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Abstract Most vision papers have to include some evaluation work in order
to demonstrate that the algorithm proposed is an improvement on existing
ones. Generally, these evaluation results are presented in tabular or graphical
forms. Neither of these is ideal because there is no indication as to whether
any performance differences are statistically significant. Moreover, the size and
nature of the dataset used for evaluation will obviously have a bearing on the
results, and neither of these factors are usually discussed. This paper evaluates
the effectiveness of commonly-used performance characterization metrics for
image feature detection and description for matching problems and explores
the use use of statistical tests such as McNemar’s test and ANOVA as better
alternatives.

Keywords Performance characterization · Feature matching · Homography

1 Introduction

Vision research has developed a substantial number of algorithms for tasks
such as image matching, segmentation, stitching, tracking and navigation. One
should not expect all of these algorithms to be equally accurate and reliable,
yet deciding which one is best-suited to a particular problem can be diffi-
cult. However, statisticians have done a great service to vision researchers and
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developers by defining a number of performance characterization measures.
Novertheless, the selection of an appropriate performance measure is again
crucial and demands an in-depth understanding of the domain (such as com-
puter vision here) and data (images here) used for performance evaluation.

There are a number of performance measures already in widespread use.
The best-known is arguably the ROC (Reciever Operating Characteristic)
curve [1], a visual form of performance comparison in which the curve on a
plot is used to represent an algorithm’s performance, as illustrated in Figure 1.
However, there are other visual performance metrics. These include precision–
recall [2] and sensitivity–specificity [3] graphs, which were introduced because
calculating the accuracy of algorithms alone was found to be misleading [4] in
machine learning applications. In the computer vision domain, it has become
the norm to present a comparison of a newly-proposed algorithm with results
from existing methods using an appropriate performance evaluation measure.
These metrics characterize different aspects of algorithms’ performances. As
a consequence, they can produce different rank orderings of algorithms, as
seen in for example [5–7]. This paper reviews the strengths and weaknesses
of existing performance evaluation measures specifically for assessing feature
detection and description algorithms to match pairs of images, including ROC
and precision–recall curves, F-measure etc., and explores the use of statistical
tests such as McNemar’s test and ANOVA as more principled alternatives.

Performance evaluation studies in other domains regularly use statistical
hypothesis tests, such as the χ2 test, t-test, McNemar’s test and ANOVA [8–
12], though few of them focus on the quantity of data needed and their vari-
ability. Ensuring the dataset is large enough and exhibits enough variation is as
important for vision research as any other mathematical or statistical discipline
if the results are to be generalized. Even sophisticated and statistically-reliable
evaluation techniques may produce misleading results if the sample size is not
sufficiently large.

In vision research, algorithms are generally tested on a number of images,
though the amount of image data employed is rarely large in the statistical
sense. This study examines the behaviour of algorithms for an image matching
problem using different numbers of images with different content. This is done
by dividing a large database into many small subsets and ascertaining whether
they produce similar rankings of algorithms as on the whole database; as the
image content is the same in all images, one might expect the results to be
consistent.

To avoid confusion, the term ‘database’ in this paper refers to a collection
of images which is intended for evaluation purposes, while ‘dataset’ is one
component of a database, typically images of the same scene. This paper uses
two widely-used databases of different numbers of images to ascertain whether
the performance differences calculated for small numbers of images reflect the
general trends of algorithms. Although the findings are strictly applicable only
to the problem of image matching, the processes employed in obtaining them
can be applied to many problems in the computer vision domain.
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(a) A typical ROC curve. The full line in-
dicates the performance of an algorithm
as a tuning parameter is varied, while the
dotted line indicates what would be ex-
pected from an algorithm choosing out-
comes randomly

(b) When ROC curves cross, one needs to
choose which algorithm to use carefully

Fig. 1: Receiver Operating Characteristic (ROC) curves

The remainder of this paper is organized as follows. Section 2 introduces
the way that vision evaluation studies are generally performed and describes
measures that commonly are used to measure or represent performance. Sec-
tion 3 introduces the null hypothesis testing framework that can be employed
to assess performance differences of vision algorithms. Two statistical tests,
McNemar’s test and ANOVA, are also introduced in this section. Section 4
presents McNemar’s test as an alternate to other performance metrics. Sec-
tion 5 introduces the homography testing framework used to analyse the per-
formances of feature extraction algorithms (also known as feature operators)
using McNemar’s test and ANOVA. Section 6 describes the databases of im-
ages employed and an evaluation of the performances of feature operators on
them. Section 7 goes on to explore the interplay between image content and
dataset size. Finally, Section 8 concludes the discussion by presenting some
rules of thumb about selecting an appropriate dataset size and a proper eval-
uation framework for obtaining statistically-valid performance comparisons of
multiple algorithms.

2 Performance Evaluation Measures: Reliability and Statistical
Significance

Vision algorithms are generally assessed according to whether they have suc-
ceeded or failed, a true or false (T/F) result, on a series of test images. (A
separate set of training images is normally available for problems that involve
manual tuning or machine learning.)
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In the absence of well-defined benchmarks, the performance of an algorithm
is usually compared with those of other algorithms and outcomes are counted
in the form of a confusion matrix.

Actual Outcome
T F

True Positive False Positive
Predicted T TP FP
Outcome False Negative True Negative

F FN TN

There are several metrics in widespread use that characterize the performance
of algorithms using these values, including the true positive rate (TPR), false
positive rate (FPR), accuracy, precision, recall, sensitivity and specificity. Ta-
ble 1 gives definitions of these metrics. These metrics are usually shown graph-
ically as in ROC curves, precision–recall curves etc.

An ROC curve shows the performance of an algorithm by plotting TPR
versus FPR, as illustrated in Figure 1a. It is important to appreciate what is
plotted here: each point on the curve summarizes the performance of an al-
gorithm with a specific set of tuning parameters; hence, the curve shows how
an algorithm’s performance varies as a tuning parameter changes. An algo-
rithm whose performance is close to the top-left corner of an ROC curve is
performing better than one whose curve lies further away. In practice, ROC
curves often cross as illustrated in Figure 1b; then one has to be careful about
the settings of the tuning parameters of algorithms. In an attempt to iden-
tify an overall better algorithm when ROC curves cross, several researchers
calculate the area under the curve (AUC). However, this is not necessarily
reliable [13, 14]. These concerns are also applicable to the other performance
measures discussed below.

