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Abstract This paper presents a novel method to test

mean differences of geometrical object properties

(GOPs). The method is designed for data whose repre-

sentations include both Euclidean and non-Euclidean
elements. It is based on advanced statistical analysis

methods such as backward means on spheres. We de-

velop a suitable permutation test to find global and lo-

cal morphological differences between two populations

based on the GOPs. To demonstrate the sensitivity of
the method, an analysis exploring differences between

hippocampi of first episode schizophrenics and con-

trols is presented. Each hippocampus is represented

by a discrete skeletal representation (s-rep). We inves-
tigate important model properties using the statistics

of populations. These properties are highlighted by the

s-rep model that allows accurate capture of the object

interior and boundary while, by design, being suit-

able for statistical analysis of populations of objects.
By supporting non-Euclidean GOPs such as direction

vectors, the proposed hypothesis test is novel in the

study of morphological shape differences. Suitable dif-

ference measures are proposed for each GOP. Both
global and local analyses showed statistically signifi-

cant differences between the first episode schizophren-

ics and controls.
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1 Introduction

Statistical analysis of anatomical shape differences has

been broadly reported in the literature (e.g., [2,5,10,

15]). In medical settings, the study of morphological
changes of human organs and body structures is of

great interest. An important subfield in medical imag-

ing is to understand neuroanatomical structures of the

human brain (e.g., [12,14,42]). Morphological changes

of brain structures can provide the physician with
information about neuropsychiatric diseases such as

Alzheimer’s and schizophrenia. A common interest of

medical shape analysis is to test for morphological dif-

ferences between healthy and diseased populations. In
addition, the study of drug effects is of high interest

in epidemiology. Volumetric measurements often can

not distinguish between brain structure differences of

two populations [45]. Therefore, sophisticated mathe-

matical shape models with properties that support an
accurate statistical analysis are required.

Shape differences can be quantified by hypothe-

sis tests. A statistical hypothesis test requires a null

hypothesis H0 and an alternative hypothesis H1; a
standard null hypothesis assumes no differences be-

tween the populations. In this paper, we propose a

novel approach for a hypothesis test on geometrical

object properties (GOPs) of shapes with application
to the hippocampus of the human brain.

Such a hypothesis test of populations of medical

shapes depends on 1) the type of medical data, 2) ex-

traction of the object and the following shape repre-
sentation by a model, 3) selecting object properties

for the shape model, 4) statistics necessary to per-

form population comparison of the models and, 5) a
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method for constructing a hypothesis test based on

given difference measures.

We use a discrete skeletal representation, abbrevi-

ated as s-rep [36] as a shape model. The amenities of

s-reps relative to other shape representations are de-

scribed in Section 3. The s-reps are fit to a set of binary
images of the hippocampus extracted from a mag-

netic resonance imaging (MRI) data set. All skeletal

shape models have Euclidean as well as non-Euclidean

components. Thus, a hypothesis test based on skeletal
models must support the two different types of fea-

tures. The approach presented in this paper allows a

sensitive hypothesis test between the components of

s-reps. By using this approach, local and global shape

differences of the hippocampi between schizophrenia
and control populations are investigated.

The hypothesis test requires i) fair correspondence

between all skeletal models within a population and
across populations, ii) a method to compute means

of populations of skeletal models, iii) a test statistic

with appropriate distance measures for the Euclidean

and non-Euclidean components of the means, iv) a
method to calculate a test statistic and the empirical

distribution of the test statistic, and v) a procedure

to correct for multiple comparison of local and global

testing of GOPs.

The paper is presented as follows. The data set for

the schizophrenia study describing two shape popu-

lations is presented in Section 2. The skeletal model

is discussed in Section 3 in addition to required sta-
tistical properties for shape analysis of populations.

Section 4 introduces the method composite principal

nested great spheres (CPNG), which allows statisti-

cal analysis of the Euclidean and non-Euclidean com-
ponents of skeletal models such as the calculation of

means. Section 5 describes the model fitting proce-

dure for the two shape populations, which produces

the statistical properties required for each model. A

permutation test is introduced in Section 6 and spec-
ified for skeletal models together with required statis-

tics. Finally in Section 7, hypothesis test results of the

hippocampus study are reported.

2 Schizophrenia study data set

The data consist of MRI assessments of hippocampi

from patients with schizophrenia and a similar set

from a healthy control group as described in [28,40]. In
the original study, 238 first-episode schizophrenics and

56 controls were enrolled. First-episode schizophrenia

patients have not received medical treatment prior to

the MRI assessment. The hippocampi were segmented
from the aligned MRI scans with an automated atlas

based segmentation tool developed at the University

of North Carolina [16,28].

Statistical analysis must be performed on either

the left or right hippocampus as a combined analysis

could bias the result. Accordingly, the left hippocam-
pus is evaluated in this paper. Records of the the left

hippocampus were not available for 17 patients from

the schizophrenia group. Therewith, the data set con-

sists of 221 first-episode schizophrenia cases (SG) and
56 control cases (CG) and is represented by binary

files which reflect the segmented hippocampi. In the

data provided, the hippocampi have been normalized

in volume but the original volumes were reported as

separate scaling features.

3 Object representation

The representation by a shape model allows calcula-
tion of shape statistics of the hippocampus. The type

of model, chosen to compare two shape populations,

should capture a rich collection of GOPs presented in

the data. In addition, small deformations in objects

should be reflected by small deformations in the mod-
els. Finally, the model should not introduce artificial

variation across a population which is not present in

the objects themselves.

As discussed by [36], a model that fulfills these

three properties is an interior-filling s-rep as depicted

in Figure 1. Starting with the continuous case, this

model and its properties will be discussed in the fol-
lowing.

The desired GOPs of the model can be catego-

rized into three groups. The first group (G1) should
capture locational information of the object bound-

ary. The second group (G2) should reflect the local

surface curvature by incorporating directional infor-

mation into the shape model. The shape model should

accurately depict the local orientation of the object.
The third group (G3) should describe how the object

boundary is connected by the interior in order to re-

flect the relationship across the interior of the object.

The thickness of an object is one property of the in-
terior among others. Skeletal models are designed to

obtain these geometric properties.

The family of skeletal models has been widely stud-
ied in computer vision and medical image analysis. In

Section 3 of [41] it is shown that the medial locus [4]

of an object Ω ⊆ R
n can be described by an inward

“grassfire” that starts at the boundary and dies out at

a folded version of the medial locus called MΩ. Given
a folded medial locus MΩ, the medial representation

of an object Ω is determined by a set of spoke direc-

tions from points of MΩ to the corresponding points

of tangency on the boundary ∂Ω. The collection of
spoke end points capture locational information of the

object boundary as postulated in (G1). The second

group (G2) is captured by the directional information
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(a) skeletal representation (b) ellipsoid (c) hippocampus

Fig. 1: Continuous skeletal representation and fitted s-reps. (a) Sectional view of a two-sided skeletal 3D object
representation. Colored spokes emanate from the skeletal sheet (which is not medial) to the surface. In the

continuous form there is a spoke on each point on the skeletal sheet. (b) Discrete s-rep of a non-deformed 3D

ellipsoid. (c) Discrete s-rep of a hippocampus.

of the spokes. The points of MΩ describe the inherent

symmetry of an object and therewith (G3) above.

Strictly medial representations are limited by the

fact that every protruding boundary kink results in

additional medial branches. Thus, two versions of the
same object with small noise can have drastically dif-

ferent medial representations. Skeletal models achieve

additional stability by relaxing the medial constraint.

Figure 1a visualizes a sectional view of a two-sided

skeletal object representation in R
3 composed of a

skeletal sheet and spokes which emanate from a skele-
tal position on the skeletal sheet to the surface. The

skeletal sheet is close to midway but is not medial. An

exactly medial representation of this object would re-

quire the setMΩ to include an additional long branch.
Elimination of such branches in MΩ is the goal of the

skeletal representation. Figures 1b and 1c will be dis-

cussed later.

Stability in the branching structure and stability in

the skeletal sheet ensure structural case-by-case stabil-

ity of the model and thus good correspondence across
the samples in the full data set. The branching con-

straint can be tightened for specific classes of objects

where the shape is known. For an ellipsoid-like object

shape, such as the hippocampus, the constraint of no
branching is reasonable and is adopted. Yet, we want

to retain as much as possible the medial properties,

such as orthogonal spokes to the boundary and ap-

proximately equal spoke length on both sides of the

skeletal sheet. Therefore, the family of skeletal models
is restricted by the class of interior-filling s-reps that

are modeled as medial as possible [36].

In addition to the case-by-case stability, we require

population stability to avoid artificial variance across

a population that is solely an artifact of the individual
s-rep fittings; such variance is not connected to the ob-

jects themselves. Population stability can be achieved

by a re-fitting step of the s-rep to the object using an

estimated shape probability distribution of the popu-

lation. The re-fitting step reduces the variance of the

s-rep population as described in Section 5. Both case-

by-case stability and population stability ensure that
the shape models have improved correspondence of

both the spokes and the skeletal locations between

objects, which will support accurate statistics across

a population.

