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Abstract

In recent years, the popularity of the census transform has grown rapidly. It
provides features that are invariant under monotonically increasing intensity trans-
formations. Therefore, it is exploited as a key ingredient of various computer vision
problems, in particular for illumination-robust optic flow models. However, de-
spite being extensively applied, its underlying mathematical foundations are not
well-understood so far. The main contributions of our paper are to provide these
missing insights, and in this way to generalise the concept of the census transform.
To this end, we transfer the inherently discrete transform to the continuous set-
ting and embed it into a variational framework for optic flow estimation. This
uncovers two important properties: the strong reliance on local extrema and the
induced anisotropy of the data term by acting along isolines. These findings open
the door to generalisations of the census transform that are not obvious in the dis-
crete formulation. To illustrate this, we introduce and analyse second-order census
models that are based on thresholding the second directional derivatives. Last but
not least, we constitute links of census-based approaches to established data terms
such as gradient constancy, Hessian constancy, and Laplacian constancy, and we
confirm our findings by means of experiments.

1 Introduction

The census transform is a classical neighbourhood descriptor that has been proposed by
Zabih and Woodfill in 1994 [48]. It computes for every pixel a binary string (census
signature) by comparing its grey value with the grey values in its neighbourhood. The
census signature yields the value 0 if the neighbour is smaller than the reference pixel,
and 1 otherwise. Figure 1 illustrates the census transform with a 3×3 intensity patch.
The resulting signature string has length 8 and thus, can be represented efficiently by a
single byte.

4 4 65

3 25 14

83 15 88

Intensity values

0 0 1

0 0

1 0 1

Census digits

01000101

Census signature

Figure 1: Census transform with a 3×3 neighbourhood patch. A census digit is 0 if
the corresponding neighbour is smaller than the central pixel (marked in grey) and 1
otherwise. The final census signature contains all census digits, where we start with the
right neighbour and proceed counter-clockwise.

The key property that makes the census transform attractive for the computer vision
community is its robustness under illumination changes. Whenever one tries to establish
a correspondence relation over multiple frames, any changes in appearance create a big
challenge. A particular example is the computation of displacement fields (optic flow) in
real-world image sequences, where illumination changes are omnipresent. Such a robust-
ness against illumination changes plays a literally vital role in driver assistant systems;
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see for instance Rabe [33]. Here the census transform is very beneficial and frequently
used. By construction, its signatures are morphologically invariant, i.e. invariant under
global monotonically increasing grey level rescalings. Stein [37] uses the census signatures
in an efficient feature matching approach. A hash table-based indexing scheme provides
flow estimates in real-time and is well-suited for large displacements. Müller et al. [25]
as well as Mohamed and Mertsching [23] exploit these sparse feature matches to handle
large displacements and to recover image details lost in a coarse-to-fine minimisation
technique, respectively. Furthermore, Müller et al. [24] embed the census transform as
data term into a variational optic flow framework. Tests in real-world scenarios demon-
strate the desired morphological invariance of the resulting dense flow fields. Vogel et
al. [43] compare different data terms and show that the census transform is well-suited for
challenging lightning conditions. Also in the context of stereo estimation, Mei et al. [21]
and Ranftl et al. [34] have illustrated the usefulness of the census transform. Other ap-
plications of the census transform include face recognition problems [9]. In spite of its
successful applications, however, the theoretical understanding of the census transform
is still rather limited.

1.1 Our Contributions

The goal of our paper is to provide a thorough theoretical foundation of the census
transform and extend it to more general formulations. It is based on our SSVM 2013
conference publication [13] where three contributions are established:

(i) Differences to neighbours are regarded as approximations of directional derivatives,
and the continuous limit over all possible angles is studied.

(ii) This concept is developed into a constancy assumption and embedded as data term
in a variational model for optic flow computation.

(iii) The energy functional and its minimisation are analysed in order to obtain a novel
interpretation of census-based optic flow. This interpretation uncovers highly in-
teresting properties of the census transform that have not been used in other optic
flow formulations.

Our present journal paper extends these results in several aspects. In particular, we
introduce the following main contributions:

(iv) We generalise the census idea such that it includes also higher order directional
derivatives.

(v) We present detailed proofs of the theorems that we apply in our mathematical
analysis of census-based optic flow approaches.

(vi) The first and second order variants of the census transform are juxtaposed experi-
mentally such that their individual advantages and limitations are made explicit.

We want to stress that the focus of our work is not on developing new competitive
high-end optic flow methods: We are interested in the mathematical foundations and
generalisations of census-based approaches. Once their properties are well-understood,
these ideas can easily be embedded in any highly sophisticated optic flow method that
ranks favourably in the Middlebury [1] or KITTI benchmark [10].
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1.2 Related Work

Since 1994, census-like ideas have appeared under several names in the literature: Ojala
et al. [28] developed a closely related concept and interpreted the resulting descriptor as
a binary number (local binary patterns). Later Calonder et al. [5] revisited this idea by
introducing the feature point descriptor BRIEF. In the meantime the concept of local
binary patterns has found numerous applications in pattern recognition and computer
vision; for an overview we refer to the book of Pietikäinen et al. [31] and the references
therein.

There is also a long tradition of designing methods for illumination-robust optic flow com-
putation, either by introducing robust features or by modelling the illumination changes
explicitly.