Precision–recall curves (recall on the y-axis against precision on the x-
axis) are somewhat analogous to ROC curves, though the top right corner
indicates good performance. (Many researchers plot recall against 1−precision
to have a similar orientation as ROC curves [7].) Ideally, precision ≈ recall ≈ 1
represents good performance; however, recall can be easily maximized at the
expense of precision and vice versa. Hence, for ranking an algorithm, one often
combines precision and recall into the so-called F-measure (see Table 1).

Similarly, sensitivity–specificity graphs are most commonly used in be-
havioural sciences and are closely related to ROC curves [15]. Their appear-
ance can be similar to an ROC curve if sensitivity is plotted against 1 −
specificity [16]. It is also interesting to see an algorithm’s performance using
simple measures such as false positive ratio (FPr) against true positive ratio
(TPr). Lastly, accuracy is probably the most popular method for translating
confusion matrix data into a single numeric performance measure.

Table 1 shows how the confusion matrix values are affected as an algorithm
is tuned. The algorithm in question is concerned with matching an image using
feature correspondences, though that is not important in this example; rather,
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Table 1: Quantitative measures for performance assessment and how they are
may vary as an algorithm is tuned. Set A represents original output of an
algorithm, Set B the result of parameter tuning from down-sampling of neg-
ative examples, and Set C the result of tuning parameters that resulted in a
uniform increase in all examples. The values of individual performance met-
rics are based on the output of this notional algorithm to show if these are
invariant to the distribution of values in the confusion matrix.

Set A B C
TP 3361 3361 3371
TN 2370 198 2380
FP 1294 101 1304
FN 375 375 385

Performance metric Description Results

Accuracy TP+TN
TP+FP+TN+FN

0.7744 0.8820 0.7730

Precision TP
TP+FP

0.7220 0.9708 0.7210

Recall TP
TP+FN

0.8996 0.8996 0.8974

TPR TP
TP+FP

0.7220 0.9708 0.7210

FPR FP
TN+FP

0.3532 0.3378 0.3540

F-measure 2Precision×Recall
Precision+Recall

0.8011 0.9339 0.7997

Sensitivity TP
TP+FN

0.8996 0.8996 0.8975

Specificity TN
TN+FP

0.6468 0.6622 0.6460

TPr
TP
N

0.4541 0.8330 0.4531

FPr
FP
N

0.1749 0.0250 0.1752

it is how the confusion matrix values change as the algorithm’s tuning param-
eter is changed. Similar effects can be observed while almost any algorithm’s
tuning parameters are varied. Changing the value of a tuning parameter may,
for example, convert a false positive into a true positive, affecting two cells of
the confusion matrix. [17] considered these kinds of events in detail, identifying
for example that if the data in the confusion matrix change proportionally, the
ROC curve is unaffected. Table 1 shows the confusion matrix values from the
algorithm with different tuning parameter settings A, B and C and the corre-
sponding derived measures. Set C in Table 1 has 40 more points than Set A,
10 in each of the four categories. Because there are different counts in each of
TP etc, the actual performance is different yet the TPR is unchanged. This is
clearly undesirable. Similarly, recall is invariant to this type of change, as are
both sensitivity and specificity. Hence, these curves have some shortcomings
for assessing the performances of vision algorithms.

With so many performance metrics available, it is illuminating to discover
whether they all yield consistent results. If they do not, one could argue that
they are actually measuring something other than performance, or are mea-
suring different aspects of performance. To that end, an experiment was per-
formed using a pair of images drawn from the well-established Oxford Graffiti
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database1, hereafter referred to as the ‘small’ database. The algorithm being
assessed identifies characteristic features in images in the database and then
attempts to match them, so that specific points in one image are known to
relate to specific points in another. The need to perform this type of matching
is an important enabling technology for computer vision applications such as
panorama stitching, depth-from-stereo, tracking, segmentation, object identi-
fication, and so on. More precisely, a local image feature detection and descrip-
tion algorithm (SIFT [18] in this case) is used to identify interest points in both
images independently, then these interest points are matched using descriptors
of the interest points [19]. The correct and false matches are categorized into
four possible outcomes based on the descriptors’ similarity, namely:

– TP: obtained when an algorithm’s outcome is a correct match;
– FP: obtained when an algorithm reports a result but that result is an

incorrect match;
– TN: obtained when an algorithm reports a failure when a point in the first

image is not matched because there is no corresponding point in the second
image;

– FN: obtained when an algorithm reports a failure when the corresponding
point exists in the second image but was not matched.

Results were collected for three different matching thresholds, τ = 0, 0.7 and
1: a threshold of zero yields no matched points; for a threshold of 0.7, all points
will be matched for which the descriptor difference is less than 0.7; a threshold
of 1 means that all points are matched. Table 2 presents TP etc for the three
thresholds; this is equivalent to three confusion matrices. It also shows the
corresponding measures calculated from the data for these thresholds. The
results are also plotted in Figure 2 using the curves commonly encountered in
the literature. The shaded area in each graph represents the region where the
outcomes are consistent with good performance. Let us consider an algorithm
to be good if, in each graph, all three points appear in the shaded region.
According to this criterion, only two of the plots (the accuracy and specificity–
sensitivity graphs) classify this algorithm as good. But does this reflect the
algorithm’s true performance?

