution of the EMD does not exist, and there-

fore the method of Ni et al. [35] is not applicable to

our problem. Our work is also motivated by [58]; the

primary distinction is that our focus is on how to fol-

low the complex contour shape and non-rigid defor-

mation rather than the simple elliptical shapes with

only the motion of translation. This naturally leads

to a different paradigm–functional formulation and

its optimization through PDE. Establishing region

functionals by probability similarity or distance mea-

sures has also been investigated by previous studies

[16, 20, 57]. However, our work differs from these in

the probability measures adopted: we argue that for

contour tracking problems EMD is more robust than

other commonly used point-wise probability mea-

sures.

2.2 SIFT Features

The SIFT algorithm includes two main steps: key-

point detection and keypoint description [28, 29].

The first step consists of local extrema (called key-

points) detection, followed by keypoints localization

and the dominant orientation determination. In this

way, generally sparse keypoints are identified. In the

second step, each keypoint is represented by phase

histograms of pixel gradient magnitudes (hereafter

called SIFT feature) in the image patch centered at

the keypoint. The SIFT algorithm has demonstrated

successful applications in object recognition [28, 34],

image classification [11], image retrieval [56], and so

on.

On the other hand, dense SIFT features com-

puted at regular grid points, without the preceding

step of keypoint detection, have also shown promis-

ing performance in scene category recognition [24,

25] or in aligning images of complex scenes [27].

Because SIFT features are of high dimensionality,

it is desirable to get a low-dimensional description

for both computational efficiency and feasible prob-

abilistic modeling (e.g., histogram). In the bag-of-

feature literature, the common practice is to reduce

the dimensionality of SIFT feature by creating code-

words through clustering algorithms followed by in-

dex histogram [24, 25]. Dimensionality reduction of

SIFT features by PCA is also a natural choice [27].

Rather than using the SIFT descriptor proposed by

Lowe [29], Yan and Sukthankar [56] described the

characteristics of an image patch by concatenating

into a vector the horizontal and vertical gradients of

each image pixel in this patch and then used PCA

for dimensionality reduction.

However, a SIFT feature is actually a 4×4×8 his-

togram array of gradient magnitudes; its locally two-

dimensional spatial information inherently present

is lost when packed as a 128-element vector [11,

25, 27–29, 32, 34]. This analysis motivates us to

exploit tensor decomposition for dimensionality re-

duction of SIFT features, which distinguishes our

work from the previous ones. As tensor decompo-
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sition method can capture multi-factor relationships

inherently present in data, the proposed low- dimen-

sional feature, Tensor-SIFT, is more powerful in cap-

turing both spatial layout and histogram informa-

tion in describing the patch characteristics.

2.3 Tensor Decomposition

A tensor is a high-dimensional array, and can be

considered a generalization of a vector (first-order

tensor) and a matrix (second-order tensor). Tensor

decomposition is one of the topics in multi-linear al-

gebra, which reveals that a higher-order tensor is

formed by a confluence of multiple factors, and its

decomposition consists in exploring these multiple

factors inherently present in data. Vasilescu and Ter-

zopoulos [52] proposed a method of TensorFaces for

face recognition involving multiple factors, such as

facial geometry, expression, pose, and illumination.

They used a technique of N-modes SVD, a multi-

linear extension to the classical matrix SVD, achiev-

ing significantly better recognition rates over the clas-

sical method of eigenfaces [51], which is dependent

on linear PCA. Based on N-modes SVD, they also

demonstrated effective dimensionality reduction in

facial image ensembles [53]. Wang and Ahuja [54]

presented a dimensionality reduction approach based

on tensor-decomposition for effectively capturing the

spatial and temporal redundancies. Their method

achieved the most compact data representations among

the state of the art [54].

3 Tensor-SIFT: Dimensionality Reduction of

SIFT Features by Tensor Decomposition

In this section, we first interpret the SIFT feature

from two different views: SIFT-As-Tensor and SIFT-

As-Vector. We then describe the method of tensor-

decomposition for dimensionality reduction of SIFT

feature, achieving our novel feature of Tensor-SIFT.

3.1 SIFT Feature as a Multi-Dimensional Array

The computation of SIFT is described briefly as fol-

lows [refer to Lowe [29] for details]. First, for the

interest point, we determine an 8×8 sampling image

window centered at this point and then compute the

gradient magnitude weighted by a Gaussian function

and phase of every pixel. Next, the sampling window

is regularly divided into 4×4 sub-windows; in each

subwindow [0, 2π] is uniformly partitioned into eight

intervals, and the corresponding phase histogram is

computed. To avoid boundary effects, trilinear inter-

polation is exploited to distribute the value of each

gradient sample into the neighboring phase bins.

Fig. 1(a) shows an 8×8 image window. Fig. 1(b)

presents the corresponding phase histograms com-

puted in this window, where the arrow direction is

the histogram bin indicator, and its length signifies

the histogram bin value. Traditionally, this 4x4 his-

togram array is packed into a vector of 128 as shown

in Fig. 1(c). As described previously, one SIFT fea-

ture describes the local region characteristics associ-

ated with the center pixel, including both the sub-

windows’ spatial layout and their phase histograms.

Vectorization of SIFT feature (SIFT-As-Vector) re-

sults in the loss of spatial layout inherently present in

data. Clearly, the data of 4×4×8 array are produced

by the confluence of multiple factors, i.e., 2D spatial

layout and histogram. Thus, the best way is to see

the data “as is”. This naturally leads to our view

of “SIFT-As-Tensor”: one SIFT feature is a third-

order tensor, and a set of SIFT features is thus a

fourth-order tensor.

3.2 Dimensionality Reduction by Tensor

Decomposition

AnNth-order orN -way tensorX is anN -dimensional

array. Mathematically, it is an element of the direct

product of N vector spaces, i.e., X ∈ R
I1×I2×···×IN ,

where In, n = 1, . . . , N , denotes the size of dimen-

sion n. A tensor is rank-one if it can be written as the

outer product of N vectors. For easy mathematical
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(a)

Bin1 [0,π/4)

Bin2 [π/4,π/2)

Bin3 [π/2,3π/4)

Bin8 [7π/4,2π)

(b)

Bin1 Bin2 Bin8 Bin1 Bin2 Bin8 Bin1 Bin2 Bin8

(c)

Fig. 1 Illustration of one SIFT feature as a multi-dimensional array vs as a vector. An 8 by 8 sampling image window

(a) is regularly divided into 4 by 4 sub-windows. For each sub-window an 8-bin phase histogram of gradient magnitudes

is computed, producing a three-dimensional, 4 by 4 by 8, array (b), where the arrow direction is the histogram bin

indicator, and its length signifies the histogram bin value. Traditionally, this three-dimensional array is vectorized into a

one-dimensional vector of 128 (c), resulting in the loss of two-dimensional spatial layout inherently present in the data.