The use of brightness gradient constancy renders the optic flow model robust w.r.t. global
additive brightness changes. It goes back to Nagel [26], Tretiak and Pastor [39], and Uras
et al. [40], while embeddings in a variational setting have been studied e.g. by Schnörr [36]
and Brox et al. [3]. In contrast to additive changes, Steinbrücker et al. [38] achieve
an invariance against multiplicative illumination changes via a patch-based data term
using normalised cross correlation. Wedel et al. [44] preform a so-called structure-texture
decomposition of the input images by means of the image denoising method by Rudin
et al. [35]. The textural part shows an increased robustness under shadows and shading
reflections. Another idea by van de Weijer and Gevers [41] as well as Mileva et al. [22] is to
make use of photometric invariants to design illumination-robust flow methods for colour
images. Also the mutual information [42] turns out to be a useful feature for registering
images with different illumination; see Hermosillo et al. [16] and Panin [29]. In order to
extract the maximal amount of information from a local neighbourhood while providing
a morphological invariance, Demetz et al. [8] introduce the complete rank transform in a
variational optic flow setting.

Instead of matching illumination-robust features, the following approaches follow a dif-
ferent idea to tackle brightness changes: They model them explicitly. Based on compara-
grams [20], Kim and Pollefeys [18] as well as Dederscheck et al. [7] estimate the brightness
transfer function that allows to compensate for global brightness changes. In order to
handle also local changes, the model of Cornelius and Kanade [6] allows smooth additive
variations from the brightness constancy assumption. Negahdaripour [27] extends this
idea and presents a general variational framework that optimises w.r.t. spatially varying
multiplicative and additive illumination changes in addition to the optic flow field. Hager
and Belhumeur [14] apply a principal component analysis to set up the basis of a param-
eterised illumination model whose parameters are jointly computed with the motion. In
this context, Haussecker and Fleet [15] propose to estimate physically-based parameters
that are intended to model the illumination variations more accurately. Kim and Kak [19]
compare different local and global approaches under brightness changes and in particular
improve the robustness against noise.

1.3 Paper Organisation

Starting with a continuous interpretation of the census transform, Section 2 presents our
census-based variational optic flow method. The energy formulation and its minimisation

3



yield new insights into census-based approaches. These results are presented in Section 3.
The uncovered insights allow us to extend the census idea to higher order (Section 4).
After having sketched our numerical algorithm in Section 5, we evaluate the proposed
method in Section 6. Finally, Section 7 concludes the paper with a summary and an
outlook.

2 Census-Based Variational Optic Flow

In this section, we introduce our census-based optic flow method. To this end, we start
with a formal definition of the original census transform and derive the corresponding
constancy assumption in a continuous manner. This provides the basis of our energy
functional and is the starting point of our analysis.

2.1 Census Transform

Let in a discrete setting gi,j denote the grey values of an image. Then, every digit of the

census signature in pixel (i, j)> is computed as

H ( gi+d1,j+d2 − gi,j ) , (1)

where (i+ d1, j + d2)> represents a neighbouring pixel, and H : R → {0, 1} denotes the
Heaviside step function

H (z) :=

{
0 if z < 0,

1 if z ≥ 0.
(2)

2.2 Census-Based Constancy Assumption

Let us now transfer the census transform to the continuous setting and derive the associ-
ated constancy assumption. We denote an image sequence by a function f (x, y, t) where
(x, y)> describes the location within the rectangular image domain Ω ⊂ R2 and t ∈ [0, T ]
is the time.
The argument of the step function in Equation 1 approximates a directional derivative.
Consequently, one census digit can be interpreted as the discrete version of

H
(
e>ϕ∇f (x, y, t)

)
, (3)

where the unit vector eϕ := (cosϕ, sinϕ)> specifies the direction, and the gradient oper-
ator ∇ := (∂x, ∂y)

> only acts on the spatial domain. To ensure the differentiability of f ,
we presmooth the input images by a convolution with a Gaussian.
Let us now derive the constancy constraint based on the assumption that two correspond-
ing points (x, y, t)> and (x+ u, y + v, t+ 1)> in consecutive frames have identical census
signatures. In our notation, the functions u, v: Ω→ R represent the sought optic flow
components. Considering all angles ϕ ∈ [0, 2π), the constancy assumption of the census
signature implies

H
(
e>ϕ∇f(x+ u, y + v, t+ 1)

)
− H

(
e>ϕ∇f(x, y, t)

) !
= 0 . (4)
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Figure 2: Different approximations Hε (z) of the Heaviside step function (left) and cor-
responding derivatives H ′ε (z) (right). Smaller choices of ε lead to closer approximations
of the original sharp step function.

In order to embed this constraint as data term in an energy functional, we consider a
linearised version of it. To this end, we replace the Heaviside step function H by the
smooth approximation

Hε (z) :=
1

2

(
1 +

z√
z2 + ε2

)
, (5)

with a small positive regularisation parameter ε that satisfies ε≥ ε0 > 0 (cf. Figure 2).
The lower bound ε0 ensures that ε is also in the limit strictly larger than 0. Otherwise,
the linearisation becomes invalid and the resulting data term would not be suitable for a
typical variational optic flow framework [17].
Assuming small flow components u and v as well as a small change of the temporal
derivative of a census digit, we propose the following linearisation: With the derivative
of the regularised step function

H ′ε (z) =
ε2

2 (z2 + ε2)
3/2
, (6)

linearising the regularised version of the constraint (4) around (x, y, t)> yields

H ′ε
(
e>ϕ∇f

)
· e>ϕ

(
∇fx · u+ ∇fy · v + ∇ft︸ ︷︷ ︸

puv

) !
= 0 . (7)

For the sake of readability, we omit here the argument (x, y, t)> of f . Further, the
term ∇fx · u + ∇fy · v + ∇ft represents the widely-used linearised gradient constancy
expression [3, 26, 36,39,40] and is in the following abbreviated by puv.