A discrete s-rep, as required for the numerical anal-

ysis of slab-shaped objects, consists of a two-sided
(folded) sheet of skeletal positions sampled as a grid of

atoms, whose skeletal positions are depicted as small

spheres in Figures 1b and 1c. On each side of the sheet,

there is a spoke, a vector with direction and length

on the top and on the bottom connecting the skele-
tal sheet to the boundary. Also, for each edge grid

point there is an additional spoke vector connecting

the skeletal sheet fold to the crest of the slab. The

sheet is close to midway consistent to the fixed branch-
ing constraint between the two sides of the slab, and

the spokes are approximately orthogonal to the object

boundary. Each discrete s-rep is described by a feature

vector

s = (p1, . . . , pna
, r1, . . . , rns

, u1, . . . , uns
) (1)

with na = next
a + nint

a the number of atoms and ns =
3next

a + 2nint
a is the number of radii and spoke direc-

tions. A slabular s-rep consists of next
a exterior (edge

grid points) and nint
a interior atoms. An interior atom

consists of a skeletal position p ∈ R
3, two spoke di-

rections u ∈ S2 and two spoke lengths r ∈ R+ (top,
bottom) where S2 = {x ∈ R

3 | ‖x‖ = 1} is the unit

sphere. An exterior atom consists of a skeletal position

p ∈ R
3, three spoke directions u ∈ S2 and three spoke

lengths r ∈ R+ (top, crest, bottom). As a result, the
shape space of s ∈ R

3na ×R
ns

+ × (S2)ns is a product of

Euclidean and non-Euclidean spaces. Each s-rep can

also be described in the space Rns+1×S3na−4×(S2)ns
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together with a scaling factor γ ∈ R+. This representa-

tion is derived from a pre-shape space [22] as discussed

in Section 4.
Another popular class of modeling 3D objects is

a boundary point distribution model (PDM) where a

solid object is defined by the positions of the sampled

surface points [8,10,24]. In general, normal directions
can be attached on the surface points of a PDM but

to the best of our knowledge, it has not been used in

practice. In addition, deformation-of-atlas models are

well known, wherein the shape changes of an object in

images are modeled by the deformations of a template
image [34,38]. Such models can capture the local ori-

entation of an object. Nevertheless, both approaches

are less suitable for shape statistics of populations by

the lack of the interior description of an object.
We restrict our analysis to discrete slabular s-reps

which are organized into a (3×8) grid of skeletal posi-

tions, i.e., each s-rep consists of 24 atoms. The choice

of the grid size defines how exactly the binary images

can be described by the s-rep model. We have chosen
a grid of 3 × 8 atoms as a trade-off between captur-

ing important object features, avoiding an overfitting

and keeping the dimension of the shape space low. A

hippocampus example with bumps that are not tightly
described by a (3×8) grid is visualized in Section 1.1 of

the Supplementary Material. However, we do not look

at individual s-reps that may not be perfectly correct

but rather at differences between groups which are not

biased versus the other.

4 CPNG analysis

A hypothesis test on mean differences requires a me-

thod to calculate means from populations of shape
models. The method should incorporate all geomet-

rical components of such models. We have presented

in Section 3 an s-rep as a suitable model with Eu-

clidean components and components which live on

spheres. This section will discuss an approach to pro-
duce means, in addition to shape distributions of pop-

ulations of s-reps.

First of all, we need to understand the shape space

of a discrete s-rep to apply a proper statistical analy-
sis. Each discrete s-rep is described by a feature vector

s ∈ R
3na×R

ns

+ ×(S2)ns as defined in (1), and lives in a

product of Euclidean and non-Euclidean spaces. Each

element of s corresponds across the population. The

points Xp = (p1, . . . , pna
)′ ∈ R

3na form an (na × 3)
matrix and a PDM that can be centered and normal-

ized at the origin by ZH = HXp/‖HXp‖ with H a

Helmert sub-matrix which removes the origin [10,22].

H is an ((na − 1)× na) matrix with row i− 1 defined
by the vector

(H)i−1 = (di, . . . , di,−idi, 0, . . . , 0)

with di = (i(i + 1))−
1

2 , i = 2, . . . , na where di is re-

peated i-times. ZH is called a pre-shape with infor-

mation of location and scale removed. Therewith, the
Cartesian product of pi ∈ R

3, i = 1, . . . , na can be de-

scribed by the pre-shape ZH and by a scaling term

γ = ‖HXp‖. The pre-shape ZH lives on the (3na − 4)

dimensional unit sphere S3na−4 ⊂ R
3na−3. Each spoke

direction ui, i = 1, . . . , ns of s lives on the unit sphere

S2. The radii ri ∈ R+, i = 1, . . . , ns and scale factor

γ ∈ R+ are log-transformed to the Euclidean space

R. Thus, a discrete s-rep s can be described in the

shape space R
ns+1 × S3na−4 × (S2)ns composed of

several spheres and a real space. Jung et al. [20] and

Pizer et al. [36] have proposed a method to analyze

a population of s-reps that are living in such an ab-

stract space. This method is called composite principal
nested spheres (CPNS) and will be discussed in the

following.

Suppose we have a population of N s-reps. In order

to analyze the covariance structure of such a popula-
tion, we have to find a common coordinate system.

CPNS consists of two main parts. First, the spherical

parts are analyzed by principal nested spheres (PNS)

[18,19], which analyzes data on spheres in decreas-
ing dimension, i.e., using a backward view. Therewith,

the pre-shape ZHj and each uij can be mapped to a

Euclidean space with j = 1, . . . , N . Second, the Eu-

clideanized variables are concatenated with the log ri
and log γ to give a matrix Zcomp and an array of scale
factors to make all variables commensurate as dis-

cussed in detail in [36]. Finally, the structure of the co-

variance is investigated from the scaled matrix Zcomp.

PNS is a novel method to estimate the joint probabil-
ity distribution of data on a d-dimensional sphere Sd

by a backward view along the dimensions. The back-

ward view allows dealing with one dimension at a time

and thus produces better probability distributions.

In Euclidean space, the forward and backward ap-

proaches to principal component analysis (PCA) are

equivalent, which is not true in general non-Euclidean

spaces, such as the d-dimensional unit sphere Sd. Da-
mon and Marron [9] have studied generalizations (e.g.,

PNS) of PCA across a variety of contexts, and have

shown that backwards is generally more amenable to

analysis, because it is equivalent to a simple adding of
constraints.

PNS is a fully backward approach that fits the best

lower dimensional subsphere in each dimension start-

ing with Sd. The subsphere can be great (a sphere
with radius 1) or small (less than 1). Figure 2 visu-

alizes the method which takes into account variation

along small circles (non-geodesic variations) as well

as variation along geodesics. Thus, the decomposition
is non-geodesic. Each subsphere A(wl, ψl) of S

d−l+1 is

defined by an axis (polar position) wl with latitude an-

gle ψl, l = 1, . . . , d. The lowest principal nested sphere
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Fig. 2: Backwards PNS by computation of the nearest lower dimensional subsphere. In addition, the projection

P (p1) of a data point p1 with score Zd,1 on the subsphere A(w1, psi1) is depicted.

A(wd, ψd) is a circle. The Fréchet mean [13,21] on the

remaining 1-dimensional subsphere can be seen as the

best-fitting 0-dimensional subsphere (a point) of the

data. Finally, this mean is projected back to Sd result-

ing in a backward Fréchet mean.

CPNS has been shown to be powerful in the anal-
ysis of a single s-rep population. In this study, our

hypothesis test of local or global shape differences in-

volves the comparison of two or more CPNS statistics,

which is facilitated by stable statistics and correspon-

dence between populations, using a common coordi-
nate system. In fact, PNS is a non-geodesic method

which fits small and great subspheres. The fitting of

small spheres has advantages in describing the amount

of data variation inside a population with fewer princi-
pal components, but two or more populations can have

different decompositions into small and great spheres,

which introduce additional variation across the popu-

lations, e.g., reflected by a larger variation between

CPNS means of several populations. Therefore, all
CPNS analyses in this paper are constrained by fit-

ting principal nested great spheres, called PNG and

CPNG respectively. Therewith, we avoid additional

variation, ensure correspondence and a common coor-
dinate system across several populations. A prelimi-

nary simulation study on permuted populations of s-

reps confirmed the improvements of CPNG compared

to CPNS. Notice, CPNG is identical to [17] in the

two dimensional case. We are leaving a commensurate
CPNS analysis for populations using small spheres for

future work and discuss a possible approach in Sec-

tion 1.2 of the Supplementary Material.

5 Model fitting

The application of the proposed hypothesis test to the

hippocampi study, introduced in Section 2, requires
a procedure to generate s-rep fittings with statistical

object and population properties as discussed in Sec-

tion 3. This section will introduce such a procedure.