manipulation a tensor is often flattened or unfolded

into a matrix. The mode-n matrix of a N -way ten-

sor is a In by (I1 · · · In−1In+1 · · · IN ) matrix X(n),

where the tensor element indexed by (i1, i2, . . . , iN )

is mapped to the matrix element indexed by (in, j)

where

j = 1 +
N
∑

k=1
k 6=n

(ik − 1)
k−1
∏

m=1
m 6=n

Im

The idea of CANDECOMP/PARAFAC (CP) de-

composition [13] is to approximate a tensor with a

sum of component rank-one tensors. In our case,

a set of SIFT features F is a fourth-order tensor,

F ∈ R
I1×I2×I3×I4 , where I1 is the number of SIFT

features, I2 = 4, I3 = 4 denote the numbers of hori-

zontal and vertical sub-windows in the sampling im-

age window, respectively, and I4 = 8 denotes the

histogram bin number. Its CP decomposition can be

described by

argmin
F̂

‖F − F̂‖

F̂ =

K
∑

k=1

fk ◦ rk ◦ sk ◦ tk (1)

where ‖ · ‖ denotes the tensor norm, i.e., the sum of

the square of each element in the tensor, ◦ denotes

outer product, fk ∈ R
I1 , rk ∈ R

I2 , sk ∈ R
I3 , tk ∈

R
I4 , and K is the number of component rank-one

tensors.

Denoting F = [f1 . . . fK ] and likewise for R, S

and T, the minimization problem becomes how to

seek the above four matrices that satisfy (1). We use

alternating least square (ALS) algorithm [23] for its

solution; i.e., we alternatively fix three of the four

matrices, solving for the remaining one. We repeat

this procedure until the error is less than a threshold

or the maximum number of iterations is reached. The

problem is reduced to a least square problem when

fixing all but one matrix. For instance, let R, S, and

T be fixed. The minimization problem is reduced to

the least square problem in matrix form:

argmin
F̂

‖F(1) − F̂(R⊙ S⊙T)T ‖F (2)

where F(1) is the mode-n matrix of the tensor F,

‖ · ‖F stands for the matrix Frobenius norm, and

⊙ denotes the Khatri-Rao product of two matrices.

The Khatri-Rao product is defined as the column-

wise Kronecker product of two matrices, e.g., R⊙S
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is a matrix of I2I3 by K:

R⊙ S = [r1 ⊗ s1 . . . rK ⊗ sK ]

where⊗ denotes the kronecker product. The solution

to (2) can be given conveniently by the formula

F = F(1)
[

(R⊙ S⊙T)T
]†

(3)

where † denotes the Moore-Penrose pseudo-inverse.

Given a reference image, we compute the SIFT

feature for every image pixel and arrange all SIFT

features into a four-dimensional array, or a four-way

tensor, F ∈ R
I1×I2×I3×I4 . After performing its CP

decomposition by the ALS algorithm described pre-

viously, the I1 by K matrix F can be considered

the reference Tensor-SIFT of reduced dimensional-

ity, and I2 by K matrix R, I3 by K matrix S as

well as I4 by K matrix R can be regarded as the

tensor “basis matrices”. When a new image is avail-

able, we compute the dense SIFT features for every

pixel; each SIFT feature is a 1×4×4×8 tensor that

can be approximated by projection (3). The resulting

1 by K vector is the corresponding Tensor-SIFT of

reduced dimensionality. Fig. 2 shows an example of

the tensor decomposition (K = 3), where Fig. 2(a)

shows a reference image (left), the scatter map of

its tensor-SIFT (middle), and the tensor-SIFT im-

age (right). Fig 2(b) shows four images (top row)

and the corresponding tensor-SIFT images (bottom

row). Note that the values of the Tensor-SIFT are

scaled to [0, 255] for each dimension.

4 Region Functional Formulation and Its

Optimization

This section begins with the formulation of the re-

gion functional based on EMD (section 4.1) and then

introduces a two-phase method for the functional op-

timization: the first-phase for solving EMD by the

simplex algorithm (section 4.2) and the second for

PDE derivation by shape derivative (section 4.3).

4.1 Formulation of the Region Functional

Following Rubner et al. [48], the reference and can-

didate models are denoted by Signatatures (h∗
u, pu)

for u = 1, · · · , U and (hv, qv) for v = 1, · · · , V , re-

spectively, where h∗
u (hv) and pu (qv) denote the

uth subspace center and the corresponding distri-

bution in the reference (candidate) object feature

space. The distance between the reference and can-

didate models may be interpreted as the classical

transportation problem that can be solved by the

simplex algorithm.

There are many methods for distribution model-

ing, either parametric or non-parametric. In this pa-

per we use the non-parametric kernel method [8] be-

cause it does not assume any prior distribution of the

data and considers the (weak) spatial information.

Suppose that the feature space of the reference ob-

ject is divided into U subspaces (or histogram bins),

and the object is described by a complex image re-

gion Ω∗ with a boundary Γ∗. Suppose that the object

center is at the coordinate origin. Let z∗i = [x∗
i y∗i ]

T

be a point in the region Ω∗ with feature vector I(z∗i ),

the reference distribution pu for u = 1, · · · , U of the

object can be represented by

pu =
1

∑

z∗
i
∈Ω∗

w(z∗i )

∑

z∗

i
∈Ω∗

w(z∗i )δu(I(z
∗
i )) (4)

where w(·) is a kernel function, and δu(I(z
∗
i )) denotes

the Kronecker delta function that equals 1 if I(z∗i )

belongs to the uth subspace, and otherwise equals

0. Note that the kernel function weights the point’s

contribution: one point that is closer to the object

center makes more contribution than one that is far

away.

In the course of tracking the object shape may

undergo non-rigid deformation. Let Ω denote the

candidate region of the object with boundary Γ, its

center zc = (xc, yc) may be computed as

xc =
1

|Ω|

∑

zi∈Ω

xi

yc =
1

|Ω|

∑

zi∈Ω

yi
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Fig. 2 Example of the Tensor-SIFT (K = 3). (a) The dense SIFT features are computed in the reference image (left),

and by the ALS algorithm the three-dimensional Tensor-SIFT are produced; the corresponding scatter map (middle)

and tensor-SIFT image (right) are shown. (b) Given four new images (top row), the corresponding Tensor-SIFTs are

computed and the tensor-SIFT images are shown (bottom row). Note that the values of the Tensor-SIFTs are scaled to

[0, 255] for each dimension.

where |Ω| denotes the number of points in the region

Ω. Then the candidate distribution qv(Ω) for v =

1, · · · , V can be described by

qv(Ω) =
1

∑

zi∈Ω

w(zi − zc)

∑

zi∈Ω

w(zi−zc)δv(I(zi)) (5)

Note that the symbols in the above equation have

similar meanings to their counterparts in (4), and V

indicates that the candidate object is divided into V

subspaces.