2.3 Energy Formulation and Minimisation

As a next step, we embed the derived census constancy assumption into a variational
framework. The corresponding energy reads

E(u, v) :=

∫
Ω

(
M(u, v) + α · S(∇u,∇v)

)
dx dy , (8)
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with the quadratic census-based data term

M(u, v) :=
1

π

∫ 2π

0

(
H ′ε
(
e>ϕ∇f

)
· e>ϕpuv

)2
dϕ (9)

and the homogeneous smoothness term [17]

S(∇u,∇v) := |∇u|2 + |∇v|2 . (10)

The positive regularisation parameter α allows to steer the impact of the data and smooth-
ness term, respectively.
Following the calculus of variations [11], the minimiser of the energy in Equation 8 w.r.t.
u and v has to fulfil the Euler-Lagrange equations

1

π

∫ 2π

0

H ′ε
2
(e>ϕ∇f) · e>ϕ∇fx · e>ϕpuv dϕ − α∆u = 0 , (11)

1

π

∫ 2π

0

H ′ε
2
(e>ϕ∇f) · e>ϕ∇fy · e>ϕpuv dϕ − α∆v = 0 , (12)

with homogeneous Neumann boundary conditions

n>∇u = 0 on ∂Ω, (13)

n>∇v = 0 on ∂Ω, (14)

where n denotes the outer normal vector to the boundary ∂Ω of the image domain Ω.

3 Interpretation

Let us now analyse the presented census-based data term in Equation 9. After some
small algebraic rearrangements we can rewrite it as quadratic form

M(u, v) = p>uvCpuv (15)

with a symmetric census tensor C ∈ R2×2 that is given by

C :=
1

π

∫ 2π

0

H ′ε
2
(e>ϕ∇f) · eϕe>ϕ dϕ . (16)

An analysis of a closely related tensor has already been performed by Weickert [45] in the
context of anisotropic diffusion filtering. However, since we need some adaptations in the
notations and since the proofs in [45] are only briefly sketched, we review the relevant
results below, and we present full proofs in the appendix.
Let (r, ψ)> denote the polar coordinates of ∇f 6= 0. Then the eigenvectors of C are
parallel and perpendicular to the isolines of f , respectively. They are given by

w‖(ψ) =
∇f⊥

|∇f |
=

(
− sinψ
cosψ

)
, (17)

w⊥(ψ) =
∇f

|∇f |
=

(
cosψ
sinψ

)
, (18)
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with corresponding eigenvalues

λ‖(r) =
4

π

∫ π/2

0

H ′ε
2

(r · cosϕ) · sin2 ϕ dϕ , (19)

λ⊥(r) =
4

π

∫ π/2

0

H ′ε
2

(r · cosϕ) · cos2 ϕ dϕ . (20)

With the eigendecomposition

C = λ‖(r) ·w‖(ψ)w>‖ (ψ) + λ⊥(r) ·w⊥(ψ)w>⊥(ψ) (21)

the data term (15) can be rewritten as

M(u, v) = λ‖(r) ·
(
w>‖(ψ)puv

)2
+ λ⊥(r) ·

(
w>⊥(ψ)puv

)2
. (22)

This formula decomposes the data term into two orthogonal constraints. It can be under-
stood as a projection of the linearised gradient constancy expression puv along resp. across
the isolines of f . These projections are weighted with the corresponding eigenvalues λ‖(r)
and λ⊥(r).

3.1 Anisotropic Data Term

Based on the formulation in Equation 22, the following paragraphs discuss the behaviour
of the data term at different image regions.

3.1.1 Vanishing Gradient

At extrema or homogeneous regions |∇f | vanishes, i.e. r → 0. In this case, the eigenval-
ues of the census tensor C fulfil

lim
r→0

λ‖(r) = H ′ε
2
(0) · 4

π

∫ π/2

0

sin2 ϕ dϕ︸ ︷︷ ︸
=1

= H ′ε
2
(0) , (23)

lim
r→0

λ⊥(r) = H ′ε
2
(0) · 4

π

∫ π/2

0

cos2 ϕ dϕ︸ ︷︷ ︸
=1

= H ′ε
2
(0) . (24)

Revisiting Equation 6, we see that H ′ε
2 (0) = 1/4ε2. Hence, both eigenvalues λ‖ and λ⊥

exceed all bounds for close approximations of the Heaviside function. This means that
both components in the data term (22) are very large.

The occurring second order image derivatives e>ϕ∇fx and e>ϕ∇fy in the Euler-Lagrange
equations (11) and (12) behave differently in local extrema and homogeneous image
regions. Consequently, our analysis of the constancy assumption has to differentiate
these two cases.
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Local Extrema. In local extrema, the first order derivatives of f vanish, but the second
order derivatives are in general non-zero. Since the reaction parts of the Euler-Lagrange
equations (11)–(12) are weighted with the factor 1/4ε2, they dominate the diffusion terms
for small ε.
This reveals a surprising property of the discussed census-based model: The census con-
stancy assumption implicitly enforces a strong reliance on the local extrema. This con-
tributes to the observed morphological invariance: On the one hand the positions of the
minima and maxima remain constant under monotonically increasing grey level rescal-
ings, and on the other hand the property ∇f = 0 at the extrema is not violated under
those illumination changes. Thus, the imposed constancy assumption of the gradient
holds here in all directions.

Homogeneous Regions. In contrast, the second order image derivatives ∇fx and
∇fy go to 0 in homogeneous regions. As a result, the terms e>ϕ∇fx and e>ϕ∇fy in
the reaction parts of the Euler-Lagrange equations vanish. Hence, the solution at those
regions is solely determined by filling-in the information from the neighbouring pixels:

∆u = 0 and ∆ v = 0 . (25)

3.1.2 High Contrast Edges

The previous paragraph was concerned with image regions where |∇f | = r → 0. Let
us now analyse the opposite case that corresponds to high contrast edges of the image
(r →∞). Considering the eigenvalues of the census tensor C shows the strong anisotropic
behaviour in those regions (cf. [45] and Appendix A.2):

lim
r→∞

λ‖ (r)

λ⊥ (r)
= ∞ . (26)

The informative Equation 22 shows that the constancy of the gradient entries is here
strongly imposed along isolines of f . In contrast, the constancy assumption across iso-
lines is weighted down. This anisotropy is, besides the reliance on the local extrema,
another reason for the morphological invariance of census-based methods. Under mono-
tonically increasing grey level rescalings, the positions of the isophotes are invariant and
additionally the directional derivatives along these isophotes remain zero. In other words,
the gradient constancy assumption is valid along the isolines of the image.