Assume we have a set of binary images and a set

of corresponding signed distance images. The distance

images are used during the fitting process as the tar-

get data to which reference models are fitted. Follow-

ing [36], the fitting procedure can be described with 5
consecutive steps: initial alignment, atom stage, spoke

stage, CPNG stage and the final spoke stage.

Initial alignment: A reference s-rep is translated, ro-

tated and scaled into the space of distance images by

matching of moments to the interior.

Atom stage: The atom stage defines the geometry

of the object and accordingly, the case-by-case stabil-

ity. Each atom, i.e., each skeletal grid point and its

set of spokes are fit one by one with multiple itera-
tions through these atoms. For each atom, an objec-

tive function is optimized [36]. The objective function

reflects the goodness of the fit and is calculated by a

weighted sum of different optimization criteria. The

function penalizes factors which are making the s-rep
structurally improper, such as irregularity in the grid

and crossing of adjacent spokes. In addition, it penal-

izes the spoke ends deviating from the object bound-

ary and their directions deviating from the boundary
normal (both implied by the input distance image).

The spokes are further penalized from failing to match

the geometry of the crest implied by the distance im-

age. The penalties are summed over spokes which are

interpolated from the original s-rep.

Spoke stage: The spoke stage optimizes the spoke

lengths to match the object boundary more closely.

The skeletal grid points and the resulting geometry of
the s-rep will not be changed during this stage. The

atom and spoke stage provide appropriate s-rep fit-

tings to the data with case-by-case stability.

CPNG stage: The CPNG stage is designed to pro-

vide improved correspondence across a population of

s-reps. The fits of the spoke stage are used to calculate

CPNG statistics as described in Section 4. Improved
correspondence is achieved by restricting the fits to a

shape space which results from the CPNG analysis.

CPNG estimates a mean s-rep from the population
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but also yields eigenmodes and modes of variation [18].

Consequently, any s-rep can be expressed by the score

of the eigenmodes in the CPNG space. Hence, corre-
spondence across a population is achieved by initial-

ization of each fitting with the CPNG mean s-rep and

by restricting the shape space to the CPNG space. In

addition, s-rep candidates from the CPNG space are
penalized by the Mahalanobis distance between the

candidate and the CPNG mean. As a result improved

correspondence is achieved.

Final spoke stage: The final spoke stage adjusts the

spokes of the CPNG stage fits to match closely the ob-

ject boundary. Consequently, s-reps can be generated

which are not an element of the CPNG space.

The first three stages form a preliminary stage in
the fitting procedure. The fitting stages are imple-

mented in a software called Pablo, developed at the

University of North Carolina. The program is avail-

able at [32].

6 Multiple hypothesis testing

A sensitive hypothesis test is useful for the quantifica-

tion of shape differences, both to compare populations

globally and locally. The introduction of a suitable

shape model in Section 3, a method to calculate means
from populations in Section 4 and a procedure to gen-

erate s-rep fittings in Section 5 provide us with tools

to generate models and means that contain the desired

properties for a sensitive hypothesis test. An impor-

tant challenge is that the geometric object elements
of each model are spatially correlated. Furthermore,

a suitable hypothesis test should correct for multiple

comparisons.

6.1 An overview of multiple comparison corrections

The problem of false positives with multiple statistical
tests is well recognized. Statistical shape analysis must

deal with a large number of hypotheses, each derived

from a GOP element, for example of the s-rep. Two

common categories of multiple comparison correction
are familywise error rate (FWER) and false discovery

rate (FDR) [3]. Let V be the number of rejected hy-

potheses when the null is true (type 1 error), and S

the number rejected hypotheses when the null is false.

The FWER is defined as the probability of at least
one type 1 error by P(V ≥ 1). The FDR is defined as

the expected proportion of type 1 errors among the

total number of rejected hypotheses by E(V/(S + V )

with V/(S + V ) = 0 if (S + V ) = 0. There are sev-
eral approaches to control FWER and FDR. A com-

monly used one is the Bonferroni correction. Another

approach is using typical wavelet coefficient selection

methods [1,6,44]. In addition, variable selection based

on threshold random field theory (RFT) have been

used [7,23,33]. Permutation tests allow multiple com-
parison correction by estimating the empirical null-

distribution and the covariance structure of the test

statistics [30,35,43]. This paper uses multiple compar-

ison correction by FWER.

The Bonferroni correction has several major draw-

backs; the Bonferroni threshold can be conservative

if the GOPs are dependent of each other. In partic-
ular, spatial autocorrelations result in fewer effective

variables. Spatial correlation can be expected between

neighbor spokes and skeletal positions of an s-rep. In

addition, the Bonferroni correction reduces the power

of a test as the probability of false negatives increases,
because it controls only the probability of false pos-

itives. RFT requires strong assumptions such as the

same parametric distribution at each spatial location

(e.g., multivariate Gaussian), sufficient smoothness as
well as stationarity. The assumption of a parametric

distribution can not be fulfilled in case of an s-rep

model, and the assumption of stationarity can also be

doubtful.

Permutation tests have advantages over the ap-

proaches above that make them particularly suitable

for s-reps. S-reps are defined on a product of Euclidean

and non-Euclidean spaces with unknown probability
distributions of the geometric object elements. In con-

trast to standard parametric methods such as Bonfer-

roni and RFT, a permutation test is a non-parametric

approach using the data to estimate the sampling dis-
tribution of the test statistic under the null-hypothesis

H0. Permutation tests are also adaptive to underlying

correlation patterns in the data.

A minimal assumption of permutation testing is

the exchangeability under H0 such as identical distri-

butions of populations 1 and 2. The underlying idea

of a permutation test is that any permutation of the

observations has the same probability to occur under
the assumption H0. Given the permuted populations,

a common test statistic measures differences between

population means. The test statistic may calculate fea-

ture by feature differences or combine features to mea-
sure differences between GOPs. The permuted pop-

ulations can be used to estimate the distribution of

the test statistic as well as to estimate the correlation

structure.

6.2 A permutation test for s-reps

Suppose we have two populations of s-reps described
by a set Ã1 = {s̃11, . . . , s̃1N1

} of N1 s-reps and a set

Ã2 = {s̃21, . . . , s̃2N2
} of N2 s-reps with s̃il as defined

in (1). We assume without loss of generality N1 ≥ N2.
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The permutation test for populations of s-reps can be

divided into four steps.

First, observed and permuted population CPNG
means are generated as described in Section 6.2.2.

Second, appropriate Euclidean or non-Euclidean GOP

differences are calculated between the means of the

observed populations Ã1 and Ã2, and between the
means of corresponding permuted populations as de-

scribed in Sections 6.2.3 and 6.2.4. Third, p-values

are calculated for each GOP difference as described

in Section 6.2.5. Each of these p-value is uniformly

distributed and mapped by probability integral trans-
formations to standard normal distributed variables.

Hence, the GOPs can be mapped from a non-linear

to a linear space with the same coordinate system

for each GOP. Finally, the covariance matrix of these
standard normal distributed variables is estimated, in

order to incorporate the true multivariate nature of

the data and the correlation between the GOPs as de-

scribed in Section 6.2.6. As a result, the partial tests

of the GOPs can be combined into a single summary
statistic by the Mahalanobis distance. In addition, a

feature-by-feature test can be constructed as described

in Section 6.2.7.

6.2.1 Pre-processing

In a first pre-processing step, global translational and

rotational variations should be removed from all s-reps
in order to analyze only shape variations. To make the

alignment unbiased with respect to the population, the

overall backwards CPNG mean µ̃ is estimated from

the set union

Ã = Ã1

⋃

Ã2 = {s̃11, . . . , s̃1N1
, s̃21, . . . , s̃2N2

}.

The CPNG mean µ̃ is translationally aligned by the

subtraction of the mean of the locational components.

In addition, the eigenvectors of the second moments

about the center of the skeletal positions yields a ro-

tational alignment to the x, y and z-axis. The trans-
lationally and rotationally aligned CPNG mean µ̃ is

called µ. Afterwards, each s-rep s̃ ∈ Ã is translated,

rotated and scaled to µ by standard Procrustes align-

ment (see [10]) based on the hub-positions of each s-
rep. For each aligned s-rep s, the scaling factor τ ∈ R+

is kept as a variable. The global translation and rota-

tion information is not considered of interest in the

shape analysis of hippocampi. Moreover, we have cho-

sen to use features which can be understood by the
user (e.g., physicians). Therefore, the skeletal posi-

tions are considered in R
3na instead on S3na−4 as in

Section 4. Thus, each aligned s-rep is described by

a feature vector t = (τ, s), where t contains n =
1 + na + 2ns features and is an element of the shape

space R3na×R
ns+1

+ ×(S2)ns . Set A1 = {t11, . . . , t1N1
},

A2 = {t21, . . . , t2N2
} and A = A1

⋃

A2.