The region functional that measures the distance

(dissimilarity) between the reference and candidate

models is defined as follows:

argmin
Ω

f(Ω) (6)

f(Ω) = min
ruv

U
∑

u=1

V
∑

v=1

duvruv(Ω) (7)

subject to
∑U

u=1
ruv(Ω) = qv(Ω), v = 1, · · · , V

∑V

v=1
ruv(Ω) = pu, u = 1, · · · , U

∑U

u=1

V
∑

v=1

ruv(Ω) = min(
∑U

u=1
pu,

∑V

v=1
(qu(Ω)))

ruv ≥ 0, u = 1, · · · , U, v = 1, · · · , V

Note that in our problem, U = V , and the kernel

densities are normalized so that the last constraint

equation is redundant; 2) U=V. In the above equa-

tions the ground distance duv between the clusters

u, v may be interpreted as the cost in transporting
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the unit goods from the provider u to the consumer

v. Thus, the tracking problem can be formulated as

how to seek a candidate region Ω with a complex

shape Γ, so that its distribution {qv(Ω), v = 1, · · · , V }

has the smallest distance with the reference distri-

bution {pu, u = 1, · · · , U}.

Optimizing the region functional (6) is nontrivial.

We propose a two-phase method for the functional

formulation. In the first phase, let the candidate con-

tour be fixed. EMD is computed as the best solution

to the transportation problem using the simplex al-

gorithm. Next, using the shape derivative theory, we

make a perturbation analysis of the contour around

the best solution, thus deriving the corresponding

PDE that governs the candidate contour evolution.

Note that a similar two-phase method is used for

functional minimization in [6, Sec. 2.2].

4.2 Simplex Algorithm for Solving EMD

Let the image region Ω be fixed. The problem de-

scribed by (7) becomes the classical transportation

problem, which can be solved by the simplex algo-

rithm. Equation (7) can be expressed in matrix form

as follows (the subscript Ω is omitted because Ω is

fixed):

min
x

f = cTx

subject to Ax = b

x ≥ 0 (8)

Here c, x are both vectors of UV , b is a vector of

U + V + 1, and A is a matrix of U + V + 1 by UV ;

they have the following forms, respectively:

c =
[

d11 d12 · · · d1V · · · dU1 dU2 · · · dUV

]

x =
[

r11 r12 · · · r1V · · · rU1 rU2 · · · rUV

]

b =
[

q1 q2 · · · qV · · · p1 p2 · · · pU 1
]

A =































e11 0 · · · 0 · · · eU1 0 · · · 0
...

0 0 · · · e1V · · · 0 0 · · · eUV

e11 e12 · · · e1V · · · 0 0 · · · 0
...

0 0 · · · 0 · · · eU1 eU2 · · · eUV

e11 e12 · · · e1V · · · eU1 eU2 · · · eUV































In the matrixA all the elements eij = 1, i = 1, · · · , U ,

j = 1, · · · , V .

Let x = [xB xN] be an initial feasible solution,

where xB and xN denote the vectors of basic vari-

ables and non-basic variables, respectively. Accord-

ingly, the vector c can be written as c = [cB cN].

In a similar manner, the matrix A can be written as

A = [B N], where B, comprising columns in A that

correspond to the basic variables, is a basis of the

Euclidean space Rm(m = U + V + 1), and N con-

sists of columns in A corresponding to the non-basic

variables.

Starting from the initial feasible solution, the sim-

plex algorithm proceeds through an iteration pro-

cess. This process can be explained in tableau form.

Table 1 illustrates the initial simplex tableau, where

0 and I denote the zero vector and unitary vector,

respectively. Each iteration seeks an improved feasi-

ble solution that decreases the value of the function

f . Consider one iteration. The most negative com-

ponent of rT
N

= cT
B
B−1N − cT

N
≤ 0 is determined,

and the corresponding column in N, denoted by Nj ,

is selected as the vector to enter the basis matrix B.

Next, y = B−1Nj and b̃ = B−1b are computed and

then the pivoting row index i is decided for which

i = max
k

{yk/b̃k, yk > 0}, where yk and b̃k are com-

ponents of y and b̃, respectively. After the pivot ele-

ment is determined, we can perform Gaussian elimi-

nation to update B−1. The column vector in B that
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Table 1 The simplex tableau

f xT
B

xT
N

xB 0 I B−1N B−1b

f 1 −cT
B

cT
B
B−1N− cT

N
cT
B
B−1b

corresponds to the ith basic variable of xB is selected

to leave the basis matrix B.

Once rT
N

> 0 is identified during the iterations,

the best solution to the transportation problem is

obtained, and the iteration should be terminated.

The EMD between the candidate and reference mod-

els is given by

f(Ω) = cTBB
−1b (9)

=

V
∑

v=1

lvqv(Ω) +

U
∑

u=1

hupu + c

where

lv =
∑U+V +1

i=1
cb(i)B

−1(i, v), v = 1, · · · , V

hu =
∑U+V +1

i=1
cb(i)B

−1(i, u+ V ), u = 1, · · · , U

c =
∑U+V +1

i=1
cb(i)B

−1(i, U + V + 1)

Here cb(i) denotes the ith component in the vector,

and B−1(i, v) the entry of row i and column v in the

matrix.

The best solution always exists for the balanced

transportation problem [30]. Note that in such case,

the matrix A is not full-rank (U + V − 1 in our

case). We introduce artificial variables and obtain

the initial feasible solution according to the method

described in Luenberger and Ye [30, pp. 50–54].

4.3 PDE Derivation with Theory of Shape

Derivative

After the first phase is completed, we can perform a

perturbation analysis around the best solution to the

transportation problem. That is, let Ω be a variable

and solve the functional (9). The second and third

terms on the right-hand side of (9) are irrelevant

to Ω and therefore can be be discarded. Hence, the

functional to be optimized becomes

f(Ω) =

V
∑

v=1

lvqv(Ω) (10)

Deriving the PDE associated with this functional is

not straightforward. Here the theory of shape deriva-

tive is used.

4.3.1 Shape Derivative

Given an initial domain (region) Ω, the set of all the

possible deformations may not be a vector space.

The theory of shape derivative introduces a family

of deformations (transformations) {Ωτ , τ > 0} such

that the perturbation of Ω is possible with respect

to τ .

Suppose that the perturbation of a point z ∈ Ω

is governed by the differential equation

dz(τ)

dt
= V(z(τ)), τ > 0, z(0) = z (11)

where V is a vector field. We can define the trans-

formations of a point and the region as follows:

T (τ, z) , z(τ), τ > 0, z(0) = z (12)

Ωτ , Tτ (Ω) = {T (τ, z), z ∈ Ω}

The region functional J(Ω) =
∫

Ω
φ(Ω) is said to

have a Eulerian derivative or a shape derivative, at Ω

in the direction of the vector field V if the following

limit exists and is finite

dJ(Ω;V) = lim
τ→0

J(Ωτ )− J(Ω)

τ
(13)

The functional J(Ω) is shape differentiable at Ω if

the Eulerian derivative dJ(Ω;V) exists for all direc-

tions V and the mapping V → J(Ω;V) is linear and

continuous.

