Skip to main content
Log in

Segmentation of Stochastic Images using Level Set Propagation with Uncertain Speed

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We present an approach for the evolution of level sets under an uncertain velocity leading to stochastic level sets. The uncertain velocity can either be a random variable or a random field, i.e. a spatially varying random quantity, and it may result from measurement errors, noise, unknown material parameters or other sources of uncertainty. The use of stochastic level sets for the segmentation of images with uncertain gray values leads to stochastic domains, because the zero level set is not a single closed curve anymore. Instead, we have a band of possibly infinite thickness which contains all possible locations of the zero level set under the uncertainty. Thus, the approach allows for a probabilistic description of the segmented volume and the shape of the object. Due to numerical reasons, we use a parabolic approximation of the stochastic level set equation, which is a stochastic partial differential equation, and discretized the equation using the polynomial chaos and a stochastic finite difference scheme. For the verification of the intrusive discretization in the polynomial chaos we performed Monte Carlo and Stochastic Collocation simulations. We demonstrate the power of the stochastic level set approach by showing examples ranging from artificial tests to demonstrate individual aspects to a segmentation of objects in medical images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ambrosio, L., Tortorelli, M.: On the approximation of free discontinuity problems. Boll. Unione Mat. Ital, B 6, 105–123 (1992)

    MATH  MathSciNet  Google Scholar 

  2. Askey, R., Wilson, J.: Some basic hypergeometric polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 319 (1985)

  3. Blatman, G., Sudret, B.: Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach. C. R., Méc. 336(6), 518–523 (2008)

    Article  MATH  Google Scholar 

  4. Boettinger, W.J., Warren, J.A., Beckermann, C., Karma, A.: Phase-field simulation of solidification. Annu. Rev. Mater. Res. 32(1), 163–194 (2002)

    Article  Google Scholar 

  5. Cameron, R.H., Martin, W.T.: The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals. Ann. Math. 48(2), 385–392 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  6. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  7. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  8. Debusschere, B.J., Najm, H.N., Pébay, P.P., Knio, O.M., Ghanem, R.G., Le Maître, O.P.: Numerical challenges in the use of polynomial chaos representations for stochastic processes. SIAM J. Sci. Comput. 26(2), 698–719 (2005)

    Article  Google Scholar 

  9. Dervieux, A., Thomasset, F.: A finite element method for the simulation of a Rayleigh-Taylor instability. In: Rautmann, R. (ed.) Approximation Methods for Navier-Stokes Problems. Lecture Notes in Mathematics, vol. 771, pp. 145–158. Springer, Berlin (1980)

    Chapter  Google Scholar 

  10. Echebarria, B., Folch, R., Karma, A., Plapp, M.: Quantitative phase-field model of alloy solidification. Phys. Rev. E 70(6), 061604 (2004)

    Article  Google Scholar 

  11. Folch, R., Casademunt, J., Hernandez-Machado, A., Ramirez-Piscina, L.: Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. Phys. Rev. E 60, 1724 (1999)

    Article  Google Scholar 

  12. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: a Spectral Approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  13. Gibou, F., Chen, L., Nguyen, D., Banerjee, S.: A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change. J. Comput. Phys. 222(2), 536–555 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Glasner, K.: Nonlinear preconditioning for diffuse interfaces. J. Comput. Phys. 174(2), 695–711 (2001)

    Article  MATH  Google Scholar 

  15. Harbrecht, H., Peters, M., Schneider, R.: On the low-rank approximation by the pivoted Cholesky decomposition. Appl. Numer. Math. 62(4), 428–440 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  17. Khoromskij, B.N., Schwab, C.: Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs. SIAM J. Sci. Comput. 33(1), 364–385 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-initialization: a new variational formulation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), June,2005, pp. 430–436 (2005)

    Google Scholar 

  19. Lin, G., Su, C.H., Karniadakis, G.: Predicting shock dynamics in the presence of uncertainties. J. Comput. Phys. 217(1), 260–276 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Malladi, R., Sethian, J.A., Vemuri, B.C.: Evolutionary fronts for topology-independent shape modeling and recovery. In: ECCV’94: Proceedings of the Third European Conference on Computer Vision, vol. 1, pp. 3–13. Springer, New York (1994)

    Google Scholar 

  21. Matthies, H.G., Rosic, B.V.: Inelastic media under uncertainty: stochastic models and computational approaches. In: Reddy, B.D. (ed.) IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media, IUTAM Bookseries, vol. 11, pp. 185–194. Springer, Amsterdam (2008)

    Chapter  Google Scholar 

  22. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pätz, T., Preusser, T.: Ambrosio-Tortorelli segmentation of stochastic images. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision - ECCV 2010. Lecture Notes in Computer Science, vol. 6315, pp. 254–267. Springer, Berlin (2010)

    Chapter  Google Scholar 

  24. Pock, T., Bischof, H.: A probabilistic multi-phase model for variational image segmentation. In: Franke, K., Müller, K.R., Nickolay, B., Schäfer, R. (eds.) Pattern Recognition, 28th DAGM Symposium, Berlin, September 12–14, 2006. Proceedings, Lecture Notes in Computer Science, vol. 4174, pp. 71–80. Springer, Berlin (2006)

    Google Scholar 

  25. Preusser, T., Scharr, H., Krajsek, K., Kirby, R.: Building blocks for computer vision with stochastic partial differential equations. Int. J. Comput. Vis. 80(3), 375–405 (2008)

    Article  Google Scholar 

  26. Sethian, J., Smereka, P.: Level set methods for fluid interfaces. Annu. Rev. Fluid Mech. 35, 341–372 (2003)

    Article  MathSciNet  Google Scholar 

  27. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  28. Stefanou, G., Nouy, A., Clement, A.: Identification of random shapes from images through polynomial chaos expansion of random level-set functions. Int. J. Numer. Methods Eng. 79(2), 127–155 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sun, Y., Beckermann, C.: Sharp interface tracking using the phase-field equation. J. Comput. Phys. 220(2), 626–653 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tiesler, H., Kirby, R., Xiu, D., Preusser, T.: Stochastic collocation for optimal control problems with stochastic pde constraints. SIAM J. Control Optim. 50(5), 2659–2682 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tryoen, J., Maitre, O.L., Ndjinga, M., Ern, A.: Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229(18), 6485–6511 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’94, pp. 311–318. ACM, New York (1994)

    Chapter  Google Scholar 

  33. Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)

    Article  MathSciNet  Google Scholar 

  34. Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge R.M. Kirby, SCI, Utah for inspiring discussions on the numerical treatment of SPDEs. Furthermore financial support from the German Research Foundation (DFG) under grant number PR 1038/5-1 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torben Pätz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pätz, T., Preusser, T. Segmentation of Stochastic Images using Level Set Propagation with Uncertain Speed. J Math Imaging Vis 48, 467–487 (2014). https://doi.org/10.1007/s10851-013-0421-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0421-z

Keywords

Navigation