6.2.2 Generation of observed and permuted sample

means

First, a method to calculate means for the observed

and permuted samples of the two populations is re-
quired in order to create a hypothesis test of mean

differences.

Observed sample means. For each set Ai, i = 1, 2

the observed sample mean is µ̂i = (τ̄i, µ̄i) ∈ R
3na ×

R
ns+1
+ × (S2)ns . The component µ̄i is a CPNG back-

wards mean as described in Section 4. The mean scal-

ing factor τ̄i ∈ R+ is computed as a geometric mean

(which is natural for scaling factors) by

τ̄i = exp





1

Ni

Ni
∑

j=1

log(τij)



 , i = 1, 2. (2)

In fact, the CPNG backwards mean µ̄i consists of ns+

1 PNG backwards means, one for the skeletal position
and ns for the spoke directions, and ns means for the

spoke lengths respective to (2).

Permuted sample means. The number of all possi-

ble permutations of the index set I = {1, . . . , N1+N2}
is
(

N1 +N2

N1

)

=
(N1 +N2)!

N1!N2!
.

Random sample sets Il, l = 1, . . . , P of P = 30, 000

permutations of the index set I were generated, a

number comparable to the suggested number in [11]

and [26]. Larger numbers of permutations increase the
accuracy of the p-values but require more computa-

tion time. The permutation group A1l ⊂ A contains

all s-reps indexed by the first N1 indices of Il. The

group A2l = A \ A1l contains the remaining N2 s-
reps. For each permutation Il the means ν̂il, i = 1, 2

are estimated by ν̂1l = (κ̄1l, ν̄1l) for the group A1,

ν̂2l = (κ̄2l, ν̄2l) for the group A2. ν̄il is estimated by

the CPNG backwards mean and κ̄il is the mean scal-

ing factor of the corresponding permutation respective
to (2).

6.2.3 Test statistics

Equality of distributions between populations A1 and

A2 can be tested by a nonparametric combination of
a finite number of dependent partial tests as proposed

in Pesarin [35]. The global null hypothesis is given by

H0 : {A1

d
= A2}, where

d
= denotes the equality in dis-

tribution. Let H1 be the global alternative hypothesis.

In general, the test requires the definition of a statistic
T in testing a null hypothesis. A natural test statistic

is

T (A1, A2) = d(µ̂1, µ̂2), (3)
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where µ̂1 and µ̂2 are the observed sample means as

defined in Section 6.2.2 and d is a difference measure

on the nonlinear manifold describing the GOPs. The
test statistic T consists of K different partial tests de-

pending on the difference measure. Thus, the global

null hypothesis can be written in terms of K sub-

hypotheses H0 : {
⋂K

k=1
H0k} and the alternative as

H1 : {
⋃K

k=1
H1k}. Usually, the dependence relation

among partial tests are unknown even though they

are functions of the same data. Pesarin [35] has shown

that a suitable combining function (described in Sec-
tion 6.2.6) will produce an unbiased test for the global

hypothesis H0 against H1 if all partial tests are as-

sumed to be marginally unbiased, consistent and sig-

nificant for large values. The partial tests Tk, k =

1, . . . ,K are defined by the partial difference mea-
sures. Therewith, a hypothesis test for identical sta-

tistical distribution of two s-rep populations is given

by mean differences,

H0 : {µ1 = µ2} versus H1 : {µ1 > µ2} (4)

for a one-sided test in case the difference measures are

unsigned and

H0 : {µ1 = µ2} versus H1 : {µ1 6= µ2} (5)

for a two-sided test in case of signed differences.

The hypothesis H0 will be rejected if the probabil-

ity of observing T (A1, A2) under H0 from the empir-

ical distribution is smaller than a chosen significance

level α; otherwise we do not reject. The significance
level describes the probability of type 1 error, i.e., H0

is wrongly rejected. Alternatively, the type 2 error oc-

curs when H0 is not rejected but it is in fact false.

6.2.4 Difference measures

This section defines a signed difference measure d2 for

the test statistic (3). An alternative unsigned differ-

ence measure d1 is defined in Section 1.3 of the Sup-
plementary Material. Suppose we have two s-reps

ti = (τi, pi1, . . . , pina
, ri1, . . . , rins

, ui1, . . . , uins
)′,

i = 1, 2 with the skeletal positions pij ,∈ R
3 and the

scale factors log(τi), log(rij) ∈ R as Euclidean GOPs

and the spoke directions uij ∈ S2 as non-Euclidean

GOPs. Thus, a suitable difference measure is required

as defined in the following.

The measure d2 is a vector of differences

d2(t1, t2) := (d1(τ1, τ2),

d2(p11, p21), . . . , d2(p1na
, p2na

),

d3(r11, r21), . . . , d3(r1ns
, r2ns

),

d4(u11, u21), . . . , d4(u1ns
, u2ns

))′ (6)

with appropriate partial difference measures: d1 for

the scaling factors τi, d2 for the positions pik, d3 for

the spoke lengths rij and d4 for the spoke directions
uij with i = 1, 2, k = 1, . . . , na and j = 1, . . . , ns by

d1(τ1, τ2) = log(τ2)− log(τ1),

d2(p1k, p2k) = p2k − p1k,

d3(r1j , r2j) = log(r2j)− log(r1j),

d4(u1j , u2j) = dgs(u1j , u2j).

The partial difference measure dgs is defined by longi-

tude and latitude differences of the spoke directions

(u1j , u2j) using a normalization by the shift of the

geodesic mean as explained in the next paragraph. The
components of

d2 : (R3na × R
ns+1
+ × (S2)ns)×

(R3na × R
ns+1
+ × (S2)ns) −→ R

3na+3ns+1

are not metrics because they can take on negative val-

ues.

Shift by the geodesic mean. The spoke directions

(u1j , u2j) ∈ S2×S2 can be mapped by spherical para-
metrization to latitudes φ1j , φ2j and longitudes θ1j , θ2j
in the base coordinate system of all aligned hippo-

campi. The spherical mapping can be defined by

φij(uij) = atan2(uij3,
√

u2ij1 + u2ij2),

θij(uij) = atan2(u2ij2, u
2
ij1),

with φij ∈ [−π/2, π/2] and θij ∈ (−π, π]; the two-

argument function atan2(x2, x1) ∈ (−π, π] is the sign-
ed angle between two vectors e1 = (1, 0)′ and (x1, x2)

′

∈ R
2. The longitude φ is measured from the x-y plane.

The spherical mapping is not uniquely defined in

general. Furthermore, it does not establish an appro-

priate correspondence. Two points close to the equator

with identical geodesic distance as two points close
to the north pole have different latitude and longi-

tude differences, and are therefore not commensurate.

For that reason, longitude and latitude pair differ-

ences will be normalized by shifting the geodesic mean
of (u1j , u2j) along its meridian to the equator by a

rotation about an axis c ∈ S2 with rotation angle

ψ ∈ [0, π/2). Then, the directions (u1j , u2j) are ro-

tated along small circles on the sphere about the same

axis c with the same rotation angle ψ towards the
equator.

In more detail, consider a pair (u1j , u2j) of spoke

directions on S2 with northpole Np = (0, 0, 1)′. At

first, find its geodesic mean by

µg(u1j , u2j) =
u1j + u2j

‖u1j + u2j‖
.

We assume acos(|µ′

gNp|)) > 1e − 3; otherwise choose

a different northpole. Given a rotation matrix R1 :=
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R1(c, ψ), the rotation of µg along its meridian to the

equator is µ̃g = R1µg with

R1(c, ψ) = I3 + sinψ[c]× + (1− cosψ)(cc′ − I3), (7)

where I3 is the three-dimensional unit matrix and [c]×
is the cross product matrix satisfying [c]×v = c×v for

any v ∈ R
3. To avoid discontinuity problems between

−π and π for θij , let R2 be the rotation matrix as

defined by (7) that rotates µ̃g towards (1, 0, 0)′, i.e.,

R2µ̃g = (1, 0, 0)′. Now, shift each pair (u1j , u2j) by

applying ũ1j = R2R1u1j and ũ2j = R2R1u2j . Finally,

we calculate the latitudes φ1j(ũ1j), φ2j(ũ2j) and lon-
gitudes θ1j(ũ1j), θ2j(ũ2j) and define the differences of

the transported spoke directions by the delta latitude

∆φj = φ2j − φ1j and delta longitude ∆θj = θ2j − θ1j .

Therewith, the difference measure dgs is defined by

dgs(u1j , u2j) := (∆φj , ∆θj).

6.2.5 Mapping of GOP differences to standard

normally distributed variables

Suppose we have the test statistic T0 := T (A1, A2)

of the underlying observed sample. The idea is to esti-

mate the sampling distribution of the statistic T0 from
test statistics of the permuted samples

Tl := T (A1l, A2l), l = 1, . . . , P.