The material derivative of a function φ(Ω) at Ω

in the direction of the vector field V is defined as

φ̇(Ω;V) = lim
τ→0

φ(Ωτ ) ◦ T (τ, z)− φ(Ω)

τ
(14)

And the shape derivative of a function φ(Ω) at Ω in

the direction of the vector field V is defined as

φ′(Ω;V) = lim
τ→0

φ(Ωτ ) ◦ T (0, z)− φ(Ω)

τ
(15)
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The following theorem establishes the relation

between the Eulerian derivative and the shape deriva-

tives:

Theorem 1 (Theorem on the Eulerian and shape

derivatives) If the material and shape derivatives of

a function φ(Ω) exist, then the functional J(Ω) =
∫

Ω
φ(Ω) is shape differentiable and the following equa-

tion holds

dJ(Ω;V) =

∫

Ω

φ′(Ω;V)dz −

∫

Γ

φ(Ω)〈V,N〉ds (16)

where 〈V,N〉 denotes the inner product between V

and N.

For the complete and strict definitions of and the-

ories about shape derivative, refer to [50] and [12]. A

brief yet insightful introduction about shape deriva-

tive is given in Aubert et al. [1].

4.3.2 Derivation of the PDE through Shape

Derivative

Our derivation of the PDE to optimize the region

functional builds upon theorem 1. First we write the

candidate distribution in a continuous form:

qv(Ω) =
1

∫

Ωw(z − zc)dz

∫

Ω

w(z − zc)δv(I(z))dz

(17)

where the Gaussian kernel w(z − zc) = exp(−‖z −

zc‖
2/(2σ2)) is adopted, and the object center zc =

[xc yc]
T takes the form







xc =
1∫

Ω
dz

∫

Ω
xdz

yc =
1∫

Ω
dz

∫

Ω ydz

To facilitate derivation, we write xc, yc in the form

xc =
G1(Ω)

G0(Ω)
, G1(Ω) =

∫

Ω

xdz, G0(Ω) =

∫

Ω

dz

yc =
G2(Ω)

G0(Ω)
, G2(Ω) =

∫

Ω

ydz (18)

We also re-express the candidate distribution as fol-

lows:

qv(Ω) =
K1(Ω)

K2(Ω)

K1(Ω) =

∫

Ω

L1(Ω)dz, L1(Ω) = w(z − zc)δv(I(z))

K2(Ω) =

∫

Ω

L2(Ω))dz, L2(Ω) = w(z − zc)) (19)

The Eulerian derivative of the region functional

(10) is given by the formula

df(Ω;V) =

V
∑

v=1

lvdqv(Ω;V) (20)

=

V
∑

v=1

lv

(

∂qv
∂K1

dK1(Ω;V) +
∂qv
∂K2

dK2(Ω;V)

)

where ∂qv/∂K1 is the partial derivative of qv with

respect to K1 and ∂qv/∂K2 has a similar meaning.

Now consider the dK1(Ω;V) in (20). From theo-

rem 1 we have

dK1(Ω;V) =

∫

Ω

L′
1(Ω;V)dz −

∫

Γ

L1(Ω)〈V,N〉ds

(21)

From (18) and (19), L1 is a function of G0, G1 and

G2 which are all functionals of Ω. Hence, using the

chain rule of the shape derivative we get

L′
1(Ω;V) =

∂L1

∂G0
dG0(Ω;V) +

∂L1

∂G1
dG1(Ω;V)

+
∂L1

∂G2
dG2(Ω;V) (22)

The shape derivatives of the integrands in G0, G1,

and G0 are all zero because they are independent of

Ω. Hence, application of theorem 1 to G0, G1, and

G0, respectively, leads to the following equations:

dG0(Ω;V) = −

∫

Γ

〈V,N〉ds

dG1(Ω;V) = −

∫

Γ

x〈V,N〉ds

dG2(Ω;V) = −

∫

Γ

y〈V,N〉ds (23)
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Note that the partial derivatives of L1 with respect

to G0, G1 and G2 are in the following forms:

∂L1

∂G0
= −

w′(z− zc)

σ2G0
((x− xc)xc + (y − yc)yc)δv(I(z))

∂L1

∂G1
=

w′(z− zc)

σ2G0
(x− xc)δv(I(z))

∂L1

∂G2
=

w′(z− zc)

σ2G0
(y − yc)δv(I(z)) (24)

Combining (21), (22), (23), and (24) and after some

manipulation, we obtain

dK1(Ω;V) =
∫

Γ

(

−
1

σ2G0

∫

Ω

(z̃− zc)
T (z− zc)w

′(z̃− zc)

δv(I(z̃))dz̃ − w(z − zc)δv(I(z))
)

〈V,N〉ds (25)

where z̃ = [x̃ ỹ]T is a point in the region Ω, and

z = [x y]T is a point on the boundary Γ.

Likewise, we can derive

dK2(Ω;V) =
∫

Γ

(

−
1

σ2G0

∫

Ω

(z̃− zc)
T (z− zc)w

′(z̃− zc)dz̃

− w(z − zc)
)

〈V,N〉ds (26)

Note that ∂qv/∂K1 = 1/K2and∂qv/∂K2 = qv/K2.

Substituting (25) and (26) into (20), we have the

complete expression of the Eulerian derivative of the

region functional f(Ω):

df(Ω;V) =

∫

Γ

F 〈V,N〉ds (27)

where F is of the following form

F =−
1

σ2G0K2

∫

Ω

(z̃− zc)
T (z − zc)w

′(z̃− zc)

×

( V
∑

v=1

lv(δv(I(z̃))− qv)

)

dz̃

−
1

K2
w(z− zc)

( V
∑

v=1

lv(δv(I(z)) − qv)

)

(28)

From the above shape derivatives, we obtain the

PDE associated with the region functional (10) gov-

erning the contour evolution

∂Γ

∂τ
= FN (29)

The preceding PDE is obtained when the nor-

mal kernel is employed. If other kernels are used, we

can derive the corresponding PDEs in a similar man-

ner. Table 2 lists F with respect to the normal ker-

nel, Epanechnikov kernel and uniform kernel, respec-

tively. The first term in F , when the non-uniform

kernels are used, is due to the spatial weight intro-

duced, reflecting the combined effect of one point z

on the contour and the points within the region. Our

experiments show that the normal kernel performs

well and thus it is used in this paper. The parame-

ter σ is selected as half of the radius of the minimal

enclosing circle of the contour.

Similar to Aubert et al. [1], we also impose a

smooth constraint on the contour by adding a second

term α
∫

Γ
ds in Eq. (6), where α is a constant. The

minimization of this curve length term gives rise to a

curvature term in the PDE [5]. Thus, our final PDE

has the following form [1]:

∂Γ

∂τ
= (F + ακ)N (30)

where κ is the curvature of the curve Γ.

4.3.3 Solution to PDE through the Level Set Method

The idea of the level set method is that at any time

the contour Γ is implicitly represented by a zero level

set of a higher-dimensional function φ, i.e.,

Γ(z, τ) = {z : φ(z, τ) = 0}, given Γ(z, 0)

We define φ(z, τ) < 0 in the interior region and

φ(z, τ) > 0 in the exterior region. Taking the par-

tial derivative of φ with respect to τ and using the

chain rule, we have

∂φ

∂τ
+∇φ ·

∂Γ

∂τ
= 0 (31)

where ∇φ = [φx φy]
T is the gradient of φ with re-

spect to z. Note that N = −∇φ/‖∇φ‖ and κ =

−div (∇φ/‖∇φ‖), where div denotes the divergence.