3.2 Relation to Gradient Constancy Assumption

Let us now illustrate the connection between the presented census-based constancy as-
sumption and the widely-used gradient constancy assumption [3, 26, 36, 39, 40]. The
quadratic data term of the linearised gradient constancy assumption reads

(fxxu+ fxyv + fxt)
2 + (fyxu+ fyyv + fyt)

2 = p>uv I puv , (27)

where I denotes the 2×2 identity matrix. This formulation inherently decouples the
constancy assumptions of the gradient entries fx and fy. Comparing the data terms (15)
and (27), we observe that the reason for the increased robustness of census-based methods
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(compared to gradient constancy) is solely hidden in the census tensor C. This confirms
our findings from Section 3.1: Coupling the constancy assumptions of fx and fy by C,
or rather by its eigenvectors w‖(ψ) and w⊥(ψ), induces an anisotropic behaviour which
effects the proposed invariance.
Further, by replacing the regularised step function Hε in Equation 15 with the identity
function, the matrix C degenerates to

1

π

∫ 2π

0

1 · eϕe>ϕ dϕ =
1

π

(
π 0
0 π

)
= I . (28)

The resulting data term coincides with the gradient constancy assumption in Equation 27.
Hence, the census-based method may be regarded as a censorisation of the gradient
constancy. On the one hand, this censorisation decreases the amount of extracted image
information due to the binary quantisation of the directional derivative values. On the
other hand, however, the induced anisotropy increases the robustness under illumination
changes. While the original gradient constancy assumption is solely invariant w.r.t. global
additive illumination changes, the censored gradient constancy assumption provides an
invariance against any kind of monotonically increasing grey level rescalings.

4 Generalisation to Higher Order

The gained insights and in particular the continuous formulation of the census transform
offer a natural generalisation of census-based data terms to higher order. For this purpose,
let us replace the first order directional derivative e>ϕ∇f in constraint (4) by its second
order counterpart

e>ϕH(f)eϕ , (29)

where H(f) represents the spatial 2×2 Hessian of f . Then the second order census-based
constancy assumption reads

H
(
e>ϕH(f(x+u, y+v, t+1))eϕ

)
− H

(
e>ϕH(f(x, y, t))eϕ

) !
= 0 , (30)

with ϕ ∈ [0, 2π). Again, regularising the Heaviside step function H allows to linearise
the first term around (x, y, t)>, which finally leads to

H ′ε(e
>
ϕH(f)eϕ) · e>ϕ

(
H(fx) · u+ H(fy) · v + H(ft)︸ ︷︷ ︸

Puv

)
eϕ

!
= 0 . (31)

The matrix H(fx) · u + H(fy) · v + H(ft) represents the constancy assumption of the
Hessian [30]. In the following, we will abbreviate it by Puv. With this abbreviation, the
quadratic second order census-based data term is given by

M2(u, v) :=
1

π

∫ 2π

0

H ′ε
2
(e>ϕH(f)eϕ) ·

(
e>ϕPuveϕ

)2
dϕ . (32)
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4.1 Anisotropy

Contrary to the first order data term, an isolation of a census tensor is not obvious in the
second order case. However, an interpretation of the second order census-based data term
is still possible on a more abstract level: For small ε, the factor H ′ε

2(e>ϕH(f)eϕ) vanishes
for all second order directional derivatives with an absolute value somewhat larger than
0. In contrast, a second order directional derivative close to 0 induces a very large weight.
It corresponds to a constant part or to an inflection point of the one-dimensional function
along the considered direction eϕ. Solely in those directions, we assume the constancy of
the second order directional derivative to be valid. In fact, e>ϕH(f)eϕ remains there zero
for all rescalings that do not change the sign of the image curvature, e.g. affine rescalings
with a positive slope. However, in contrast to the first order census, the invariance w.r.t.
any kind of monotonically increasing rescalings is lost.

4.2 Uncensored Version

Analogously to the first order data term, let us now replace the Heaviside step function
in Equation 32 by the identity function. It is not very hard to verify that

1

π

∫ 2π

0

1 ·
(
e>ϕPuveϕ

)2
dϕ =

1

2
· ‖Puv‖2

F +
1

4
· tr2(Puv) , (33)

where ‖.‖F denotes the Frobenius norm and tr is the trace operator. The first term ‖Puv‖2
F

represents the quadratic data term of the linearised Hessian constancy assumption, while
the second term tr2(Puv) is identical to the quadratic data term of the linearised Laplacian
constancy assumption; see Papenberg et al. [30]. Thus, the second order census-based
method may be regarded as a censorisation of those two assumptions. While the Hessian
and Laplacian are solely invariant under additive changes, their censored version also
provides an invariance w.r.t. affine rescalings with positive slope.