The test statistic measures the GOP differences in dif-

ferent units. The vector Tl = (Tl1, . . . , TlK) containsK
partial tests, where K is the number of components of

the difference measure d2. The elements of the vector

Tl are not commensurate as required for the estima-

tion of the covariance structure. Thus, the GOP differ-
ences must be normalized and mapped to a common

coordinate system in a way that preserves the multi-

variate dependence structure between the GOPs. The

procedure is explained in the following and depicted

in Figure 3 on the basis of a selected GOP using dis-
tance measure d2. The figure is discussed further in

the text.

Calculating p-values for GOP differences. Af-

ter the calculation of Tl, we estimate for each GOP

difference k = 1, . . . ,K the empirical cumulative dis-
tribution function (CDF) by

Ck(Tlk) =
1

P

P
∑

l′=1

I(Tl′k, Tlk)

with I(Tl′k, Tlk) =

{

1 : Tl′k ≤ Tlk,
0 : otherwise.

Respectively, we can calculate Ck(T0k).

Mapping of p-values to N (0, 1). By construction

the p-values have a uniform distribution. Thus, the

GOP differences can be represented as

Ulk = Φ−1

(

C̃k(Tlk)
)

, (8)

where Φ−1 is the inverse standard Gaussian CDF,

C̃k(Tlk) =
sc− 2

sc
Ck(Tlk) +

1

sc
,

k = 1, . . . ,K, l = 1, . . . , P and sc is a scaling factor.
The inverse standard Gaussian CDF requires values

greater than 0 or less than 1; otherwise Ulk = ±∞.

Therefore, all p-values are scaled by C̃k(Tlk) with sc =

10000. Simulations have shown numerical instabilities
for larger values of sc. The marginal distribution of Ulk

is standard Gaussian for every k, i.e, Ulk ∼ N (0, 1).

Using the estimated inverse empirical CDF Ck, the

observed GOP differences T0k are mapped to U0k, re-

spectively.

6.2.6 Global test with multivariate comparisons

correction

Given Ulk ∼ N (0, 1), the K × K covariance matrix
ΣU of the P ×K matrix U = (U1, . . . , UP )

′ with Ul =

(Ul1, . . . , UlK), l = 1, . . . , P is estimated by

Σ̂U =
1

K − 1
U ′U.

A corrected test statistic is then given by the Maha-
lanobis distances

M0 = U ′

0Σ̂
−1

U U0, Ml = U ′

l Σ̂
−1

U Ul, l = 1, . . . , P,

which defines a suitable combining function [35, Sec-

tion 6.2.4] that includes the GOP correlation struc-
ture. The sampling distribution of the final test statis-

tic under the null-hypothesis H0 can be estimated

from Ml by an empirical CDF. The probability of ob-

servingM0 under H0 from the empirical null-distribu-

tion is given by

p(M0) =
1

P

P
∑

l=1

H(Ml,M0), (9)

with H(Ml,M0) =

{

1 : Ml ≥M0,

0 : Ml < M0.

Equation (9) defines the p-value of the final global test

by rejecting H0 if p(M0) < α.
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Fig. 3: Mapping of GOP differences to standard normally distributed variables using the example of a skeletal

z-position (k = 3) with distance measure d2. The 2.5% and 97.5% quantiles are visualized in each plot. (a) GOP

differences Tlk of the permuted samples with l = 1, . . . , 30, 000 and T0k of the underlying observed sample.
(b) Calculated p-values Ck(Tlk) and Ck(T0k) using the empirical cumulative distribution function. (c) Standard

normal distributed variables Ulk and U0k. The dotted-dashed line depict the corrected threshold λ for the GOP

as described in Section 6.2.7.

6.2.7 Feature-by-feature test with multivariate

comparisons correction

The global shape analysis in the previous section can

not indicate local shape differences, which motivates

the introduction of an FWER threshold correction for
a feature-by-feature test. The permutation test ap-

proach on each variable Tlk yields an empirical dis-

tribution Ck, dependent standard Gaussian variables

Ulk and the empirical covariance matrix Σ̂U . As a re-
sult, Ul = (Ul1, . . . , UlK) is approximately distributed

as NK(0, Σ̂U ), where NK is a multivariate Gaussian

distribution with mean 0, covariance Σ̂U and density

function ψ such that each marginal is Ulk ∼ N (0, 1).

Because each random variable Ulk is standard Gaus-
sian, the threshold for each standard Gaussian variable

should be the same. Thus, given a significance level α,

we wish to find the threshold λ such that

P (Ul1 < λ, . . . , UlK < λ) = 1−
α

2
.

The function P is a multiple integral from −∞ to λ

in each variable of Ul ∼ NK(0, Σ̂U ) and can be under-
stood as a function g(λ) of the single variable λ. The

function g(λ) is monotonic increasing with asymptotes

at 0 and 1. The numerical calculation of the p-values

is based on the approximation over an appropriate in-
terval of λ. Recall that λ ≥ λcorr with

λcorr = Φ−1
(

1−
α

2

)

is the threshold for a single standard Gaussian vari-

able. Let l ∈ {1, . . . , P} be fixed. The threshold λcorr
is applicable if all U·k are perfectly correlated. Fur-

thermore, we know that λ ≤ λindep with

λindep = Φ−1

(

(

1−
α

2

)1/K
)

because the threshold λindep is applicable if all U·k are

independent. The desired level 1 − α/2 will be rather

near 1. Thus, the function g(λ) will be concave down-
ward in the interval [λcorr, λindep].

The values g(λcorr) and g(λindep) can be estimated

from a large number NSamp of random samples Yn ∼
NK(0, Σ̂U ) with n = 1, . . . , NSamp by

ĝ(λ) =

∑NSamp

n=1 Iλ(ψ(yn1, . . . , ynK))
∑NSamp

n=1 ψ(yn1, . . . , ynK)

with Iλ(ψ(yn)) =

{

ψ(yn) : ψ(yn) < λ,

0 : otherwise,

and yn = (yn1, . . . , ynK). We have chosen a number of

NSamp = 200, 000 samples.

The computation of g(λindep) requires the compar-

ison of yn values only for those identified as not in the

accepted subset for the smaller value λcorr and adding

into the accumulated sum for the newly accepted sam-

ples. Finally, the standard regula falsi method can be
used to iteratively solve the equation g(λ) = 1 − α/2

with initial evaluations g(λcorr) and g(λindep).

The dashed-dotted line (labeled as “threshold”) in
Figure 3c shows the corrected λ for a selected GOP.

7 Results

7.1 Fitting of s-reps to hippocampi

The hippocampus data set consists of binary images

of 221 first-episode schizophrenia cases and 56 control

cases as described in Section 2. Antialiased distance
images were generated from the binary images accord-

ing to [31]. Based on the distance images, appropriate

preliminary fits by an initial alignment and an atom
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and spoke stage were produced as described in Sec-

tion 5. This preliminary stage is described in detail in

Section 1.4 of the Supplementary Material. In order to
control the manual work during the preliminary stage,

we considered only the first 96 of 221 cases of SG as

discussed in the Supplementary Material. Let Ã1 be

the set of 96 preliminary fits for SG and Ã2 be the set
of 56 preliminary fits for CG. All preliminary fits were

translated and rotated to the CPNG mean of the set

union Ã1∪Ã2 by standard Procrustes alignment [10] in

order to remove global variation from the preliminary

fits. Let Ā1 be the set of 96 aligned SG preliminary
fits and Ā2 the set of 56 aligned CG preliminary fits.

Finally, CPNG statistics were calculated for the s-rep

populations as described in Sections 4 and 5.

A challenging question is the appropriate estima-

tion of the shape distributions of both populations (SG

and CG) during the CPNG stage. An option is to cal-

culate the CPNG statistic of each population (Ā1 and

Ā2), resulting in two means and shape distributions.
Another option is to calculate the CPNG statistic of

the pooled population (Ā1 ∪ Ā2), resulting in a single

mean and shape distribution. The use of two individ-

ual shape distributions result in independent fittings
between the two populations. On the other hand, the

fittings should not be biased and have good correspon-

dence between the populations, which is provided by

a pooled shape distribution. A pooled CPNG statistic

also removes possible bias from the manual adjust-
ments during the preliminary stage.

The final fitting results obtained from two separate

shape distributions showed extraordinary high separa-
tion properties and indicated a large bias. Thus, the

main focus was the analysis of fittings using a pooled

CPNG statistic from Ā1 ∪ Ā2. In addition, we have

generated a second group of final fittings derived from
CPNG stages using a pooled shape distribution, two

individual shape distributions and two individual in-

terchanged shape distributions. The second group is a

compromise between independence and a small bias,

and is discussed in Section 3 of the Supplementary
Material.

Each CPNG statistic contains a backward mean,

the eigenmodes and the corresponding CPNG scores.
Figure 4 shows the explained amount of variation by

the first 25 eigenmodes for the aligned preliminary

fittings after atom and spokes stages (1st fittings),

i.e., for Ā1 (subset of SG), Ā2 (CG) and Ā1 ∪ Ā2.