Substituting (30) into (31), we have the following

PDE:

φτ =

(

F + α△

(

∇φ

‖∇φ‖

))

‖∇φ‖ (32)
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Table 2 The function F with respect to various kernel

Kernel The function F

Normal kernel

wN (z̃) = exp(− ‖z̃−zc‖
2

2σ2 ) z̃ ∈ Ω

− 1

σ2G0K2

∫

Ω
(z̃− zc)T (z− zc)w′

N (z̃− zc)
(

∑V
v=1

lv(δv(I(z̃))− qv)
)

dz̃

− 1

K2

wN (z− zc)
(

∑V
v=1

lv(δv(I(z)) − qv)
)

Epanechnikov Kernel

wE(z̃) =

{

1− ‖ z̃−zc

h
‖2 z̃ ∈ Ω, ‖ z̃−zc

h
‖ ≤ 1

0 otherwise

− 2

h2G0K2

∫

Ω
(z̃− zc)T (z− zc)

(

∑V
v=1

lv(δv(I(z̃))− qv)
)

dz̃

− 1

K2

wE(z − zc)
(

∑V
v=1

lv(δv(I(z)) − qv)
)

Uniform Kernel

wU =

{

1 z̃ ∈ Ω

0 otherwise

−
1

G0

( V
∑

v=1

lv(δv(I(z)) − qv)

)

Applying to (32) the first-order forward time dif-

ference scheme, the upwind scheme for the first-order

discretization of F , and the first and second-order

central difference schemes for the curvature κ, we

have the following discrete equation:

φτ+1
i,j = φτ

i,j+ △τ
(

max(F τ
i,j , 0)

2∇τ+

+min(F τ
i,j , 0)

2∇τ− + ακτ
i,j

)

(33)

where φτ
i,j denotes the function value on the grid

point (i, j) at iteration step τ , △τ denotes the dis-

crete time interval, and ∇τ+, ∇τ− and κτ
i,j take the

following forms, respectively:

∇τ+ =
(

max(D−x
i,j , 0)

2 +min(D+x
i,j , 0)

2

+max(D−y
i,j , 0)

2 +min(D+y
i,j , 0)

2
)1/2

∇τ+ =
(

max(D+x
i,j , 0)

2 +min(D−x
i,j , 0)

2

+max(D+y
i,j , 0)

2 +min(D−y
i,j , 0)

2
)1/2

κτ
i,j =

(

D+x+x
i,j (D0y

i,j)
2 − 2D0x

i,jD
0y
i,jD

xy
i,j

+D+y+y
i,j (D0x

i,j)
2
)/(

(D0x
i,j)

2 + (D0y
i,j)

2
)

Here a short-hand notation is used where the oper-

ator D−xφτ
i,j is written as D−x

i,j , etc. The operators

involved are defined as follows:

D−x
i,j = φτ

i,j − φτ
i−1,j

D+x
i,j = φτ

i+1,j − φτ
i,j

D0x
i,j = (φτ

i+1,j − φτ
i−1,j)/2

D+x+x
i,j = (φτ

i+1,j − 2φτ
i,j + φτ

i−1,j)/2

D+x+y
i,j = (φτ

i+1,j+1 − φτ
i+1,j−1 − φτ

i−1,j+1

+ φτ
i−1,j−1)/2

The operators D−y
i,j , D

+y
i,j , D

0y
i,j and D+y+y

i,j have sim-

ilar forms. At each iteration step τ , numerical sta-

bility can be guaranteed by the following CFL con-

dition [36]

△τ max
i,j

{

F τ
i,j

abs(D+x
i,j ) + abs(D+y

i,j )

((D0x
i,j)

2 + (D0y
i,j)

2)1/2
+ 4α

}

< 1

(34)

The implicit function φ can be arbitrary and is

usually chosen as a signed distance function φ(z, τ) =

d(z, τ). As suggested [36, ch.7], in the level set algo-

rithm, the re-initialization technique is required pe-

riodically so that φ(z, τ) still remains a valid signed

distance function during the evolution process. We

use the fast marching method proposed by Sethian

[49, ch.8] for re-initialization and the re-initialization

frequency of 50 suffices for all of our experiments.

5 Integrated Contour Tracking Algorithm

This section describes the integrated tracking algo-

rithm (section 5.1), followed by the discussion of the

implementation detail (section 5.2) and the compu-

tational cost analysis (section 5.3).

5.1 Integrated Tracking Algorithm

The level set algorithm is computationally expen-

sive. In tracking applications, because we are only

concerned with the object contour, i.e., the zero level
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set, we update in each iteration only the values of

the level set function in a narrow band in the neigh-

boring region around the current zero level set. Re-

initialization of the level set function using the fast

marching algorithm is also performed within the nar-

row band.

In contour tracking algorithms, it is not straight-

forward to exploit temporal continuity. Rathi et al.

[46] proposed a method in the particle filter frame-

work. However, the high computational cost of the

particle filter plus that of the contour evolution us-

ing the level set algorithm may be a very heavy load.

We introduce a scheme that uses the mean shift al-

gorithm [8] for exploiting temporal continuity, which

provides inter-frame contour initialization. In frame

t, before PDE iteration starts, we first use an ellipse

fitting method [14] to fit the contour Ω∗(t− 1), i.e.,

the tracking result in frame t− 1. Next, we perform

the mean shift tracking algorithm until its conver-

gence and then enlarge the major and minor radii of

the resulting ellipse by twenty percent, respectively.

Let (x0, y0, a, b, θ) be the parameters of the resulting

ellipse, where (x0, y0) denotes the ellipse center, a, b

denote the radius along x− and y− axes, and θ in-

dicates its orientation. We construct the initial level

set function through the following formula

φτ=0
i,j (t) =

((i − x0) cos θ + (j − y0) sin θ)
2

a2

+
((i − x0) sin θ − (j − y0) cos θ)

2

b2
− 1

This scheme gives a kind of contour measurement,

taking advantage of temporal continuity and thus

providing a more accurate initial contour that helps

avoid possible local minimum in gradient descent it-

eration.

There is no general stopping criterion in the level

set algorithm and the fixed number of iterations is

often used. As EMD is robust in measuring the dis-

tance between the target and candidate models, we

introduce a stopping criterion that ends the iteration

if the EMD does not decrease. Practically, we keep

the latest 20 values of EMD to which a straight line

is fitted by the least square method, and terminate

the iteration process if the line slope is larger than

or equal to zero. Due to temporal continuity, the

object size change may not be large. Thus, we also

terminate the iteration if the area difference between

Ω∗(t− 1) an Ωτ (t) is larger than ten percent.