The ambiguity in the accuracy graph is obvious because it says that algo-
rithm has same accuracy of 0.4 when all of the outcomes are negatively (τ = 0)
or positively (τ = 1) classified! Similarly, the ROC, precision–recall, TPr–FPr
and F graphs rate this algorithm at their lowest positions of zero at τ = 0,
when all outcomes fall in negative classes, overlooking the fact that many of
these negative results are true negatives. Although some measures do highlight
poor performance, they do not do so consistently: for example, the high speci-
ficity scores suggests that the algorithm would be good at identifying negative
outcomes correctly but ignores the large number of false negative outcomes for
thresholds of 0 and 0.7. Similarly, the high true positive rate with a lower false
positive rate in the ROC curve may rank this an algorithm as having good

1 http://www.robots.ox.ac.uk/~vgg/research/affine/
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Table 2: Performance metrics calculated for three different matching thresholds

Threshold 0.0 0.7 1.0
TP 0 375 743
FP 0 114 1048
TN 727 640 0
FN 1064 662 0

Measure 0.0 0.7 1.0 Measure 0.0 0.7 1.0
FPR 0.0000 0.1512 1.0000 Specificity 1.0000 0.8488 0.0000
TPR 0.0000 0.7669 0.4149 Sensitivity 0.0000 0.3616 1.0000
Precision 0.0000 0.3616 1.0000 FPr 0.0000 0.0637 0.5851
Recall 0.0000 0.7669 0.4149 TPr 0.0000 0.2094 0.4149
Accuracy 0.4059 0.5667 0.4149 F-Measure 0.0000 0.4915 0.5864

Fig. 2: Plots of performance evaluation measures. Diagonal lines on the first
and last rows of graphs indicate the expected performance of a random algo-
rithm. Performance above these lines correspond to good performance, indi-
cated by a shaded area. Similarly, the middle row shows F-measure and ac-
curacy graphs and the shaded area corresponds to good performance (> 40%
here).
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performance for threshold 0.7, overlooking the large number of false negatives.
The same is the case with the precision–recall curve for thresholds of 0.7 and
1.0. Interestingly, with lower TPr for thresholds 0.7 and 1.0, the TPr–FPr
graph seems more representative of the algorithms’ actual performances.

These results highlight some of the weakness of existing performance char-
acterization methods for assessing an algorithm’s performance. However, eval-
uating one algorithm’s performance in isolation is usually not required, and
hence these methods have been widely used in the literature to compare algo-
rithms’ performances and produce rankings.

2.1 Comparing the Performances of Several Algorithms

(a) (b)

Fig. 3: ROC and precision–recall plots for matching Graffiti images 1 and 2

(a) (b)

Fig. 4: F-measure and Accuracy plots for matching Graffiti images 1 and 2
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(a) (b)

Fig. 5: Sensitivity-Specificity and TPr-FPr plots for matching Graffiti images
1 and 2

To understand the behaviour of performance evaluation measures for com-
paring several algorithms, a number of feature operators have been used to
match features in the same image data. These are SIFT [18], SURF-64 [6],
SURF-128 [6], Harris-Affine-GLOH (Haraff) [19], Harris-Laplace-GLOH (Har-
lap) [19], Hessian-Affine-GLOH (Hesaff) [19] and Hessian-Laplace-GLOH (Hes-
lap) [19]. All seven feature operators were evaluated using for matching Graffiti
images 1 and 2.

Regrettably, one cannot simply run the operators on the images and de-
termine whether features were found in the right places, principally because
the different feature operators detect different types of features — for exam-
ple, Harris-based operators tend to identify corner features in an image while
SIFT avoids them. Hence, the approach that has been taken is to use feature
matches found between the two images to calculate the homography matrix,
the transformation of one image onto the other [20]. Ground truth homography
matrices are provided with the databases used here.

The simplest way to compare two homography matrices is to see how closely
they project points. Therefore, a specific number of points from one image were
projected using the estimated homography and then compared with the true
projection of the point using the homography supplied with the database. This
process was repeated for several nearest neighbour matching thresholds and
the resultant graphs are shown in Figures 3, 4 and 5; the results presented
here are essentially the same as those in Table 2 but include a greater number
of matching threshold values.

As mentioned before, the hope is that these graphs would show some sim-
ilarity in the ranking of algorithms based on their performance, determined
by the relationships of the curves in the graphs. This is not the case: for ex-
ample, there are obvious discrepancies in the results presented by the ROC
and precision–recall curves. According to Figure 3b, both versions of SURF
employed exhibit poor performance but in Figure 3a, all algorithms but SIFT
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have similar performance. Similarly, when both FN and TN become zero (at a
threshold of unity), the ROC curve shows that all algorithms have same TPR
and FPR and hence should be considered similar; but this is not the case for the
precision–recall and TPr–FPr curves. Figure 4b shows a completely different
behaviour, where the accuracies of SURF-64 and SURF-128 are significantly
better than all other methods except SIFT. This may be happening because,
by increasing the threshold, all negative outcomes shift to positive ones, and
accuracy and ROC are invariant to this change (a consequence of the com-
bination of the confusion matrix values they use). As mentioned earlier, the
sensitivity–specificity graph in Figure 5a is closely related to the ROC curve
and hence shares similar properties. Similarly, Figure 4a shows SURF-64 and
SURF-128 being dominant as they have the highest F-measures, better than
SIFT. Although the precision–recall and TPr–FPr ratio graphs mostly agree,
the question asked earlier still remains valid: do they characterize performance
well? Indeed, one might conclude that any algorithm can be presented as per-
forming better than the others by intelligently selecting the most suitable
performance measure.

Notwithstanding the above, the major drawback of all these graphical
methods is that even if they carry any statistical significance, it is not shown.
Even error bars do not necessarily indicate that performances are necessarily
different in the statistical sense. In any case, these curves may well overlap
each other, making it difficult to identify which algorithm is better overall.

Due to these biased performance characterizations of algorithms by dif-
ferent graphical evaluation methods, the authors contend that the research
community should be looking for other reliable and statistically valid evalua-
tion techniques. The remainder of the paper explores this.