The number of eigenmodes was selected to describe
more than 75% of the total cumulative variance. This

number compromises on capturing enough shape vari-

ation while limiting the shape space in order to avoid

overfitting. Accordingly, the first 21 eigenmodes of the
pooled shape distribution were selected for the CPNG

stage describing 75.2% total variance. 18 eigenmodes

are required to describe 75.3% of the total cumulative

variance of Ā1, and 15 eigenmodes to describe 75.7%

for Ā2.

In the CPNG stage, the obtained backward mean

of Ā1∪Ā2 was translationally and rotationally aligned

to the 221 SG cases and the 56 CG cases. An ad-

ditional scaling of the means would bias the CPNG

statistic because the principal components already con-
tain size information. Afterwards, the aligned means

were optimized inside the CPNG shape space and un-

der the penalty of a Mahalanobis distance match term.

A high penalty term leads to better correspondence
between cases but to less accurate fits. An appropri-

ate penalty term was chosen by a simulation study,

the report of which is omitted. At the end, the final

spoke stage was performed to ensure that the spoke

directions match the boundary.

Figure 4 also shows CPNG analyses for the ob-

tained 2nd fittings of the corresponding cases to Ā1,

Ā2 and Ā1∪ Ā2 using a pooled shape space during the
CPNG stage. The respective numbers of eigenmodes

explain an increased amount of variation compared to

the first fittings as a result of improved correspondence

across the populations. Now, 18 eigenmodes describe

94.9% of the total variance for the subset of SG, 15
eigenmodes describe 93.5% for CG and 21 eigenmodes

describe 95.3% for the pooled group.

The final fittings were re-scaled into a world coor-

dinate system (units of mm) with the stored scaling
factor from the normalization step described in Sec-

tion 2. We denote the re-scaled sets of final fittings

by the set A1 of 221 s-reps for SG and the set A2 of

56 s-reps for CG. The total cumulative variance of the
CPNG analysis of A1 (SG) and A2 (CG) is depicted in

Figure 4 (final). Now, 18 eigenmodes describe 94.8%

of the total variance of SG and 15 eigenmodes describe

94.5% for CG. More than 75% of the total cumulative

variance of CPNG shape space is now described by
using only 5 eigenmodes compared to 18 and 15 as

shown previously.

The average volume in mm3 (and standard de-
viation) of the final fittings was 3, 036 (343) for SG

and 3, 137 (295) for CG. The observed hippocampal

volume reduction for schizophrenia patients is consis-

tent with previous studies (e.g., [25]). The average

volume overlap between fittings and binary images
was 94% for SG and CG (depicted in Section 3 of

the Supplementary Material) which is fairly accurate.

The percent-volume overlap was measured by the Dice

coefficient as defined in the Supplementary Material.
The variance of the Dice coefficient is small for both

groups. Nevertheless, a larger variance inside SG is ob-

served. Schizophrenia is a heterogeneous disease and

also contains hippocampi variations between healthy

patients.

In Figure 5, the distributions of the SG and CG

fittings are visualized by the projections of the scaled
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(b) CG
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Fig. 4: CPNG analysis of s-reps before the CPNG stage (1st fittings), after CPNG and final spoke stage (2nd

fittings) and after scaling into the world coordinate system (final). The variance contribution of the first 25

eigenmodes are depicted together with the cumulative variance for the CPNG analysis of the (a) SG group,
(b) CG group and (c) pooled group. The set of 1st and 2nd fittings consist of 96 s-reps for SG, 56 s-reps for CG

and 152 s-reps for the pooled group. The set of final fittings consist of 221 s-reps for SG and 56 s-reps for CG.

The dashed vertical line in (c) depicts the number 21 of used eigenmodes for the description of the shape space

during the CPNG stage.

CPNG scores matrix ZComp (see Section 4) onto the

distance weighted discrimination (DWD) direction.

DWD is a discrimination method which avoids the
data piling problems of support vector machine [27,

37]. The projected distributions of SG and CG fit-

tings for the pooled class are estimated by kernel den-

sity estimates (KDEs). The different areas under the
CG and SG curves are due to unbalanced population

sizes (56 for CG compared to 221 for SG). A differ-

ence between the populations is visible but not very

strong. Thus, it is an interesting question whether the

proposed hypothesis test in Section 6.2 will be able
to find significant differences between SG and CG for

both fittings classes.
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Fig. 5: Jitterplot and KDEs showing the distributions

of final SG and CG fittings projected onto the DWD
direction. Additionally, the KDE of the pooled dis-

tribution of SG and CG is shown (all). A difference

between the populations is visible but not very strong.

7.2 Global test results

The obtained final fittings were used to test the hy-

pothesis (5) by the proposed procedure in Section 6.2
with a significance level of α = 0.05. An alternative

pre-processing step (called PP2) is applied in addi-

tion to the pre-processing described in Section 6.2.1

(called PP1 in the following). PP2 translates and ro-
tates each s-rep s̃ ∈ Ã to an overall CPNG backward

mean µ without scaling. Thus, each aligned s-rep is de-

scribed by a feature vector t = s. The global scaling

information was previously described by the feature τ

in PP1. In contrast, this is captured by the skeletal
positions and spoke length using PP2.

Figure 6 shows the global test results for the dif-

ference measure d2 using PP1 and PP2. The global
hypothesis of equal sample means is rejected and a

statistically significant difference between the shape

distribution of SG and CG is established (p = 0.0109

for PP1 and p = 0.0029 for PP2 with p = P (M0|H0)).
The smaller p-value for PP2 seems to be due to the

volume information being spread into the 24 skeletal

positions instead of into a single feature. The feature-

by-feature test will highlight this fact in the next sec-

tion. Intermediate results of the proposed hypothesis
test procedure are shown in Figure 3 on the basis of a

selected GOP. Further visualizations of the procedure

can be found in the Supplementary Material.

A detailed power and simulation study is beyond

the scope of this paper and left for future work. How-

ever, the power of the proposed hypothesis test is

demonstrated on the basis of a real data example. Fur-
thermore, the results are compared with a direction

projection permutation (DiProPerm) based mean hy-

pothesis test [46]. The DiProPerm test is based on the
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Fig. 6: Global test results using PP1 in (a) and
PP2 in (b). The empirical distribution of Ml, l =

1, . . . , 30, 000 is shown together with M0 and the 95%

quantile of the empirical distribution.

evaluation of the scaled CPNG scores matrix ZComp

(see Section 4). The CPNG scores matrix is calculated

for SG and CG using both pre-processing methods.

Thus, the DiProPerm test is calculated in Euclidean
space using standard Euclidean statistics in contrast

to the proposed hypothesis test, which is performed in

the non-Euclidean s-rep space using the CPNG back-

ward means. An interesting open problem is to ex-

tend a method such as DiProPerm in an intrinsic way:
in other words to perform DiProPerm using Manifold

geodesic distances.

Table 1 summarizes all global test results. We used

30, 000 permutations in all settings to be consistent

with Section 6.2.2. The DiProPerm test does not re-
quire such a high number of permutations in contrast

to the proposed global test. Simulations, reported in

the Supplementary Material, reveals that a large per-

mutation size is needed to obtain stable results be-
cause of the Mahalanobis distance. DiProPerm was

carried out using a mean difference (MD) test statistic

as recommended in [46]. The DWD-DiProPerm per-

Table 1: Empirical p-value results using difference
measure d2 for the proposed global hypothesis test in

comparison with results obtained by DiProPerm. Two

different pre-processing steps were applied: (PP1) Full

Procrustes alignment with scaling. (PP2) Full Pro-

crustes alignment without scaling. Three different pro-
jection directions were used for DiProPerm.

method
empirical p-value
PP1 PP2

Mahalanobis distance
difference measure d

2 0.0109 0.0029
DiProPerm using MD-statistic

DWD direction vector 0.0074 0.0038
SVM direction vector 0.0119 0.0136

formance was comparable to the Mahalanobis distance

results. The support vector machine (SVM) results of

DiProPerm were less powerful, probably due to data
pilling effects. All results are statistically significant at

the level of α = 0.05.

7.3 Single GOP test results

The global shape analysis of hippocampi in the pre-

vious section can not indicate local shape differences.

Interesting structural changes of the surface are often

reflected by a few GOPs, e.g., the local bending of
an area. Therefore, the proposed threshold correction

for a feature-by-feature test in Section 6.2.7 is useful.

Such a feature-by-feature test is not available from

DiProPerm.