5 Implementation

For the ease of implementation, we cast the linearised constancy assumption from (7)
into the versatile motion tensor framework of Bruhn [4]. To this end, we exploit the
equivalence

H ′ε
(
e>ϕ∇f

)
· e>ϕpuv =

∂xHε

(
e>ϕ∇f

)
∂yHε

(
e>ϕ∇f

)
∂tHε

(
e>ϕ∇f

)
>uv

1

 . (34)

Furthermore, we approximate the periodic integral in Equation 9 by the Riemann sum
and finally obtain

M(u, v) =

uv
1

> J
uv

1

 , (35)

with the motion tensor

J =
2

N

N−1∑
n=0

∂xHε

(
e>ϕn∇f

)
∂yHε

(
e>ϕn∇f

)
∂tHε

(
e>ϕn∇f

)
∂xHε

(
e>ϕn∇f

)
∂yHε

(
e>ϕn∇f

)
∂tHε

(
e>ϕn∇f

)
> . (36)
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Here, N denotes the number of considered neighbours and ϕn := 2π n
N

. Choosing e.g.
N=8, the eight direct neighbours of each pixel are used to compute the census signatures.
Generally, we assume the images to be sampled on a regular grid with horizontal and
vertical grid sizes h1 and h2, respectively. Accordingly, the directional derivative e>ϕn∇f

at pixel (i, j)> is approximated via the two point stencil

[
e>ϕn∇f

]
i,j

=
[f ]i+d1,j+d2 − [f ]i,j√

(h1d1)2 + (h2d2)2
, (37)

where the vector d :=(d1, d2)> 6=0 represents, especially for diagonal neighbours, a scaled
version of eϕn (cf. Section 2.1). All other spatial and temporal derivatives are computed
by means of standard finite differences.

The implementation of the second order census-based approach is also straightforward.
The corresponding motion tensor reads

2

N

N−1∑
n=0

∂xHε

(
e>ϕnH(f)eϕn

)
∂yHε

(
e>ϕnH(f)eϕn

)
∂tHε

(
e>ϕnH(f)eϕn

)
∂xHε

(
e>ϕnH(f)eϕn

)
∂yHε

(
e>ϕnH(f)eϕn

)
∂tHε

(
e>ϕnH(f)eϕn

)
> , (38)

where the second order directional derivatives are calculated by the term

[
e>ϕnH(f)eϕn

]
i,j

=
[f ]i+2d1,j+2d2

− 2 [f ]i+d1,j+d2 + [f ]i,j

(h1d1)2 + (h2d2)2 , (39)

In both cases (first and second order), the resulting discrete versions of the Euler-Lagrange
equations create a sparse linear system of equations, which we solve iteratively using a
variant of the Gauß-Seidel method, namely successive over-relaxation [47].

6 Evaluation

To illustrate the impact of the different data terms in Table 1, we conduct our experiments
on an image sequence with a simple motion pattern; see Figure 3. Further, we subject
the grey values g ∈ [0, 255] of the second input image to the monotonically increasing
transformation

gout = 255 ·
(
m · gin + a

255

)γ
, (40)

where the constant a represents additive changes, m > 0 multiplicative changes and γ > 0
is used for gamma manipulations (cf. Figure 4, first row).
The parameter ε of the regularised step function can be adapted to the noise level and is
here fixed to 10−3. Furthermore, the input images are presmoothed with a Gaussian of
standard deviation 0.4 and the census signatures are determined on a 3×3 neighbourhood
(N=8).
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First image Ground truth flow Second image

Figure 3: Input sequence. From the first to the second input image, the square is moving
to the left while the background is shifted to the right. This motion is illustrated by
the optic flow plot in the middle, where colour indicates the direction and brightness the
amount of motion.

Table 1: Overview of the presented constancy assumptions, the corresponding linearised
data terms and the invariances under intensity rescalings. As in the text, we use the
abbreviations puv=∇fx · u+ ∇fy · v + ∇ft and Puv=H(fx) · u+ H(fy) · v + H(ft).

Constancy assumption Linearised data term Invariance

Gradient ‖puv‖22 additive

Census (1st order) 1
π

2π∫
0

H ′ε
2(e>ϕ∇f) ·

(
e>ϕpuv

)2
dϕ monotonically increasing

Hessian and Laplacian 1
2 · ‖Puv‖

2
F + 1

4 · tr
2(Puv) additive

Census (2nd order) 1
π

2π∫
0

H ′ε
2(e>ϕH(f)eϕ) ·

(
e>ϕPuveϕ

)2
dϕ affine with positive slope

12



No change Additive change Multipl. change Gamma change
S

ec
on

d
in

p
u

t
im

ag
e

(a,m, γ)=(0, 1, 1) (a,m, γ)=(25, 1, 1) (a,m, γ)=(0, 2, 1) (a,m, γ)=(0, 1, 0.5)

G
ra

d
ie

n
t

AAE = 2.56◦ AAE = 2.56◦ AAE = 18.50◦ AAE = 11.99◦

C
en

su
s

(1
st

or
d

er
)

AAE = 3.77◦ AAE = 3.77◦ AAE = 3.77◦ AAE = 3.80◦

H
es

si
an

an
d

L
ap

la
ci

an

AAE = 4.15◦ AAE = 4.15◦ AAE = 8.56◦ AAE = 10.53◦

C
en

su
s

(2
n

d
or

d
er

)

AAE = 4.60◦ AAE = 4.60◦ AAE = 4.61◦ AAE = 6.84◦

C
en

su
s

(c
o
m

b
in

at
io

n
)

AAE = 3.57◦ AAE = 3.57◦ AAE = 3.58◦ AAE = 4.14◦

Figure 4: Visual comparison of the discussed constancy assumptions under illumina-
tion changes. The second input image (first row) is manipulated by different grey level
rescalings (cf. Equation 40). Constancy assumptions from second to last row : gradient
(α = 58), 1st order census (α = 7), Hessian and Laplacian (α = 55), 2nd order census
(α=7), and the combination of 1st and 2nd order census (α=6).
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Figure 5: Comparison of the gradient constancy assumption and its censored version
under global multiplicative illumination changes (left) and gamma manipulations (right).
The parameter setting can be found in Figure 4.
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Figure 6: Comparison of the combined constancy assumption of the Hessian and the
Laplacian as well as its censored version under global multiplicative illumination changes
(left) and gamma manipulations (right). The parameter setting can be found in Figure 4.
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6.1 First Order