3 Null Hypothesis Testing

An hypothesis is a way of describing a theory about data. In many cases, an
hypothesis can be proven to be right or wrong using evidence. A methodology
has been developed over the last few decades by the statistics research commu-
nity that allows for evidence-based decisions to be made about performance.
One starts with a so-called null hypothesis that (say) a newly developed al-
gorithm is no better than an existing one. The formal definition of this null
hypothesis will be

Ho: there is no difference in performance between the two algorithms

One can also propose an alternative hypothesis:

H1: the two algorithms have different performances

By gathering the results of a trial employing the two algorithms on the same
data, one can amass evidence as to which hypothesis is better. One assumes
that the null hypothesis Ho is correct unless the evidence suggests that it
cannot be; hence, null hypothesis testing is inherently conservative. A number
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Table 3: Truth table for McNemar’s test

Algorithm A Algorithm A
Failed Succeeded

Algorithm B Nff Nsf

Failed
Algorithm B Nfs Nss

Succeeded

of tests can be used for null hypothesis testing, including the χ2 test, the t-
test, McNemar’s test, ANOVA, and so on — the test that is selected is based
on known properties of the data being used for evaluation. The resulting test
statistics are compared with some critical value selected for an arbitrary level,
α, which is often used as a cut-off between a statistically significant and a
statistically insignificant result. A statistically significant result rejects the
null hypothesis while a statistically insignificant result indicates that there is
not enough evidence to reject the null hypothesis.

In this work, two statistical tests are used, McNemar’s test and ANOVA.
As we shall see, McNemar’s test works by exploring where one treatment suc-
ceeded and the other failed, ensuring that well-understood binomial statistics
apply; indeed, it is sometimes described as a form of the statistical sign test for
categorical data. The test is non-parametric but statistically ‘weak’ in that it
requires a larger amount of evidence to indicate dissimilarity of performance
than other, statistically ‘stronger’ tests. The second test that will be used
is ANOVA (“analysis of variance”), which is perhaps best thought of as a
generalisation of the t-test to many variates. ANOVA is statistically stronger
than McNemar’s test but imposes some requirements on the data, principally
that they are Normally distributed. To be able to employ ANOVA, one needs
to ensure that these requirements are met. However, when ANOVA can be
employed, less data are required for it to ascertain whether performance dif-
ferences are significant.

3.1 McNemar’s Test

McNemar’s test has been widely used in medical research [8–12]; however, it
has not been fully explored for comparing the performances of vision algo-
rithms. Therefore, this study explores the use of McNemar’s test in the null
hypothesis framework to ascertain whether it produces more reliable rankings
than the graphical methods rejected in the previous section.

McNemar’s test is a non-parametric evaluation metric introduced by Quinn
McNemar in 1947 [21]. To compare Algorithm A with Algorithm B, a null
hypothesis can be formed by assuming that there is no statistical difference
between their performances. One then assesses whether the evidence obtained
from testing does or does not support that hypothesis. Given a dataset for
which the ground truth is known, one applies both algorithms to each member
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of the dataset in turn, recording successes and failures in a kind of ‘truth table’
for this pair of algorithms as shown in Table 3. In the table, Nsf is the number
of tests for which algorithm A succeeded and algorithm B failed, and so on.

When all the tests have been performed, the values of Nsf etc are used to
calculate the so-called Z-score (or just Z):

Z =
|Nsf −Nfs| − 1√

Nsf +Nfs
(1)

This expression takes into account the cases where one algorithm succeeds
and the other fails and is also normalised by the number of these differences.
This is in sharp contrast to many evaluations currently performed in computer
vision, which largely focus on where algorithms succeed. One can see that Z
has similarities to the popular χ2 test.

If Algorithm A and Algorithm B give similar results, then Z ≈ 0; as their
results diverge, Z increases. To assess whether Z indicates a statistically sig-
nificant result, one normally does so in the context of a particular level of
significance. In computer vision, it is common to use a one-in-twenty level
(α = 0.05), which means that the particular results might be obtained purely
by random fluctuations in the data one time in twenty. For the value of Z to
be reasonably reliable, one needs Nsf +Nfs & 20 to achieve this one-in-twenty
criterion [22].

McNemar’s test is suitable for use on pairs of algorithms only; when there
are more than two algorithms being compared in a pair-wise manner, as here,
then it is necessary to introduce a correction when interpreting the results;
this matter is discussed further in section 4. However, the need to make these
corrections makes ANOVA an attractive alternative when the data obey a
Normal distribution.

3.2 ANOVA

ANOVA can be used to perform multiple (more than two) comparisons at
the same time without increasing the Type-I error (false rejection of null hy-
pothesis). It can also be used for null hypothesis testing, provided the data
are Normally distributed data, for example as one would find in psychological
research [23].

ANOVA assesses whether two or more groups exhibit a statistically-significant
difference in their means (µ). The null hypothesis is

Ho : µ1 = µ2 = µ3 = .... = µn (2)

where n is the number of independent groups under comparison. ANOVA
can show that there are at least two groups whose means differ significantly.
There are different variants of ANOVA test, based on the number of factors
that vary. So-called “one-way” ANOVA is used when one needs to compare
data means grouped under a single category; two-way ANOVA is used to
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Table 4: ANOVA test calculations for k groups and n data instances per group.
SS is the Sum of Squares, df the number of degrees of freedom, MS the Mean
Square and F the ratio of two mean square values

Source of Variation SS df MS F

Between Groups SSb k-1 MSb = SSb
k−1

MSb
MSw

Within Groups SSw n-k MSw = SSw
n−k

compare population means based on two factors or categories, and so on.
Before applying ANOVA, there are some conditions for the data that need to
be checked:

– groups must be independent;
– data in each group must be Normally distributed;
– there is homogeneity of variance.

The homogeneity of variance criterion means the variances of the groups under
analysis should be similar, which can be ascertained using Hartley’s Fmax test
[24]. This calculates the ratio of the maximum and minimum group variances,
Fmax, and if this ratio is less than a critical value (obtained from a table), the
groups are assumed to have similar variances. However, if the groups’ variances
do not show homogeneity, then some mathematical treatment is required to
prepare the data for ANOVA: this treatment can be for example calculating
the natural logarithm of the data or taking its square root. (To avoid 0-based
arithmetic errors, adding 1 prior to calculation is acceptable.) Moreover, the
independence and normality of the data can be checked by calculating mean,
median and mode of the data for each group. An equivalent mean, median and
mode suggests that the data are Normally distributed, though a formal test
can be used to confirm this.