As our feature-by-feature test approach is novel for

nonlinear hypotheses, there is no competing method to

compare with. However, a method to evaluate the test

is needed. The performance of the feature-by-feature
test was evaluated using Receiver Operating Charac-

teristic (ROC) curves. Selected examples of this anal-

ysis are reported in Section 2.4 of the Supplementary

Material. For each permutation, an ROC curve was
generated from the cumulative histograms of the two

permuted samples, which results in an envelope under

the null distribution. In addition, an ROC curve be-

tween the two true observed samples was obtained. A

significant feature is indicated if the ROC curve of the
observed data is close to the boundary or outside the

envelope, otherwise not. A comparison of the hypoth-

esis test results to this reveals the high quality of the

proposed method.

Figures 7 and 8 visualize the feature-by-feature

test results for PP1. Test results are shown on the

basis of the skeletal grid given by the CPNG back-

ward mean of SG. Recall that each discrete slabular
s-rep is organized into 24 atoms in a 3 × 8 grid (see

Section 3). This results in 271 GOPs with 72 GOPs

corresponding to the skeletal positions of the s-rep (x,
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Fig. 7: Significant GOPs using PP1 based on the 3 × 8 skeletal sheet of the SG CPNG mean. Test results

are shown in (a)-(c) for the skeletal x, y and z-positions, in (d) for the latitude spoke directions, in (e) for

the longitude spoke directions and in (f) for the spoke lengths. Non-significant skeletal positions are marked

by small blue points and significant skeletal positions are marked by large red points. Similar, non-significant

spoke directions and lengths are marked by small blue lines whereas significant spoke directions and lengths are
marked by wide red lines.

y and z-positions), 66 GOPs for the latitude spoke

directions (bottom, crest and top), 66 GOPs for the

longitude spoke directions (bottom, crest and top), 66

GOPs for the spoke lengths (bottom, crest and top)

and 1 GOP for the global scaling factor. The corrected
threshold is λ = 2.2917 as defined in Section 6.2.7.

Figure 7 indicates local shape changes by highlight-

ing local parts of the s-rep. Red points mark signifi-
cant skeletal x, y and z-positions in the Figures (a)-(c).

Non-significant skeletal positions are marked by smal-

ler blue points in these figures. Five significant skeletal

positions can be observed at the crest of the sheet, one
in the x and y-direction and three in the z-direction.

Moreover, significant spoke directions and lengths are

marked by wide red lines and non-significant by thin-

ner blue lines in the Figures (d)-(f). Several latitude

and longitude spoke directions indicate locally signifi-
cant deformations between the two groups in the Fig-

ures (d)-(e). The most latitude differences that are

statistically significant are on the bottom side of the

skeletal sheet whereas more longitude differences are
significant on the top side. Furthermore, we observe

no spoke direction with simultaneously significant lat-

itude and longitude. This behavior should be inves-

tigated in future studies. The latitude and longitude

differences could indicate local bending around the y

and z-axis, respectively. Figure (f) highlights one sig-

nificant spoke length on the front bottom side of the

skeletal sheet.

In addition to the results presented in Figures 7,
the global scaling factor τ between SG and CG was

found statistically significant. The GOP |U0K | was

2.7627 where the index K corresponds to the global

scale factor.

These observations and results are also emphasized
by Figure 8, which shows the magnitude of signifi-

cance of all GOPs except the scaling factor. In order

to simplify the visualization all standard normal val-

ues U0k, k = 1, . . . ,K − 1 are presented in absolute

values. The color map is non-linear defined from blue
to white to red. The corrected threshold λ defines the

color white. Blue and red visualize non-significant and

significant values, respectively. The blue small circle

inside a block marks whether a U0k is less than or
equal to the threshold λ. Red small circles mark if a

U0k is greater than the threshold λ and thus statisti-

cally significant, showing up as red in Figure 7. Partic-
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Fig. 8: Colored significance map of U0k with a corrected threshold λ = 2.2917 using PP1. Each box represents

a GOP which correspond to a skeletal atom. The color map on the left side is non-linear and has a range from

blue (not significant) to white (λ) to red (significant). The circle inside each box marks whether an U0k is less
or equal than the threshold λ (symbolized by blue) or if an U0k is greater than the threshold λ (symbolized by

red).

ularly, several latitude and longitude spoke directions

show a highly significant magnitude in Figure 8.

Figures 9 and 10 are identical to the two previ-
ous figures except for the use of PP2 instead of PP1.

Several skeletal x and y-positions are statistically sig-

nificant in contrast to Figures 7 and 8 with only one

significant skeletal x and y-position. The volume dif-
ference between the two populations is reflected by the

skeletal x and y-positions using PP2. Thus, the signif-

icant skeletal x and y-positions show rather significant

differences from a global deformation than from local

deformations. However, we observe only one statisti-
cally significant skeletal z-position because the skeletal

sheet of the hippocampus is rather flat, as medial as

possible and therefore located close to the x-y plane,

where z = 0. As a result, several skeletal z-coordinates
are scaling invariant.

Nevertheless, the observation of only one signif-

icant skeletal z-position in addition to no observed
statistically significant spoke length in Figure 9f im-

plies that we only observe statistically significant vol-

ume differences in the x-y direction but not in the

z-direction. Skeletal x and y-positions equal to x =

0 and y = 0 are scaling invariant in the x and y-

directions respectively. As a result, no statistically sig-

nificant x-positions can be observed close to x = 0 in
Figure 9a. Moreover, Figures 10c and 10d show only

small differences compared to Figures 8c and 8d. Sim-

ilar results between spoke directions are expected be-

cause of the scaling invariance of uij ∈ S2. The slightly

different color scheme is also due to a different thresh-
old.

Additional computations and results are shown in

the Supplementary Material. Section 2.5 of the Sup-

plementary Material presents results using an alterna-

tive measure d1 defined by a vector of unsigned partial

differences such as the Euclidean distance between two
skeletal positions. That difference measure changes the

GOPs, i.e., how the single s-rep features are combined

to GOPs. The difference measure d2 closely reflects

each s-rep feature. The choice of an appropriate dif-
ference measure depends on the nature of the medical

research question. In addition, hypothesis test results

using a second group of final fittings are presented,
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Fig. 9: As Figure 7, now based on PP2.
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Fig. 10: As Figure 8, now based on PP2 with a corrected threshold λ = 2.4837.



Nonlinear Hypothesis Testing of Geometrical Object Properties of Shapes Applied to Hippocampi 17

derived from 5 independent CPNG stages in Section 5

by using a pooled shape distribution, two individual

shape distributions and two individual interchanged
shape distributions. The second group of final fittings

is described in detail in Section 3 of the Supplemen-

tary Material.

8 Discussion

This paper proposes a novel method to test global and

local hypotheses on Euclidean and non-Euclidean data.

Important requirements of shape models are pointed

out in order to test for population differences. Fur-
thermore, suitable statistical methods are proposed to

analyze the Euclidean and non-Euclidean elements of

the models. In addition, the estimation of appropri-

ate shape distributions of populations is worked out.

Finally, the analysis of first episode schizophrenia pa-
tients compared to controls demonstrated the power

of the hypothesis test given a proper pre-processing.

The effect of different pre-processings of the data are

highlighted. The developed feature-by-feature test is
novel and important for physicians in order to under-

stand local shape changes. The method can easily be

adapted for desired GOPs depending on underlying

research questions. A difference measure for the anal-

ysis of s-reps is proposed. The visualization of local
shape changes is of great interest for the study of lo-

cal rotational deformations [39] which is a subject of

future studies.

The s-rep model, statistics and the fitting proce-

dure resulted in accurate fittings with a high concen-

tration of variance in relatively few eigenmodes. This

reflects the high correspondence between the s-reps.

The introduced test found significant differences be-
tween the two populations. First, a statistically sig-

nificant loss of hippocampal volume was observed by

the global scaling factor which is in agreement with

[25,28,29]. Second, a significant volume difference was
observed in the x and y-directions but not in the z-

direction for the aligned hippocampi. Third, several

spoke directions were found as statistically significant.

This study is the first study that examines direc-

tional information using s-reps. The significant differ-

ences of several spoke directions confirm the impor-

tance of our contribution in the research of morpho-

logical shape changes and encourages further research.
Later studies should more deeply investigate if spoke

direction differences are due to independent local de-

formation of GOPs or due to local rotational defor-

mation. Styner et al. [42] indicated a potential local
bending of the hippocampi between the two groups.

Furthermore, this study is the first study that could

identify directions driving the volume change.

In general, results are challenging to compare be-

tween studies of brain morphology because of different

models, features and metrics. Narr et al. [29] calcu-
lated a radial distance measure in addition to a mea-

sure that examined the signal intensity on the basis of

a surface based mesh modelling method. Also, Mamah

et al. [25] used a triangulated graph representation of
the hippocampi. Such models are limited compared

to s-reps because the interior of an object is not de-

scribed by the model itself. The model representation

in McClure et al. [28] is a skeleton type which leads

to less correspondence between populations and con-
tains further disadvantages, e.g., all spoke length are

identical on each atom. Furthermore, McClure et al.