Let us first investigate the first order census approach. The second and third row in
Figure 4 demonstrate the increased robustness of the census-based method compared to
the gradient constancy assumption. In the absence of artificial illumination changes (first
column), the gradient constancy provides a better average angular error (AAE) [2]. It
extracts more information form the input images. The resulting flow fields for additive
changes (second column) remain unaltered due to the inherent invariance of both meth-
ods. In contrast, the gradient constancy assumption is not invariant under multiplicative
rescalings and gamma manipulations (third and fourth column). However, the censored
version provides an increased robustness. The absolute invariance is slightly affected due
to the presmoothing and ε being unequal to zero.
The plots in Figure 5 confirm our observations: The gradient constancy is not able to com-
pensate for multiplicative changes and gamma modifications. Contrary, the census-based
approach provides the proposed robustness. However, there is no free lunch: The increase
of robustness is associated with a loss of accuracy in the presence of small illumination
changes.

6.2 Second Order

Similar observations apply to the second order approach. While the constancy assump-
tion of the Hessian and the Laplacian is only valid under additive changes, its censored
version shows also an invariance w.r.t. multiplicative changes. However, as discussed, an
invariance against gamma modifications is not given; see Figure 4 (fourth and fifth row).
Nonetheless, the plots in Figure 6 suggest the increased robustness of the censored ap-
proach under those gamma changes, compared to the constancy assumption of the Hessian
and the Laplacian. Again, the invariance and increased robustness come at the price of
a loss of accuracy in the case of small brightness variations.
Moreover, especially in the case of additive and multiplicative changes, a combination of
the first and second order-based methods may be beneficial. In our example, we weight
the first order term with 0.7 and the second order one with 0.3. In this way, we gain an
increase in quality of 0.2◦ compared to standard first order census methods (cf. Figure 4,
last row). These findings go along with the findings of Puxbaum and Ambrosch [32], who
recommend to apply a modified version of the census transform to the image as well as
to its first spatial derivatives.

7 Conclusions and Future Work

Research in recent years has demonstrated that some fairly simple concepts such as soft
and hard thresholding or sparsity can be extremely powerful and theoretically interest-
ing. The census transform can be seen as another representative along this line. By
interpreting it in the continuous limit and embedding it into a variational framework we
have shown two theoretical key properties: the strong reliance on local extrema as well as
the restriction of the gradient constancy assumption along level lines. They exploit the
morphological invariance of the gradient direction in a clever way and yield the observed
robustness under illumination changes. This builds the basis for the success of the census
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transform in the context of correspondence problems. Furthermore, the gained insights
allow a natural generalisation of the census idea to higher order that is especially useful
in the case of multiplicative illumination changes.
The key properties of the census transform are of course not restricted to optic flow mod-
els. Since they have already proven to be equally beneficial for stereo reconstruction [21]
and face detection [9], we want to test their applicability for further computer vision tasks
such as the registration of exposure sequences in future work.
Our findings confirm the general usefulness of studying continuous limits of inherently
discrete morphological transforms. Other examples include e.g. continuous reinterpreta-
tions of median filters in terms of mean curvature motion [12] and morphological amoebae
as self-snakes [46].
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A Proofs

The proofs below are based on the sketches from [45] and provide full mathematical details
and adaptations to our specific situation. For didactic reasons, we replace the symmetric
function H ′ε

2 : R → R>0 by an equivalent function g, only defined in R≥0. In contrast
to [45], the family of functions in Theorem 2 is modified: Instead of g(s) ≤ βs−(1+γ)/2,
we use g(s) ≤ βs−(1+γ) for a suitable β > 0, s > s0 > 0, and γ̃ ≥ γ > 0. Moreover, we
substitute uσ by the variable f , representing a smoothed version of the input image.

A.1 Eigendecomposition of Census Tensor

Theorem 1. Let g : R≥0 → R>0 and let eϕ represent the unit vector (cosϕ, sinϕ)>. Fur-
thermore, let (r, ψ)> be the polar coordinates of ∇f . Then, for ∇f 6= 0 the orthonormal
basis of the symmetric 2×2 census tensor

C =
1

π

∫ 2π

0

g(|e>ϕ∇f |) · eϕe>ϕ dϕ (41)

is given by the normalised eigenvectors

w‖(ψ) =
∇f⊥

|∇f |
=

(
− sinψ
cosψ

)
(42)

and

w⊥(ψ) =
∇f

|∇f |
=

(
cosψ
sinψ

)
, (43)

with corresponding eigenvalues

λ‖(r) =
4

π

∫ π/2

0

g(r · cosϕ) · sin2 ϕ dϕ (44)
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and

λ⊥(r) =
4

π

∫ π/2

0

g(r · cosϕ) · cos2 ϕ dϕ . (45)

Proof. Let us first analyse the matrix C. The argument of the function g can be formu-
lated in terms of the polar coordinates r and ψ of ∇f :

|e>ϕ∇f | = |r · cos(ϕ− ψ)| . (46)

Plugging this in Equation 41 yields

C =
1

π

∫ 2π

0

g(|r · cos(ϕ− ψ)|) · eϕe>ϕ dϕ . (47)

Due to the symmetry and the π-periodicity of the integrand, the matrix may be rewritten
as

C =
2

π

∫ π

0

g(|r · cosϕ|) · eϕ+ψe
>
ϕ+ψ dϕ . (48)

Furthermore, the π/2-symmetry of the integrands in Equation 44 and 45 allow to write
the eigenvalues as

λ‖(r) =
2

π

∫ π

0

g(|r · cosϕ|) · sin2 ϕ dϕ (49)

and

λ⊥(r) =
2

π

∫ π

0

g(|r · cosϕ|) · cos2 ϕ dϕ . (50)

Let us now consider the matrix-vector product
(
λ‖(r) · I −C

)
w‖(ψ):

2

π

∫ π

0

g(|r · cosϕ|) ·
(

(cos2(ϕ+ ψ)− sin2 ϕ) sinψ − cos(ϕ+ ψ) sin(ϕ+ ψ) cosψ
cos(ϕ+ ψ) sin(ϕ+ ψ) sinψ − (sin2(ϕ+ ψ)− sin2 ϕ) cosψ

)
dϕ .