Given the primary considerations above, we now

describe the complete tracking algorithm in Algo-

rithm 1.

5.2 Implementation Detail

This section discusses the implementation detail in

the tracking algorithm.

Selection of K in tensor decomposition The object

size is usually small in a tracking task; thus, we

select 8×8 sampling window in the SIFT feature

computation. In the tensor decomposition problem,

what K best fits the original tensor is the prob-

lem of the best rank-k approximation that is un-

der investigation [23], which is beyond the scope of

this paper. Intuitively, larger K may better explain

the original tensor, which, however, also means the

larger dimensionality of tensor-SIFT. In this paper

we demonstrate conceptually our idea by simply set-

ting K = 3.

Parameters setting in inter-frame initialization Inter-

frame initialization mainly concerns the mean shift

iteration. Following [9], the histogram of 16×16×16

bins and the maximum iteration number 10 are used

for all experiments. Note that in this case the ellipse

describing the object may not be upright, and we

use the ellipse filling algorithm for efficient histogram

computation.

Computations of Signatures and EMD In accordance

with [48], the ground distance duv is defined as

duv = 1− e−β‖h∗

u
−hv‖ with β =

∥

∥[ζ1 . . . ζK ]
∥

∥

where ζk denotes the standard deviation of compo-

nent k, learned from all reference feature vectors.

duv saturates to 1 for a large distance between two

clusters, avoiding the side effect that few large dis-

tances brings on the overall distance. The efficient
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1 Provided the reference image of the object,

compute its dense SIFT features; make tensor

decomposition using ALS algorithm in section 3.2,

achieving the reference tensor-SIFT image and the

tensor basis matrices R, S and T;

2 Produce the reference signature (h∗
u, pu) for

u = 1, · · · , U with tensor-SIFT features;

3 Initialize manually the contour in the first frame

Ω0(t = 1);

4 for t = 2, 3, . . . do

5 For the image D(t, z), compute its SIFT

features and then the corresponding

Tensor-SIFT image I(t, z) by projection

from (3);

6 Construct the initial level set function φτ=0

i,j (t)

from the tracking result Ω∗(t− 1), using a

scheme of inter-frame initialization (described

in the text);

7 τ = 0;

8 while Stoping criterion is not true do

9 Produce the candidate signature (hv , qv)

for v = 1, · · · , V within

Ωτ (t) = {(i, j)|φτ
i,j(t) < 0};

10 Calculate the EMD between the reference

and candidate signatures by the simplex

algorithm in section 4.2;

11 Extract a narrow band Snarr in the

neighboring region around the zero level set

Γτ (t) = {(i, j)|φτ
i,j(t) = 0};

12 for each grid point (i, j) ∈ Snarr do

13 Compute its force F τ
i,j ;

14 Compute its curvature κτ
i,j

15 end

16 Calculate the discrete time interval △τ

from (34);

17 for each grid point (i, j) ∈ S do

18 Update the level set function φi,j(τ)

from (33)

19 end

20 τ = τ + 1;

21 Re-initialize the level set function every 50

iterations using the fast marching

algorithm;

22 end

23 Assign tracking result Ω∗(t) = Ωτ (t).

24 end

Algorithm 1: Tracking algorithm

K-D tree-based clustering method [48] is employed

for color space partition.

Selection of α in PDE The term of the curve length

functional leads to a curvature term in PDE (30),

which makes the contour to have a tendency to shrink

and actually imposes a smoothness constraint on the

contour. The value of α reflects the effect of this

term and is empirically set to 0.0002 in all the ex-

periments.

5.3 Computational Cost Analysis

In the preceding tracking algorithm, the procedures

that dominate the computational cost are (a) com-

putations of SIFT features and Tensor-SIFT image;

(b) inter-frame initialization; and (c) functional op-

timization.

As dense SIFT features are required, we perform

the computation for each grid point in the image.

With the SIFT features at hand, the computation of

the Tensor-SIFT image is accomplished by matrix

multiplication, because as shown in (3), the Moore-

Penrose pseudo-inverse can be obtained beforehand

once the tensor basis matrices are produced. Thus,

the cost of this procedure may be written in the form

Ctens = Nsift(csift + cten dec), where Nsift is the

number of grid points, csift is the cost for computing

one SIFT feature, and cten dec = 128Kcops denotes

the cost for computing Tensor-SIFT by projection,

with cops indicting the cost of long operation (multi-

plication or division). In our experiments, the com-

putations of SIFT features and Tensor-SIFT images

are accomplished off-line. Note that these computa-

tions are well-suited for parallel implementation [55].

The inter-frame initialization mainly involves el-

lipse fitting, mean shift algorithm, and the initial

level set function construction. The ellipse fitting

procedure is principally concerned with the general-

ized symmetric eigenvalue problem [14], whose com-

putational cost is approximately multiples of n3 long

operations [40, Chap. 15], where n is the matrix size.

In this problem n = 6, thus, its computational cost is
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small compared with the other procedures and can

thus be discarded. The cost of the mean shift al-

gorithm can be represented as Nmscms, where Nms

denotes the mean shift iteration number, and cms

denotes the cost in one iteration. For details, refer

to Comaniciu et al. [9]. The cost of the initial level

set function construction may be approximated as

Ncons ≈ 8Acops, where A denotes the image area.

The procedure of functional optimization mainly

involves two parts: computing the EMD and the level

set function update. The EMD computation consists

in the simplex algorithm, whose computational com-

plexity is theoretically exponential in problem size

m. However, in cases where m is not large, the it-

eration number Nemd for the simplex algorithm to

converge from a feasible solution to the best one may

be a small multiple of m: Nemd = 2m∼3m [30, chap.

5]. Thus the cost of computing the EMD may be

written as Cemd = Nemd(cpivo + cgaus), where cpivo

denotes the cost to obtain the pivot element, and

cgaus denotes the cost for performing the Gaussian

elimination for the linear system of constraint equa-

tions.

The procedure of the level set function update

mainly involves the evaluation of force F and cur-

vature κ. As we re-initialize the level set function

by fast marching algorithm only once every 50 itera-

tions, the cost induced by this process is thus omit-

ted. Denote by cforce and cκ the cost for the force

and curvature at one grid point. The cost for the level

set update is represented by Cpde = |Snarr|(cforce +

cκ), where |Snarr| denotes the grid point number in

the narrow band Snarr. The dominant operation in

Cpde is the computation of the force F . From (28),

the cost for evaluation of F has the form cforce =

|Ω|cf , where |Ω| denotes the number of grid points in

the candidate region Ω, cf denotes the cost involved

by one grid point, mainly including the cost of dozens

of multiplications and one exponential function eval-

uation.

In summary, the overall computational cost Ctota

of the tracking algorithm may be described as

Ctota ≈ Cinter + Ctens + Coptm

≈ Cinter + Ctens +Noptm(Cemd + Cpde)

≈ Nmscms + 8Acops

+Nsift(csift + 128Kcops)

+Noptm

(

Nemd(cpivo + cgaus)

+ |Snarr|(|Ω|cf + cκ)
)

(35)

Here, Coptm denotes the cost of the functional op-

timization, and Noptm denotes the number of itera-

tions involved. Noptm is application dependent and

is averaged by several hundreds in our experiments.