ANOVA compares groups by calculating the mean square difference be-
tween and within groups as shown in Table 4, where SS is sum of square
differences, given by

SS =

n∑
i=1

(yi − ȳ)2 (3)

SS is divided by the number of degrees of freedom (df) both between and
within groups. Commonly, the F-test is used in conjunction with the variance
for comparing groups of total deviation using MS (see Table 4) between and
within groups. F is compared with Fcrit, whose value depends on the signif-
icance level chosen α and can be determined from tables [25]. If F ≥ Fcrit
or if the probability of error P ≤ α, then the null hypothesis should be re-
jected, showing at least two of the groups’ means have statistically significant
differences; however, the test does not indicate which mean or means differ, a
limitation of the technique.

The most important distinction between McNemars test and ANOVA is
that the former compares outcomes (success/failure) whereas the latter com-
pares a continuous measure. One can convert a continuous measure into a
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Table 5: Mapping of TP etc when comparing the results from an algorithms
with the ground truth

Ground truth Ground truth
Failed Succeeded

Algorithm 0 FP+FN
Failed

Algorithm 0 TP+TN
Succeeded

Fig. 6: McNemar’s test for ROC-like analysis. Algorithms’ performances are
compared against the ground truth, so a Z-score closer to zero indicates better
performance. Z-scores are shown for different threshold values in a similar way
to ROC curves.

discrete outcome using a threshold but not vice versa. Unlike ANOVA, McNe-
mars test can answer two questions: whether the two samples are statistically
different; and which one of them is better — both with a given confidence
level.

4 McNemar’s Test for ROC-Like Analysis

Although McNemar’s test is normally used to compare the performances of
two algorithms, if one uses the correct values as one ‘algorithm’, the resulting
Z can be regarded as a performance measure, with a smaller Z indicating
better performance. Table 5 shows how the numbers of true and false positives
contribute to the sums needed for calculating Z.
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McNemar’s test is for the analysis of paired data, and hence to compare
more than two samples one needs to perform McNemar’s test multiple times.
According to statistical theory, multiple two-sample tests tend to increase the
probability of Type-I errors. However, corrections can be applied to reduce
Type-I errors, the simplest of which is the Bonferroni correction [26]. This is
done by adjusting the significance level α; see [27] for a detailed discussion. As
the number of algorithms under comparison in this study is seven (A = 7) so
to achieve the overall 5% error rate alluded to above, we determine the per-
test error rate αc by dividing α by number of algorithms under test so that
α
A = 0.00714 and 1−αc = 0.9928. From tables, the corresponding Zcrit = 2.5.
Hence, for these multiple comparisons, Z < 2.5 indicates that there is no
significant performance difference between algorithms.

There are some concerns over the use of any correction [28]. For example,
Bonferroni corrections control only the probability of false positives and come
at the cost of increasing the probability of false negatives; it may therefore be
considered as being too conservative to control the family-wise error rate [29].
There are some other corrections suggested in the literature, such as the Ben-
jamini & Hochberg [30] and Benjamini & Yekutieli [31] corrections, which
control the expected proportion of false discoveries amongst the rejected hy-
pothesis, a less rigid condition than the Bonferroni correction. However, using
different corrections can yield different results, with one correction causing the
hypothesis to be rejected while another causes it to be accepted [32]; hence, ap-
plying the most conservative correction is considered safest approach. Hence,
in this work the Bonferroni correction is used.

The Z-scores for the algorithms’ outcomes when compared with the ground
truth for each threshold are presented in Figure 6. A Z-score closer to zero
shows that an algorithm performed more similarly to the ground truth and
hence exhibits better performance. The Z-score, PR (Figure 3b) and TPr–FPr
graphs (Figure 5b) show somewhat similar rankings i.e. with SIFT perform-
ing best, closely followed by Harlap. However, the TPr–FPr graph has more
similarity with the Z-scores. It was observed earlier that no two performance
measures agree with each other and that is a good reason for questioning their
reliability. As the TPr–FPr graph gives somewhat similar results to Figure 6,
one could say that there are two measures which are consistent and are there-
fore more reliable than the others; however, this is not a strong argument.

5 Homography Testing

The general approach to measuring the performances of algorithms by project-
ing points using a homography matrix calculated from feature matches was
described in Section 2. The spacing of these points to be projected is impor-
tant: if the points selected when calculating the homography matrix are not
evenly distributed over the image, then the homography tends to represent the
transformation of only that part of the image and therefore may not project
all points correctly [33, 34]. Therefore, to test a homography matrix, equally-
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Table 6: Z-scores calculated between SIFT and SURF-128 for different numbers
of points selected for homography testing between an image pair is shown in
the first column. A Z-score of 0 means the two algorithms exhibited similar
performance.

Number of Points 100 200 300 400 500 600 700 800 900 1000
Bark 1-2 3.75 3.75 3.75 4.25 4.25 4.25 4.25 4.25 4.25 4.25
Bark 1-3 0 0 0 0 4.8 4.8 4.8 4.8 4.8 4.8
Bark 1-4 0 0 0 1.15 1.5 1.5 1.5 1.5 1.5 1.5
Bark 1-5 0 0 0 0 0 0 4.59 11 11.53 11.53

Graffiti 1-2 0 0 0 0 0 0 6.56 11.96 15.59 16.19
Graffiti 1-3 8.89 8.89 8.89 8.89 11.66 15.36 18.33 20.88 23.07 23.07
Graffiti 1-4 9.9 14.07 17.26 19.95 18.85 18.85 15.37 15.37 15.37 15.37
Graffiti 1-5 0 0 0 0 0 0 0 0 0 0

spaced points are used to avoid any skew towards the points selected for the
calculation of the homography.

5.1 How Many Points Are Required To Produce Consistent Results?

The objective here is to establish the number of points that need to be pro-
jected from one image to another using a calculated homography in order for it
to produce consistent results. This is done by starting with a small number of
regularly-spaced points for projection, then increasing the number of points.
When enough points are projected, the statistical significance of the result
will not change as further points are added; the results become consistent. If
consistency were not reached then clearly the method would be inappropriate
for assessing performance.

