Skip to main content
Log in

Generalized Shapes and Point Sets Correspondence and Registration

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The theory of shapes, as proposed by David Kendall, is concerned with sets of labeled points in the Euclidean space \(\mathbb {R}^d\) that define a shape regardless of translations, rotations and dilatations. We present here a method that extends the theory of shapes, where, in this case, we use the term generalized shape for structures of unlabeled points. By using the distribution of distances between the points in a set we are able to define the existence of generalized shapes and to infer the computation of the correspondences and the orthogonal transformation between two elements of the same generalized shape equivalence class. This study is oriented to solve the registration of large set of landmarks or point sets derived from medical images but may be employed in other fields such as computer vision or biological morphometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-d point sets. IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987)

    Article  Google Scholar 

  2. Bandeira, A.S., Charikar, M., Singer, A., Zhu, A.: Multireference alignment using semidefinite programming. In: ITCS, pp. 459–470 (2014).

  3. Belongie, S., Malik, J., Puzicha, J.: Shape context: A new descriptor for shape matching and object recognition. In. In NIPS, vol. 54, pp. 831–837. Citeseer, Citeseer (2000).

  4. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2), 239–256 (1992)

    Article  Google Scholar 

  5. Bloom, G.S.: A counterexample to a theorem of s. piccard. J. Comb. Theory, Ser. A 22(3), 378–379 (1977)

    Article  MATH  Google Scholar 

  6. Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

  7. Boutin, M., Kemper, G.: On reconstructing n-point configurations from the distribution of distances or areas. arxiv:0304192 (2003).

  8. Boutin, M., Kemper, G.: Which point configurations are determined by the distribution of their pairwise distances? Int. J. Comput. Geometry Appl. 17(1), 31–44 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Boyer, D.M., Lipman, Y., St Clair, E., Puente, J., Patel, B.A., Funkhouser, T., Jernvall, J., Daubechies, I.: Algorithms to automatically quantify the geometric similarity of anatomical surfaces. Proceedings of the National Academy of Sciences of the United States of America 108(45), 18,221–18,226 (2011).

  10. Bronstein, A., Bronstein, M., Kimmel, R.: Numer Geom Non-Rigid Shapes, 1st edn. Springer Publishing Company, Incorporated (2008)

    Google Scholar 

  11. Castillo, R., Castillo, E., Guerra, R., Johnson, V.E., McPhail, T., Garg, A.K., Guerrero, T.: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys Med Biol 54(7), 1849 (2009)

    Article  Google Scholar 

  12. Chui, H.: Non-rigid point matching: Algorithms, extensions and applications. Ph.D. thesis, Yale University (2001).

  13. Chui, H., Rangarajan, A.: A new point matching Algorithm for non-rigid registration. Comput Vis Image Underst 89(2–3), 114–141 (2003)

  14. Ghosh, D., Sharf, A., Amenta, N.: Feature-driven deformation for dense correspondence. Medical Imaging: Visualization, Image-Guided Procedures, and Modeling (Proc. SPIE) 7261 (2009).

  15. Huang, Q.X., Guibas, L.J.: Consistent shape maps via semidefinite programming. Comput. Graph. Forum 32(5), 177–186 (2013)

    Article  Google Scholar 

  16. Jian, B., Vemuri, B.C.: Robust Point Set Registration Using Gaussian Mixture Models (2011).

  17. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull Lond Math Soc 16(2), 81–121 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kendall, D.G., Barden, D., Carne, T.K., Le, H.: Shape and Shape Theory. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  19. Kim, V.G., Li, W., Mitra, N.J., DiVerdi, S., Funkhouser, T.: Exploring collections of 3D models using fuzzy correspondences . ACM Trans. Graph. 31(4), 1–11 (2012).

  20. Lemke, P., Skiena, S., Smith, W.: Reconstructing sets from interpoint distances . Discrete Comput. Geom. 25, 597–631 (2003).

  21. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: ICCV, pp. 1482–1489 (2005).

  22. Lipman, Y., Funkhouser, T.: Mobius voting for surface correspondence. ACM Transactions on Graphics (Proc. SIGGRAPH) 28(3) (2009).

  23. Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found Comput Math 5(3), 313–347 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Myronenko, A., Song, X.S.X.: Point Set Registration: Coherent Point Drift. IEEE Trans Pattern Anal Mach Intell 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  25. Osada, R., Funkhouser, T.A., Chazelle, B., Dobkin, D.P.: Shape distributions. ACM Trans. Graph. 21(4), 807–832 (2002)

    Article  Google Scholar 

  26. Pachauri, D., Kondor, R., Singh, V.: Solving the multi-way matching problem by permutation synchronization. In: NIPS, pp. 1860–1868 (2013).

  27. Rangarajan, A., Chui, H., Bookstein, F.L.: The Softassign Procrustes Matching Algorithm. Inf Process Med Imaging 1230, 29–42 (1997)

    Article  Google Scholar 

  28. Schönemann, P.H.: A generalized solution of the orthogonal procrustes problem. Psychometrika 31(1), 1–10 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  29. Scott, G.L., Longuet-Higgins, H.C.: An Algorithm for associating the features of two images. Proc Royal Soc B 244(1309), 21–26 (1991)

    Article  Google Scholar 

  30. Shapiro, L.S., Brady, J.M.: Feature-based correspondence: an eigenvector approach. Image Vis Comput 10(5), 283–288 (1992)

    Article  Google Scholar 

  31. Wahba, G.: Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59. SIAM (1990).

  32. Wang, L., Singer, A.: Exact and stable recovery of rotations for robust synchronization. CoRR abs/1211.2441 (2012).

  33. Yaniv, Z., Cleary, K.: Image-Guided Procedures: A Review (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan M. Maris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maris, B.M., Fiorini, P. Generalized Shapes and Point Sets Correspondence and Registration. J Math Imaging Vis 52, 218–233 (2015). https://doi.org/10.1007/s10851-014-0538-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-014-0538-8

Keywords

Navigation