6 Experiments and Discussion

We assess the performance of three trackers, Color EMD,

PCA SIFT EMD, and Tensor SIFT EMD, which are

all based on EMD but use varying features, as their

respective names indicate. We also compare our track-

ers with the tracker based on the Bhattacharyya co-

efficient that use color histogram [16] (henceforth

Color Bhattacharyya for short). Note that an im-

proved algorithm [57] is presented that exploits the

background information to enhance the performance

of Color Bhattacharyya; we do not compare this im-

proved one with ours because in the current work we

do not consider any background information.

For quantitative analysis, we use the the follow-

ing error metric [2] called overlapping region error to

compare tracking accuracy

E = 1−
2|Sresu ∩ Sgrou|

|Sresu|+ |Sgrou|
(36)

where | · | denotes the cardinal number of a set and

Sresu, Sgrou represent the image regions of tracking

result and the ground truth, both expressed as sets

of image points. The error E equals 0 if the two

regions are identical, increases when the overlapping

region becomes small, and equals 1 if the two do

not overlap at all. In our experiments, we declare

the tracking failure if the error E of more than five

consecutive frames are larger than 0.8.
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6.1 Qualitative and Quantitative Comparisons

The first video scenario is a very big fish tank with

small cobblestones underneath. In the video clip,

some fishes with pebbles on their bodies swim freely.

The video clip is recorded with a hand-held camera

with 430 frames (size: 352×288 pixels). The hand-

held camera continuously moves; hence, the viewing

angles change from time to time, causing illumina-

tion variation and background motion.

For comparison purpose, we vectorize the SIFT

features as commonly done in the literature [11, 25,

27–29, 32, 34] and exploit the PCA for dimension-

ality reduction (henceforth PCA-SIFT). Here, we

visually compare PCA-SIFT (with three dominant

principal components) and Tensor-SIFT (with three

component tensors). Given the reference image [the

left-most image in Fig. 2(a)] of the fish, we compute

its SIFT features and construct the corresponding

PCA basis and tensor basis. As shown in Fig 3,

for the new images available (first column), after

computing their SIFT features, the corresponding

features of reduced dimensionality can be achieved

through the projection by PCA basis (second col-

umn) and the tensor basis matrices (third column).

Although we know where the fish is, distinguishing

it from the background is difficult in the PCA-SIFT

images because they are so similar, whereas in the

Tensor SIFT images, the fish is distinct from the

background. This is due to the PCA losing the spa-

tial layout inherently present in the data, resulting

in similar appearances of the foreground and back-

ground.

Fig. 4 illustrates in each frame the overlapping

region errors of the four trackers. Before the fish

swims into the background of cobblestones in frames

1–50, PCA SIFT EMD (yellow dotted line with “△”

marker) is much better than Color EMD (blue dashed

line with “×” marker). However, afterwards, the track-

ing errors of PCA SIFT EMD (brown dotted line

with “△” marker) increase sharply and become larger

than those of Color EMD. This is not surprising,

because at this time, the object is nearly indistin-

guishable from the cobblestone background in the

PCA SIFT images. The two trackers diverge suc-

cessively at about frames 160 and 180, respectively.

Color Bhattacharyya (green dash-dotted line with

“▽” marker) shrinks to some very small regions on

the fish in frame 45 and never recovers. Tensor SIFT

EMD (red solid line with “�” marker) demonstrates

the best performance: it is stable and accurate in fol-

lowing the fish throughout the sequence. Fig. 5 shows

the typical tracking results of the four trackers.

The second image sequence, a car sequence, is

300 frames long (size: 352×288 pixels); it involves a

white minivan (object) on a busy road. This image

sequence is also captured by a hand-held camera. At

the beginning the minivan is in the shadow of the

skyscrapers. It turns right, and near the zebra cross-

ing, gradually goes out of the shadow and runs to

the sunshine at about frame 60, giving rise to sig-

nificant illumination variation. In frames 115 to 160,

due to a dark blue minivan coming from the oppo-

site direction, the object is occluded little by little

until there is almost complete occlusion; gradually,

the object becomes un-occluded once again. After-

wards, two similar situations of occlusions, which are

not as severe as the first one, occur consecutively in

frames 180–210 and 220–245 due to a red car and

then a silver gray car passing by. Finally, the object

leaves the view and disappears at about frame 285.

Fig. 6 shows the overlapping region errors of the

four trackers in each frame of the car sequence. In

this sequence, PCA SIFT EMD is better than Color

EMD in terms of both tracking accuracy and ro-

bustness. As of their respective tracking failures, the

average error (mean±STD) of PCA SIFT EMD is

0.3845± 0.1124, whereas that of Color EMD is 0.4224

±0.1494. The former fails at about frame 170, whereas

the latter fails at about frame 185. The tracking re-

sult of Color Bhatacharyya soon shrinks to some

very small regions around frame 95 after the car runs

into the sunshine from the skyscraper’s shadow. Ten-

sor SIFT EMD exhibits the best performance, fol-

lowing the object until its disappearance; although in
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(a) Frame 95

(b) Frame 190

(c) Frame 235

Fig. 3 Visual comparison of PCA SIFT and Tensor SIFT (the fish is the object). The reference image as shown in

Fig. 2(a) is used to construct the PCA basis (three dominant principe components) and Tensor basis matrices (three

component tensor). For the new images (left column), features of reduced dimensionality, PCA SIFT (middle column)

and Tensor SIFT (right column), can be obtained through projection by the PCA and by the tensor decomposition,

respectively. Although we know where the fish is, distinguishing it from the background is difficult in the PCA-SIFT

images because they are so similar, whereas in the Tensor SIFT image, the fish is distinct from the background.

the end tracking errors become large. Typical track-

ing results of the four trackers are shown in Fig. 9.

As discussed in [28, 29], in the SIFT feature com-

putation, color images are first transformed to gray-

level images, where the SIFT features are extracted.

Therefore, our Tensor-SIFT is well suited for both

color and single-channel images. The third sequence

(460 frames, image size: 253×288 pixels), recorded in

a very crowded street, contains such single-channel

(gray-level) images. In this sequence, neither Color

Bhattacharyya nor Color EMD works, as in this

case, the histograms contain inadequate information

to distinguish the object from the background. In

contrast, the two trackers based on SIFT features

can follow the object throughout the whole image

sequence. Fig. 8 shows the overlapping region errors

in each frame using Tensor SIFT EMD (red solid

line with “�” marker) and PCA SIFT EMD (blue

dashed line with “▽” marker), respectively. Clearly,

the errors of the former are generally less than those

of the latter. The average errors are 0.3454 ±0.0752

for Tensor SIFT EMD and 0.3692±0.0772 for PCA SIFT EMD.

