Skip to main content

Advertisement

Log in

Planar Numerical Signature Theory Applied to Object Recognition

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Geometric invariants play a crucial role in the field of object recognition where the objects of interest are affected by a group of transformations. However, designing robust algorithms that are tolerant to noise and image occlusion remains an open problem. In particular, numerical signature-invariants in terms of joint invariants, as an approximation to the differential signature-invariants, suffer instability, bias, noise and indeterminacy in the resulting signatures. This paper addresses some of these issues in respect of planar signatures. To improve the stability in the Euclidean case, we replace Heron’s formula by the “accurate area” and then we demonstrate that the proposed algorithm is, not only numerically stable but is also, in terms of mean square error, a closer approximation (by at least a factor of three) compared with the original formulation of Calabi. To reduce noise in the resulting curves “the n-difference technique” and “the m-mean signature method” are introduced and we show that these methods are capable of minimizing noise by more than 90 %. The n-difference technique can also be applied to eliminate indeterminacy in the outputs. For the equiaffine case, we improve and extend the required formulation for the implementation of Signature theory for any planar meshes with a general position property. Moreover, we introduce a general formulation for the full conic sections to determine an equiaffine-invariant numerical approximation to the equiaffine arc length, measured along the given curve between any two points of the mesh. Finally, we demonstrate the discriminative power of the concept of discrete signature analysis for distinguishing normal and abnormal regions in the medical imaging domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Halphen, M.: Sure les invariants différentiels des courbes gauches. J. Éc. Polytech. 28(1) (1880)

  2. Wilczynski, E.J.: Projective Differential Geometry of Curves and Ruled Surfaces. Teubner, Leipzig (1906)

    MATH  Google Scholar 

  3. Wilczynski, E.J.: Projective differential geometry of curved surface (second memoir). Trans. Am. Math. Soc. 9(1), 79–120 (1908)

    MATH  MathSciNet  Google Scholar 

  4. Čech, E., Fubini, G.: Geometria Proiettiva Differenziale. Zanichelli, Bologna (1927)

    MATH  Google Scholar 

  5. Weyl, H.: The Classical Group. Princeton University Press, Princeton (1939)

    Google Scholar 

  6. Cartan, É.: La Méthode du Repére Mobile, la Théorie des Groupes Continus et les Espaces Généralisés. Exposés de Géométrie, vol. 5. Hermann, Paris (1935)

    MATH  Google Scholar 

  7. Nagata, M.: Complete reducibility of rational representations of a matric group. J. Math. Kyoto Univ. 1(1), 87–99 (1961)

    MATH  MathSciNet  Google Scholar 

  8. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, 3rd. edn. Ergebnisse der Math., vol. 34. Springer, Berlin (1994). (the 1st edition published in 1965, is the “Bible” on the subject)

    Book  Google Scholar 

  9. Weiss, I.: Geometric invariants and object recognition. Int. J. Comput. Vis. 10(3), 207–231 (1993)

    Article  Google Scholar 

  10. Faugeras, O.: Cartan’s moving frame method and its application to the geometry and evolution of curves in the Euclidean, affine and projective planes. In: Applications of Invariance in Computer Vision. Lecture Notes in Computer Science, vol. 825, pp. 11–16. Springer, Berlin (1994)

    Chapter  Google Scholar 

  11. Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., Haker, S.: Affine geometry, curve flows and invariant numerical approximations. Adv. Math. 124(1), 154–196 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., Haker, S.: Differential and numerically invariant signature curves applied to object recognition. Int. J. Comput. Vis. 26, 107–135 (1998)

    Article  Google Scholar 

  13. Bruckstein, A.M., Halt, R.J., Netravali, A.N., Richardson, T.J.: Invariant signatures for planar shape recognition under partial occlusion. CVGIP, Image Underst. 58, 49–65 (1993)

    Article  Google Scholar 

  14. Rathi, Y., Olver, P.J., Sapiro, G., Tannenbaum, A.R.: In: Affine Invariant Surface Evolutions for 3D Image Segmentation. Dougherty, E.R., Nasrabadi, N.M., Rizvi, S.A. (eds.): Image Processing: Algorithms and Systems, Neural Network, and Machine Learning, vol. 6064, p. 606401. SPIE, Bellingham (2006). Proc. Of SPIE-IS&T Electronic Imaging

    Google Scholar 

  15. Olver, P.J.: Invariant submanifold flows. J. Phys. A, Math. Theor. 41(34), 344017 (2008)

    Article  MathSciNet  Google Scholar 

  16. Olver, P.J.: Joint invariant signatures. Found. Comput. Math. 1(1), 3–68 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Olver, P.J.: Classical Invariant Theory. Cambridge University Press, New York (1999)

    Book  MATH  Google Scholar 

  18. Musso, E., Nicolodi, L.: Invariant signature of closed planar curves. J. Math. Imaging Vis. 35, 68–85 (2009)

    Article  MathSciNet  Google Scholar 

  19. Feng, S., Kogan, I., Krim, H.: Classification of curves in 2D and 3D via affine integral signatures. Acta Appl. Math. 109(3), 903–937 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hoff, D., Olver, P.J.: Extensions of invariant signatures for object recognition. J. Math. Imaging Vis. 45, 176–185 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hoff, D.: Automatic solution of jigsaw puzzles. University of Minnesota (2011, preprint). http://www.math.umn.edu/~olver/paper.html

  22. Boutin, M.: Numerically invariant signature curves. Int. J. Comput. Vis. 40(3), 235–248 (2000)

    Article  MATH  Google Scholar 

  23. Friedman, M., Kandel, A.: Fundamentals of Computer Numerical Analysis. CRC Press, Boca Raton (1993)

    Google Scholar 

  24. Kahan, W.: Miscalculating area and angles of a needle-like triangle. Lecture notes (2000). cs.berkeley.edu/~wkahan/Triangle.pdf

  25. Dehmeshki, J., Amin, H., Dehkord, M.E., Jouannic, A., Qanadli, S.: Computer aided detection and measurement of abdominal aortic aneurysm using computed tomography digital images. In: 3rd International Conference on Digital Society, ICD, Cancun, Mexico. doi:10.1109/ICDS.2009.65 (2009)

    Google Scholar 

Download references

Acknowledgement

We would like to thank Peter J Olver for his advice and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Aghayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghayan, R., Ellis, T. & Dehmeshki, J. Planar Numerical Signature Theory Applied to Object Recognition. J Math Imaging Vis 48, 583–605 (2014). https://doi.org/10.1007/s10851-013-0427-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0427-6

Keywords

Navigation