[28] applied an FDR based test approach in contrast

to the FWER based approach proposed in this paper.
The FDR is a less strict multiple testing criteria than

the FWER. However, the discussed results are consis-

tent between the studies. The s-rep model provides a

relatively rich description of an object. Moreover, the

proposed test procedure offers global and local non-
linear hypothesis tests based on Euclidean and non-

Euclidean GOPs. Thus, the test supports more con-

sistent and sensitive interpretations of morphological

changes.

This paper motivates several areas of further re-
search. 1) A simplification of the s-rep fitting pro-

cedure is desirable that depends on correct choice of

several fitting parameters. The choice of a large num-

ber of parameters might be an avoidable difficulty in
the use of s-reps in clinical practice. 2) The defini-

tion of an adaptive s-rep model that finds an opti-

mal skeletal grid could be of relevance for the future.

The grid need not to be rectangular but must corre-

spond across cases of a population. 3) The hypothesis
test might be extended by including image intensities

in addition to morphological features. An interesting

research question is the study of correlation between

morphological changes and intensities. 4) An alterna-
tive combining function might decrease the required

large number of permutations for a global test. 5) A

power study on the basis of simulated data to elab-

orate further the proposed method. 6) A comparison

of hippocampi between two treatment groups of first
episode schizophrenia. 7) Extension of the method to

hippocampi from longitudinal data. In addition, a sim-

ilar hypothesis test based on the sample variance in-

stead of the sample mean could be of future interest.
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Poincaré 10, 215–310 (1948)

14. Gerig, G., Styner, M., Shenton, M.E., Lieberman, J.A.:
Shape versus size: improved understanding of the mor-
phology of brain structures. MICCAI pp. 24–32 (2001)

15. Goodall, C.: Procrustes methods in the statistical anal-
ysis of shape. J. R. Stat. Soc. Ser. B Stat. Methodol.
53(2B), 285–339 (1991)

16. Gouttard, S., Styner, M., Joshi, S., Gerig, G.: Subcor-
tical structure segmentation using probabilistic atlas
prior. In: Proceedings of the SPIE Medical Imaging,
vol. 65122, pp. J1–J11 (2007)

17. Huckemann, S., Hotz, T., Munk, A.: Intrinsic shape
analysis: geodesic PCA for Riemannian manifolds mod-
ulo isometric Lie group actions. Statist. Sinica 20(1),
1–58 (2010)

18. Jung, S., Dryden, I.L., Marron, J.S.: Analysis of princi-
pal nested spheres. Biometrika 99(3), 551–568 (2012)

19. Jung, S., Foskey, M., Marron, J.S.: Principal arc anal-
ysis on direct product manifolds. Ann. App. Statist.
5(1), 578–603 (2011)

20. Jung, S., Liu, X., Marron, J.S., Pizer, S.M.: General-
ized PCA via the backward stepwise approach in image
analysis. In: J.A. et al. (ed.) Brain, Body and Machine:
Proceedings of an International Symposium on the 25th
Anniversary of McGill University Centre for Intelligent
Machines, Advances in Intelligent and Soft Computing,
vol. 83, pp. 111–123 (2010)

21. Karcher, H.: Riemannian center of mass and mollifier
smoothing. Comm. Pure Appl. Math. 30(5), 509–541
(1977)

22. Kendall, D.G., Barden, D., Carne, T.K., Le, H.: Shape
and Shape Theory. Wiley, Chichester (1999)

23. Kilner, J.M., Kiebel, S.J., Friston, K.J.: Applications
of random field theory to electrophysiology. Neurosci.
Lett. 374, 174–178 (2005)

24. Kurtek, S., Ding, Z., Klassen, E., Srivastava, A.:
Parameterization-invariant shape statistics and proba-
bilistic classification of anatomical surfaces. Inf. Pro-
cess. Med. Imaging 22, 147–158 (2011)

25. Mamah, D., Harms, M.P., Barch, D.M., Styner, M.A.,
Lieberman, J., Wang, L.: Hippocampal shape and vol-
ume changes with antipsychotics in early stage psy-
chotic illness. Front Psychiatry 3(96), 1–10 (2012)

26. Marozzi, M.: Some remarks about the number of permu-
tations one should consider to perform a permutation
test. Statistica 64(1), 193–202 (2004)

27. Marron, J.S., Todd, M.J., Ahn, J.: Distance weighted
discrimination. J. Amer. Statist. Assoc. 102(480),
1267–1271 (2007)

28. McClure, R.K., Styner, M., Maltbie, E., Liebermann,
J.A., Gouttard, S., Gerig, G., Shi, X., Zhu, H., et al.:
Localized differences in caudate and hippocampal shape
are associated with schizophrenia but not antipsychotic
type. Psychiatry Res. Neuroimaging 211(1), 1–10
(2013)

29. Narr, K.L., Thompson, P.M., Szeszko, P., Robinson, D.,
Jang, S., Woods, R.P., Kim, S., Hayashi, K.M., Asunc-
tion, D., Toga, A.W., Bilder, R.M.: Regional speci-
ficity of hippocampal volume reductions in first-episode
schizophrenia. NeuroImage 21(4), 1563–1575 (2004)

30. Nichols, T.E., Hayasaka, S.: Controlling the familywise
error rate in functional neuroimaging: a comparative
review. Stat. Methods Med. Res. 12(5), 419–446 (2003)

31. Niethammer, M., Juttukonda, M.R., Pizer, S.M., Sa-
boo, R.R.: Anti-aliasing slice-segmented medical images
via Laplacian of curvature flow. In preparation (2013)

32. Nitrc: S-rep fitting, statistics, and segmentation.
http://www.nitrc.org/projects/sreps (2013)

33. Pantazis, D., Nichols, T.E., Baillet, S., Leahy, R.M.:
A comparison of random field theory and permutation
methods for the statistical analysis of MEG data. Neu-
roImage 25(2B), 383–394 (2005)

34. Pennec, X.: Statistical computing on manifolds: from
Riemannian geometry to computational anatomy.
Emerging Trends in Visual Computing 5416, 347–386
(2008)

35. Pesarin, F.: Multivariate Permutation Tests with Appli-
cations to Biostatistics. John Wiley & Sons, Chichester
(2001)

36. Pizer, S.M., Jung, S., Goswami, D., Zhao, X., Chaud-
huri, R., Damon, J.N., Huckemann, S., Marron, J.S.:
Nested sphere statistics of skeletal models. In: Innova-
tions for Shape Analysis: Models and Algorithms, Lec-
ture Notes in Comput. Sci., pp. 93–115. Springer (2013)

37. Qiao, X., Zhang, H.H., Liu, Y., Todd, M.J., Marron,
J.S.: Weighted distance weighted discrimination and
its asymptotic properties. J. Amer. Statist. Assoc.
105(489), 401–414 (2010)



Nonlinear Hypothesis Testing of Geometrical Object Properties of Shapes Applied to Hippocampi 19

38. Rohde, G.K., Ribeiro, A.J.S., Dahl, K.N., Murphy,
R.F.: Deformation-based nuclear morphometry: captur-
ing nuclear shape variation in HeLa cells. Cytometry A
73(4), 341–350 (2008)

39. Schulz, J., Jung, S., Huckemann, S., Pierrynowski, M.,
Marron, J.S., Pizer, S.M.: Analysis of rotational motion
from directional data. Submitted (2013)

40. Shi, X., Ibrahim, J.G., Lieberman, J., Styner, M., Li, Y.,
Zhu, H.: Two-stage empirical likelihood for longitudinal
neuroimaging data. Ann. Appl. Stat. 5(2B), 1132–1158
(2011)

41. Siddiqi, K., Pizer, S.: Medial Representations: Mathe-
matics, Algorithms and Applications, 1 edn. Computa-
tional Imaging and Vision, Vol. 37. Springer, Dordrecht,
Netherlands (2008)

42. Styner, M., Lieberman, J., Pantazis, D., Gerig, G.:
Boundary and medial shape analysis of the hippocam-
pus in schizophrenia. Med. Image Anal. 8(3), 197–203
(2004)

43. Terriberry, T., Joshi, S., Gerig, G.: Hypothesis Test-
ing with Nonlinear Shape Models. In: G. Christensen,
M. Sonka (eds.) Information Processing in Medical
Imaging, Lecture Notes in Computer Science, vol. 3565,
pp. 15–26. Springer Berlin Heidelberg (2005)

44. Van De Ville, D., Blu, T., Unser, M.: Integrated wavelet
processing and spatial statistical testing of fMRI data.
NeuroImage 23(4), 1472–1485 (2004)

45. Wang, L., Joshi, S.C., Miller, M.I., Csernansky, J.G.:
Statistical analysis of hippocampal asymmetry in
schizophrenia. NeuroImage 14(3), 531–545 (2001)

46. Wei, S., Lee, C., Wichers, L., Li, G., Marron, J.S.:
Direction-projection-permutation for high dimensional
hypothesis tests (2013). ArXiv:1304.0796