6.2 Discussion

The trackers that adopt the same distance measure

of the EMD but depend on different features demon-

strate varying performance. PCA SIFT EMD has bet-
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ter performance in the car sequence than Color EMD

in both tracking accuracy and robustness. However,

in the fish sequence, the latter outperforms the for-

mer because in the PCA SIFT images, the object

(fish with pebbles on the body) and the background

(cobble stones) have a similar appearance and are

difficult to distinguish. In contrast, in the correspond-

ing Tensor SIFT images, the object is distinct from

the background. Invariably, in both sequences, the

tracker Tensor SIFT EMD shows the best perfor-

mance, despite the challenging conditions of the clut-

tered background, illumination variation, and occlu-

sion. The comparisons show that Tensor-SIFT is very

distinctive and robust to challenging conditions.

Comparison between the two trackers, which use

different distance (or similarity) measures of EMD

and Bhattacharyya coefficient but the same color

features, shows that Color EMD is more robust to

challenging conditions than Color Bhatacharyya. In

the fish and car sequences, Color Bhatacharyya soon

converges to very small regions on the object when

illumination changes. Note that this phenomenon is

also observed in the mean shift tracking that uses

Bhattacharrya measure and color [7]. The contrast

shows that EMD is more robust than the Bhattachar-

rya coefficient and is thus more competent in track-

ing applications in adverse environments.

Tensor-SIFT is suitable for both color and gray-

level images because SIFT features are actually ex-

tracted in single-channel images [28, 29]. This is a

good property because it bridges the gap between

the color and gray-level images for tracking applica-

tions. Most color-based trackers fail in single-channel

images, as gray-level information only does not suf-

fice in distinguishing the foreground and background.

The experiment in this sequence shows that the two

trackers based on Tensor-SIFT and PCA-SIFT both

works well. In addition, Tensor-SIFT is superior to

PCA-SIFT in tracking accuracy.

7 Conclusion

This paper presents a robust method for contour

tracking in adverse environments. We verified the

performance of the proposed method in image se-

quences containing the cluttered background, illu-

mination variation, and occlusion et al. Experiments

show that the proposed method has promising per-

formance. In summary, our primary contributions

are as follows: formulation of an EMD-based func-

tional and a two-phase method for its optimization;

design of Tensor-SIFT features; and development of

an integrated contour tracking algorithm.

First, we formulate a region functional based on

EMD with kernel density for distribution modeling

and propose a two-phase method for the functional

optimization. In the first phase, computing the EMD

is modeled as a transportation problem that is solved

by the simplex algorithm. Next, using the theory of

shape derivative, we perform a perturbation analy-

sis around the best solution to the transportation

problem, producing a PDE that governs shape evo-

lution along the gradient descent direction of the re-

gion functional. The application of the Wasserstein

distance in the one-dimensional case has been ex-

plored in active contour framework, but its applica-

tion in high-dimensional cases is difficult because its

closed-form does not exist [35]. To our knowledge,

this work is one of the first attempts to apply the

high-dimensional Wasserstein distance (EMD) in the

active contour framework.

Second, we design a novel feature called Tensor-

SIFT for tracking applications. We present a ten-

sor decomposition method for dimensionality reduc-

tion of the well-known SIFT features. This SIFT-

As-Tensor method can capture multiple factors in-

herently present in the data, i.e., two-dimensional

spatial layout and phase histogram of the gradient

magnitude. In contrast, the traditional method of

SIFT-As-Vector, e.g., PCA, can only capture one-

factor information of the histogram. Tensor-SIFT,

which is applicable to both color and gray-level im-

ages, is very distinctive and insensitive to illumina-
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tion change and noise. These good properties plus

its low dimensionality enables it to be feasible for

potential applications in some other fields such as

image classification and image retrieval.

Third, we develop an integrated algorithm for ro-

bust contour tracking tasks. The algorithm employs

various techniques for tracking applications, e.g., the

simplex algorithm, and narrow-band level set and

fast marching algorithms. Particularly, we present a

scheme that employs the mean shift algorithm for

inter-frame contour initialization. It can provide a

more accurate initial contour and thus helps PDE

avoid possible local minimum during its gradient-

descent process. We also introduce a realistic stop-

ping criterion for PDE iteration. The stopping crite-

rion is important but is no discussed broadly in the

literature. Our method is simple yet effective, and is

fit for automatic termination in PDE iteration.

The main problem of the proposed method is its

high computational cost, as analyzed in section 5.3.

To improve the computational efficiency, in future

works, we will use the Graphics Processing Unit (GPU)

to accomplish computational expensive procedures,

including Tensor-SIFT computation, EMD calcula-

tion and PDE solution. We are also interested in fur-

ther enhancing the tracker’s performance, by com-

bining multiple image information such as background

characteristics or optical flow.
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Fig. 4 Overlapping region errors of the four trackers in the fish sequence.
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(a) Results using PCA SIFT EMD in the PCA SIFT images. Tracking fails at about frame 160; from left to right are

frames 15, 60, 90 and 150.

(b) Results using Color EMD in the original color images. Tracking fails at about frame 180; from left to right are frames

15, 60, 95 and 160.

(c) Results using Tensor SIFT EMD in the Tensor SIFT images. The tracker successfully follows the object throughout

the sequence; from left-top to right-bottom are frames 15, 60, 95, 160, 220, 270, 300 and 375.

(d) Results using Color Bhatacharyya in the original color images. Tracking fails at about frame 45; from left to right

are frames 1, 20, 40 and 55.

Fig. 5 Typical tracking results in the fish sequence using the four trackers.
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Fig. 6 Overlapping region errors of four trackers in the car sequence.
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(a) Results using PCA SIFT EMD in the PCA SIFT images. Tracking fails at about frame 170; from left to right are

frames 20, 70, 120 and 165.

(b) Results using Color EMD in the original color images. Tracking fails at about frame 185; from left to right are frames

20, 70, 120 and 165.

(c) Results using Tensor SIFT EMD in the Tensor SIFT images. The tracker manages to follow the object until its

disappearance; from left-top to right-bottom are frames 20, 70, 120, 165, 185, 205, 240 and 260. The small images

imposed in the second row show the corresponding color scenes.

(d) Results using Color Bhattacharyya in the original color images. Tracking fails at about frame 95; from left to right

are frames 20, 45, 70 and 95.

Fig. 7 Typical tracking results in the car sequence using the four trackers.
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Fig. 8 Overlapping region errors of Tensor SIFT EMD and PCA SIFT EMD in the gray-level pedestrian sequence.

Their average errors (mean±STD) are 0.3454±0.0752 and 0.3692±0.0772, respectively.
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(a) Results using PCA SIFT EMD in the PCA SIFT images. From left to right are frames 40, 150, 290 and 450.

(a) Results using Tensor SIFT EMD in the Tensor SIFT images. From left to right are frames 40, 150, 290 and 450.

(b) Results of Tensor SIFT EMD (brown solid lines) and PCA SIFT EMD (cyan solid lines) drawn in the original

gray-level images. From left to right are frames 40, 150, 290 and 450.

Fig. 9 Typical tracking results in the single-channel gray-level pedestrian sequence.
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