(51)
Expanding the trigonometric terms by means of the addition theorems and simplifying
the result using the identity cos2 ψ + sin2 ψ=1 leads to

−2

π

(
cosψ
sinψ

)∫ π

0

g(|r · cosϕ|) · cosϕ sinϕ dϕ . (52)

Due to the symmetry of the integrand with respect to π/2, the integral vanishes, i.e.(
λ‖(r) · I −C

)
w‖(ψ) = 0. Hence, w‖(ψ) is an eigenvector with the corresponding eigen-

value λ‖(r).
The eigenvectors of the symmetric matrix C set up an orthonormal system. Consequently,

w⊥(ψ) =
(
w‖(ψ)

)⊥
is also an eigenvector. Further, since

λ‖(r) + λ⊥(r) = tr(C)

=
2

π

∫ π

0

g(|r · cos(ϕ− ψ)|) · (sin2 ϕ+ cos2 ϕ) dϕ

=
2

π

∫ π

0

g(|r · cosϕ|) · (sin2 ϕ+ cos2 ϕ) dϕ

(53)

the corresponding eigenvalue λ⊥(r) is given by Equation 45.
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Figure 7: Illustration of the integrals L(r, d) (green) and R(r, d) (red). The dashed
rectangles show the corresponding upper and lower bounds from Equation 58 and 59,
respectively.

A.2 Ratio of Eigenvalues at High Contrast Edges

Theorem 2. Let g : R≥0 → R>0 be a monotonically decreasing function with the limit
lims→∞ g(s) = 0. Furthermore, g(s) ≤ βs−(1+γ) for a suitable β > 0, s > s0 > 0, and
γ̃ ≥ γ > 0. Then, the ratio of the eigenvalues fulfils

lim
r→∞

λ‖(r)

λ⊥(r)
= ∞ , (54)

where λ‖(r) and λ⊥(r) represent the eigenvalues of the census tensor; see Theorem 1.

To prove this theorem, we first introduce the following lemma:

Lemma 1. Let 0 < d ≤ π
4

and

L(r, d) =

∫ π/2−d

π/2−2d

g(r · cosϕ) dϕ , (55)

R(r, d) =

∫ π/2

π/2−d
g(r · cosϕ) dϕ . (56)

Then, for r > 1
cos(π/2−d)

the relation

L(r, d)

R(r, d)
≤ 2

β

g(1)

(
d

2

)−γ
r−γ (57)

holds.

Lemma 1. The term cosϕ is decreasing for ϕ ∈ [0, π/2], and as a result g(r · cosϕ) is
monotonically increasing in ϕ. With 0 < α ≤ d, the following inequalities hold (cf.
Figure 7):

L(r, d) ≤ d · g(r · cos(π/2− d)) (58)
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and
R(r, d) ≥ α · g(r · cos(π/2− α)) . (59)

This further implies
L(r, d)

R(r, d)
≤ d · g(r · cos(π/2− d))

α · g(r · cos(π/2− α))
. (60)

In the next step, we fix α to αr = π/2− arccos(1/r), which is by definition in the range of
0 and d for the assumption r > 1

cos(π/2−d)
:

L(r, d)

R(r, d)
≤ d · g(r · cos(π/2− d))

αr · g(1)
. (61)

Furthermore, we use the estimate arccosx ≤ π/2− x, x ∈ [0, 1] to obtain

αr =
π

2
− arccos

1

r
≥ 1

r
. (62)

With r ≥ 1/αr this gives

L(r, d)

R(r, d)
≤ d

g(1)
r · g(r · cos(π/2− d)) . (63)

The assumption g(s) ≤ βs−(1+γ) yields

L(r, d)

R(r, d)
≤ d

g(1)
β · r−γ · cos (π/2− d)−(1+γ) . (64)

In the last step, we exploit the inequality cos(x) ≥ π/4 − x/2 for x ∈ [0, π/2], i.e. in our
particular case

cos(π/2− d) ≥ d

2
, (65)

which finally leads to
L(r, d)

R(r, d)
≤ 2

β

g(1)

(
d

2

)−γ
r−γ . (66)

This concludes the proof of Lemma 1.

Now we are in a position to prove Theorem 2.

Proof. Due to

lim
r→∞

λ‖(r)

λ⊥(r)
= ∞ ⇔ lim

r→∞

λ‖(r) + λ⊥(r)

λ⊥(r)
= ∞ , (67)

it is equivalent to show that

lim
r→∞

λ⊥(r)

λ‖(r) + λ⊥(r)
= 0 . (68)
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In the following, we make use of Lemma 1. To this end, let us introduce the variables

Lk =

∫ φk+1

φk

g(r · cosϕ) dϕ (69)

Rk =

∫ π/2

φk+1

g(r · cosϕ) dϕ , (70)

where φk (k = 0, 1, . . . ) is defined by

φk =
π

2
− π

4

(
1

2

)k−1

. (71)

The differences of both integration limits in (69) and (70) are given by

dk = φk+1 − φk =
π

4

(
1

2

)k
=

π

2
− φk+1 . (72)

Applying Lemma 1 and using r > 1
cos(π/2−dk)

gives

Lk
Rk

≤ 2
β

g(1)