Table 6 presents results for the Graffiti and Bark datasets from the small
database. Both of these datasets contain images with complex transformations:
the Graffiti images have been taken from different viewpoints while the Bark
images are zoomed and rotated. McNemar’s test is applied to find the number
of correct and incorrect projections for two algorithms, SIFT and SURF-128,
and the Z-scores between the sets of projected points are presented in Ta-
ble 6. Shaded cells in the table indicate the point at which a significant result
(Z > Zcrit) is obtained, highlighting the number of points required to obtain
consistent results for the particular image data. It can be seen that, for some
images, 100 points are enough to establish the performance differences be-
tween operators, such as for Bark images 1 and 4, where the result remained
insignificant even for 1000 points (Z < 1.96). Similarly, for Graffiti image pairs
1-3, 1-4 and 1-5, the evaluation shows a similar trend for different numbers of
points. However, for the rest of the images, at least 700 points are required to
obtain consistent results. From this, we conclude that for homography testing
the number of points should be greater than 700.
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Fig. 7: Z-scores between algorithms and ground truth homographies for Graffiti
images 1 and 2. A Z-score of 35 (added manually) denotes the cases where
homography calculation was not possible due to there being fewer than 4
matched points.

Table 7: Z-scores between feature operatorsfea for matching Graffiti images 1
and 2. To find the better algorithm, follow the arrowhead direction in each
pairwise comparison.

Haraff Harlap Hesaff Heslap SURF-64 SURF-128 Score
SIFT ↑ 8.89 ← 8.89 ← 12.92 ← 15.97 ← 5.40 ← 2.70 5
Haraff ← 12.65 ← 15.75 ← 18.33 ← 8.60 ← 5.00 6
Harlap ← 9.27 ← 13.19 ← 6.70 0.50 3
Hesaff ← 9.27 1.10 ← 9.10 3
Heslap 0 ↑ 7.20 0
SURF-64 ↑ 6.90 1
SURF-128 - 2

5.2 Homography Testing Using McNemar’s Test

As described earlier, the list of matched points obtained from each algorithm
is used to calculate an estimated homography (He), which is then compared
with the ground truth homography (Hgt). For McNemar’s test, some 1000
equally-spaced points were selected from a reference image to be projected
onto a test image using both homography matrices. If the Euclidean distance
between two projections of a point is less than some threshold (5 in this case),
then it is a success; otherwise, it is a failure.

Table 5 presents the Z-scores plotted in Figure 7. There is a limitation of
this test: if the number of matched points between two images is less than 4
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Table 8: Single factor ANOVA test summary

Groups Count Sum Mean Variance
Haraff 1000 576.24 0.576 0.001
Harlap 1000 1005.32 1.005 0.107
Hesaff 1000 1093.45 1.093 0.161
Heslap 1000 1099.35 1.099 0.402
SIFT 1000 903.79 0.904 0.123
SURF-64 1000 883.40 0.883 0.072
SURF-128 1000 1109.96 1.110 0.412
Source of Variation SS df MS
Between Groups 217.74 6 36.29
Within Groups 1276.86 6993 0.18

F P Fcrit

198.75 1.1× 10−234 2.10

then homography matrix estimation is not tractable. These cases can be seen in
the table with Z-scores of 35. However, this limitation does not affect the over-
all test results because if there are less than 4 matched points, the algorithm’s
performance cannot be predicted anyway. To accept the null hypothesis, the
Z-score should be less than the Zcrit = 2.50 for α = 0.007 (two-tailed test);
however, all scores are significantly higher than this, making it safe to reject
the null hypothesis. For an algorithm to have better performance than others,
it needs to show low Z-scores for different thresholds.

It is interesting to see that the Z-scores given in Figure 7 for a threshold of
0.7 vary consistently with the Z-scores between algorithms given in Table 7. In
Figure 7, Haraff shows highest score of being better than all other algorithms.
The distance between Harlap and SIFT in Figure 7 shows that their differ-
ence in the performance is significant, with SIFT showing better performance
(lower Z-score). This result is supported by Z = 8.89 given in the pairwise
comparison. It is evident that if we have ground truth available then com-
paring algorithms’ performances with ground truth using McNemar’s test can
give a figure of merit and therefore pairwise comparison is not required. How-
ever, in the absence of ground truth data, pairwise comparison gives a reliable
and statistically-significant ranking. This is not possible using any graphical
evaluation method.

5.3 Homography Testing using ANOVA

To compare the performances of the feature operators under study using
ANOVA, the same Graffiti images have been used using the same general
approach as with McNemar’s test. As previously discussed, some 1000 equally
spaced points are projected using both ground truth and estimated homog-
raphy matrices. If a point Pi is projected using both homography matrices,
then Pe = He × Pi and Pt = Hgt × Pi are the projections of that point us-
ing the estimated and ground truth homography matrices respectively. Let
d = |Pt−Pe| be the difference in their projected positions; this will be close to
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Table 9: Small database of images

Dataset Transformation Number of images
Bikes blur 6
Trees 6
Graffiti viewpoint change 6
Wall 6
Bark zoom + rotation 6
Boat 6
UBC JPEG compression 6
Leuven illumination 6

zero if both homography matrices represent similar transformation and large
otherwise. Hence, d is used to calculate sum of square difference for ANOVA:

SS =

n∑
i=1

(di − d̄)2 (4)

Before applying ANOVA, the data are checked for basic homogeneity of
variances. The distances of false matches make the data variance too high and
non-homogeneous, so some data treatment is required. Here, the square roots
of data have been used to make variances homogeneous, after which ANOVA
is applied and the result shown in Table 8.

The result based on F = 198.75 � Fcrit = 2.10 and P = 1.1 × 10−234 �
α = 0.05 suggests that the null hypothesis should be rejected and shows statis-
tically significant differences in the performances of interest point operators,
in agreement with the results obtained using McNemar’s test. The difference
between the two tests is that the former used a distance threshold to determine
success and failure, but the latter used a numerical measure.

The next section explores discrepancies in evaluation results as a con-
sequence of database content, by comparing the performances on one well-
established database with another of similar size. The effects of database size
are also explored by employing subsets of a larger database.

6 The Effect of Dataset Size

For evaluating the performance of image feature matching, the most widely
used database of images, the small database alluded to above, was introduced
in [19]. This database2 comprises several datasets of real images with different
geometric and photometric transformations; it was made publicly-available
and many subsequent studies have also used it [5–7,35–54]. This work employs
it too; it is summarized in Table 9.

To assess whether the amount of data affects the relative performances
of interest operators, this work also employs a second database3. This was

2 http://www.robots.ox.ac.uk/~vgg/research/affine/
3 http://www.featurespace.org/
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Table 10: Large database of images

Dataset Transformation Number of images
Asterix 16
BIP zoom 8
Crolle 7
East-Park 10
East-South 9
Ensimag zoom + rotation 10
Laptop 21
Resid 10
Laptop rs 13
Mars 18
Monet rotation 18
NewYork 35
VanGogh 16

collected by the same researchers as devised the small database, perhaps im-
plicitly indicating that they believe it is really too small. This larger database
contains 191 images in 13 datasets (Table 10). Different datasets encompass
geometric and photometric transformations that include zoom, rotation, view-
point change, blurring, change in illumination and JPEG compression. All im-
ages in each dataset are planar scenes or taken with a fixed camera position,
so each image pair is related by a homography matrix which is supplied along
with the imagery as ‘ground truth.’

6.1 How Many Image Pairs?

Having established that more than 700 points need to projected between a
pair of images to obtain a consistent result from a test, we are now able to
ask how many image pairs are required to produce consistent results. The
same general approach as in previous section is adopted, i.e. starting with a
small number of image pairs and increasing the number; again the aim is to
find a point at which results become consistent (either remaining statistically
significant or insignificant). This establishes the minimum number of images
that is required in a dataset. Again, this is done using McNemar’s test for two
algorithms, SIFT and SURF-128.

Five images from the each of the New York, Laptop, Mars and Asterix
datasets of the large database were selected as these contain the largest num-
ber of images (35, 21, 18 and 16 respectively). A subset of 5 image pairs is
used as starting point because this is the size of the datasets in the small
database. If the number of images do not affect the performance results, then
the Z-scores of small subsets should be similar to the result from the whole
dataset. However, the results presented in Table 11 show that if the perfor-
mance difference between two algorithms is insignificant for 5 pairs of images
(set 4 of New York dataset in the Table 11), it subsequently becomes signifi-
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Table 11: Z-scores calculated between SIFT and SURF-128 to identify the
minimum number of image pairs required for performance evaluation. Z-scores
less than Zcrit = 1.96 are considered insignificant. Z-scores with an asterisk
denotes the case where SURF-128 outperformed SIFT; in all other cases SIFT
outperformed SURF-128.

New York dataset (35 images)
Number of Image Pairs 5 10 15 17 34
Set 1 12.62 7.00 7.52 4.92 18.84
Set 2 *2.89 3.69 15.83 21.42
Set 3 3.41 18.29
Set 4 1.67
Set 5 12.17

Laptop dataset (21 images)
Number of Image Pairs 5 10 15 20
Set 1 0.00 0.00 11.40 11.40
Set 2 0.00 11.40
Set 3 0.00
Set 4 11.36

Monet dataset (18 images)
Number of Image Pairs 5 10 15 17
Set 1 26.27 26.53 36.91 40.45
Set 2 3.47 30.50
Set 3 25.61

Asterix dataset (16 images)
Number of Image Pairs 5 10 15
Set 1 3.34 1.66 7.48
Set 2 0.99 6.89
Set 3 12.90

cant when the number of image pairs is increased. Similarly, set 2 of the same
dataset shows that SURF-128 is significantly better than SIFT; however, this
result does not occur when the number of image pairs were increased in the
other sets. Similarly, there is no performance difference between SIFT and
SURF-128 for three sets of the Laptop dataset with 5 image pairs, but this
changes for the sets containing 15 or more image pairs. The same evaluation
differences can be seen in the Monet and Asterix datasets. From these results,
a rule of thumb can tentatively be established that at least 15 image pairs are
required to obtain consistent performance evaluation results.

6.2 Results Using The Small Database

Results for all eight datasets of the small database are presented in Table 12,
grouped according to the image transformations involved. An easy inspection
method is to follow the scores generated for each algorithm in the last column
for each dataset. None of these algorithms appears to be best for matching
images with all kind of transformations: if an algorithm is good at matching
images with rotation it fails to match images with scale difference and so on. Of
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Table 12: Z-scores of feature operators for the small image database. To find
the better algorithm, follow the arrowhead direction in a pairwise comparison.

Operators SURF-64 SURF-128 Haraff Harlap Hesaff Heslap Score
Blurring (Bikes + Trees)

SIFT ↑ 3.31 ← 10.25 ← 40.32 ← 28.87 ← 38.55 ← 9.46 5
SURF-64 ↑ 3.99 ← 41.30 ← 30.51 ← 35.98 ← 13.84 5
SURF-128 ← 41.72 ← 33.75 ← 43.18 ← 15.04 5
Haraff ↑ 13.50 1.09 ↑ 33.86 0
Harlap ← 10.84 ↑ 18.84 2
Hesaff ↑ 32.64 0
Heslap 3

Viewpoint change (Wall +Graffiti)
SIFT ↑ 4.20 0.79 ↑ 26.98 ← 5.08 ↑ 14.58 ← 18.58 2
SURF-64 ↑ 2.83 ↑ 19.78 ← 9.32 ↑ 10.61 ← 22.66 3
SURF-128 ↑ 19.11 2.39 ↑ 12.48 ← 19.84 2
Haraff ← 17.20 ← 9.50 ← 29.69 6
Harlap ↑ 3.47 ← 12.53 1
Hesaff ← 26.67 5
Heslap 0