(
dk
2

)−γ
r−γ = 2

β

g(1)

(
8

π

)γ
2kγr−γ . (73)

Let us recall that g(r · cosϕ) is monotonically increasing for ϕ ∈ [0, π/2]. Thus, Lk and
Rk are smaller or equal than R0, for all k. With Equation 73, it follows for r > 1

cos(π/2−dk)

that
Lk
R0

≤ Lk
Rk

≤ 2
β

g(1)

(
8

π

)γ
2kγr−γ . (74)

In the next steps, let us relate λ⊥(r) from Equation 45 to Lk and Rk. To this end, we
write λ⊥(r) as the sum

λ⊥(r) =
4

π

(
n∑
k=0

∫ φk+1

φk

g(r · cosϕ) · cos2(ϕ) dϕ+

∫ π/2

φn+1

g(r · cosϕ) · cos2(ϕ) dϕ

)
, (75)

where n ∈ N. Since cos2(x) is monotonically decreasing for x ∈ [0, π/2], the following
inequality holds:

λ⊥(r) ≤ 4

π

(
n∑
k=0

(
cos2(φk) ·

∫ φk+1

φk

g(r · cosϕ) dϕ︸ ︷︷ ︸
Lk

)
+ cos2(φn+1) ·

∫ π/2

φn+1

g(r · cosϕ) dϕ︸ ︷︷ ︸
Rn

)
.

(76)
Additionally, cos2(x) is bounded by π/2 − x for x ∈ [0, π/2]. Thus, with Equation 71 we
can make the estimate:

cos2(φk) ≤
π

2

(
1

2

)k
. (77)

Using this inequality and exploiting that Rk ≤ R0 for all k results in

λ⊥(r) ≤ 2

(
n∑
k=0

(
1

2

)k
Lk +

(
1

2

)n+1

R0

)
. (78)
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Let us now analyse the expression λ⊥(r)
λ‖(r)+λ⊥(r)

in Equation 68. To this end, we exploit the

equality

λ‖(r) + λ⊥(r) =
4

π

∫ π/2

0

g(r · cosϕ) · (cos2(ϕ) + sin2(ϕ)) dϕ

=
4

π

(∫ π/4

0

g(r · cosϕ) dϕ︸ ︷︷ ︸
L0

+

∫ π/2

π/4

g(r · cosϕ) dϕ︸ ︷︷ ︸
R0

)
.

(79)

With Equation 78, it follows that

λ⊥(r)

λ‖(r) + λ⊥(r)
≤ π

2

∑n
k=0 (1/2)k Lk + (1/2)n+1 R0

L0 +R0

=
π

2

∑n
k=0 (1/2)k Lk/R0 + (1/2)n+1

L0/R0 + 1

≤ π

2

(
n∑
k=0

(
1

2

)k
Lk
R0

+

(
1

2

)n+1
)
.

(80)

As we have seen, Lk
R0

is bounded by Equation 74. This yields for all r > 1
cos(π/2−dn)

the
estimate

λ⊥(r)

λ‖(r) + λ⊥(r)
≤ π

2

(
2
β

g(1)

(
8

π

)γ n∑
k=0

(
2γ−1

)k (1

r

)γ
+

(
1

2

)n+1
)
. (81)

Let now w.l.o.g. γ 6= 1. Then we can write the geometric sum as

n∑
k=0

(
2γ−1

)k
=

2(γ−1)(n+1) − 1

2γ−1 − 1
=

2nγ+γ−n−1 − 1

2γ−1 − 1
. (82)

Further, with 1/r < cos(π/2− dn) < 2−n we obtain

λ⊥(r)

λ‖(r) + λ⊥(r)
<

π

2

(
2
β

g(1)

(
8

π

)γ
2γ−1−n − 2−nγ

2γ−1 − 1
+

(
1

2

)n+1
)
. (83)

Finally, since γ is bounded

lim
n→∞

λ⊥(r)

λ‖(r) + λ⊥(r)
= 0 , (84)

which further with r > 1
cos(π/2−dn)

implies Theorem 2.

References

[1] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski. A database
and evaluation methodology for optical flow. International Journal of Computer
Vision, 92(1):1–31, 2011.

[2] J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance of optical flow tech-
niques. International Journal of Computer Vision, 12(1):43–77, 1994.

21



[3] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow
estimation based on a theory for warping. In T. Pajdla and J. Matas, editors,
Computer Vision – ECCV 2004, Part IV, volume 3024 of Lecture Notes in Computer
Science, pages 25–36. Springer, Berlin, 2004.

[4] A. Bruhn. Variational Optic Flow Computation: Accurate Modelling and Efficient
Numerics. PhD thesis, Dept. of Computer Science, Saarland University, Saarbrücken,
Germany, 2006.

[5] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF: Binary robust independent
elementary features. In K. Daniilidis, P. Maragos, and N. Paragios, editors, Computer
Vision – ECCV 2010, Part IV, volume 6314 of Lecture Notes in Computer Science,
pages 778–792. Springer, Berlin, 2010.

[6] N. Cornelius and T. Kanade. Adapting optical-flow to measure object motion in
reflectance and X-ray image sequences. Technical Report 2502, Computer Science
Department, Carnegie Mellon University, Pittsburgh, PA, 1983.

[7] D. Dederscheck, T. Müller, and R. Mester. Illumination invariance for driving scene
optical flow using comparagram preselection. In Proc. IEEE Intelligent Vehicles
Symposium, pages 742–747, Alcala de Henares, Spain, June 2012.

[8] O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: A tool
for accurate and morphologically invariant matching of structures. In T. Burghardt,
D. Damen, W. Mayol-Cuevas, and M. Mirmehdi, editors, Proc. 2013 British Machine
Vision Conference, Bristol, UK, Sept. 2013. BMVA Press.
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