Zoom+Rotation (Bark + Boat)
SIFT ← 29.88 ← 30.13 ← 22.08 1.65 ← 31.10 ← 23.85 5

SURF-64 ← 4.07 ↑ 6.18 ↑ 24.02 1.63 ↑ 6.05 1
SURF-128 ↑ 15.00 ↑ 28.33 2.23 ↑ 13.29 0
Haraff ↑ 22.63 ← 7.35 0.45 3
Harlap ← 26.56 ← 24.56 5
Hesaff ↑ 8.18 0
Heslap 3

JPEG Compression (UBC)
SIFT ← 14.73 ↑ 9.22 ← 8.74 ↑ 8.72 ← 9.33 ← 2.47 4
SURF-64 ↑ 18.65 ↑ 4.67 ↑ 17.18 ↑ 11.31 ↑ 14.46 0
SURF-128 ← 14.10 ← 4.73 ← 12.90 ← 9.59 6
Haraff ↑ 14.11 1.96 ↑ 8.00 1
Harlap ← 12.85 ← 9.17 5

Hesaff ↑ 8.89 1
Heslap 3

Change in Illumination (Leuven)
SIFT ← 5.62 ← 8.05 ↑ 11.27 ← 32.36 ← 19.60 ← 16.87 5
SURF-64 ← 3.69 ↑ 14.38 ← 31.97 ← 17.76 ← 9.36 4
SURF-128 ↑ 15.25 ← 31.26 ← 16.85 ← 7.11 3

Haraff ← 36.15 ← 25.01 ← 22.60 6
Harlap ↑ 21.80 ↑ 23.82 0
Hesaff ↑ 8.29 1

Heslap 2

Table 13: Rankings of feature operators, the sum of arrowheads pointing to
an operator. The table is sorted by total score.

Operators Blur View Point Zoom + JPEG Change in Overall Score
Change Rotation compression illumination

SIFT 5 2 5 4 5 21
SURF-128 5 2 0 6 3 16
Haraff 0 6 3 1 6 16
SURF-64 5 3 1 0 4 13
Harlap 2 1 5 5 0 13
Heslap 3 0 3 3 2 11
Hesaff 0 5 0 1 1 7



Evaluation Method, Dataset size or Dataset Content: 23

Table 14: Performance analysis using ANOVA for the small database of images

Source of Variation Between Groups Within Groups Groups Mean Variance
Zoom + Rotation (Bark and Boat) SIFT 1.50 1.14

Sum of Square (SS) 25973.8 3991675 SURF-64 2.40 13.62
Degree of Freedom (df) 6 69993 Haraff 2.49 14.74
Mean Square (MS) 4328.97 57.03 SURF-128 2.56 5.19
F 75.91 Heslap 2.62 23.15
P 6.8× 10−95 Harlap 2.87 48.50
Fcrit 2.10 Hesaff 3.72 292.87

Blur (Bikes and Trees) SURF-128 1.25 0.95
Sum of Square (SS) 4183.34 123537 SURF-64 1.28 1.04
Degree of Freedom (df) 6 69993 Heslap 1.42 1.59
Mean Square (MS) 697.22 1.76 SIFT 1.43 1.18
F 395.03 Harlap 1.64 1.89
P 0 Haraff 1.82 2.67
Fcrit 2.10 Hesaff 1.92 3.03

Change in view point (Graffiti and wall) Harlap 1.88 8.07
Sum of Square (SS) 118817 1826445 Hesaff 2.52 8.75
Degree of Freedom (df) 6 69994 Haraff 2.60 8.84
Mean Square (MS) 19802.8 26.09 SURF-64 3.40 17.12
F 758.89 Heslap 4.34 36.20
P 0 SURF-128 4.85 52.70
Fcrit 2.10 SIFT 5.75 50.99

Change in illumination (Leuven) Haraff 1.84 3.70
Sum of Square (SS) 49404 436862 SURF-64 1.92 3.48
Degree of Freedom (df) 6 35063 SURF-128 2.03 3.70
Mean Square (MS) 8234 12.46 SIFT 2.11 4.45
F 660.87 Hesaff 2.27 3.97
P 0 Heslap 2.28 4.24
Fcrit 2.10 Harlap 5.44 63.67

JPEG compression (UBC) Haraff 1.84 3.70
Sum of Square (SS) 49404 436862 SURF-64 1.92 3.48
Degree of Freedom (df) 6 35063 SURF-128 2.03 3.70
Mean Square (MS) 8234 12.46 SIFT 2.11 4.45
F 660.87 Hesaff 2.27 3.97
P 0 Heslap 2.28 4.24
Fcrit 2.10 Harlap 5.44 63.67

course, we need to bear in mind that the number of image pairs — 10 for first
three sets and 5 for the last two — are not sufficient to draw any statistically
valid conclusion according to the rule of thumb established earlier. According
to these results, SIFT is robust for matching all images except for viewpoint
change. Similarly, Harris-affine with GLOH descriptor appears to be a strong
combination of detector and descriptor for matching images under viewpoint
change and change in illumination. SURF-128 showed, unexpectedly, to be the
worst algorithms for matching zoomed and rotated images, a contradiction
of [6].

The overall ranking is shown by the order of algorithms in Table 13, ac-
cording to which SIFT, SURF-128 and Harris-affine show statistically better
performance when compared with other algorithms. This can also be seen in
the ANOVA analysis given in Table 14. Hesaff performed better only for one
type of images, i.e. matching images with different viewpoints. Exact similar-
ity in McNemar’s test and ANOVA results is not observed, perhaps because
of the mathematical treatment applied to the data prior to ANOVA to cajole
them to be Normally distributed.
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Table 15: The Z-scores of feature operators for three different transformations

Operators SURF-64 SURF-128 Haraff Harlap Hesaff Heslap Score
Zoom (Asterix, BIP, Crolle)

SIFT ←5.99 ←3.42 ←26.63 ←25.961 ←50.05 ←48.61 6
SURF-64 ↑5.23 ←20.48 ←20.25 ←45.18 ←45.03 4
SURF-128 ←24.78 ←22.59 ←45.20 ←42.56 5
Haraff 2.02 ←35.24 ←44.54 2
Harlap ←35.85 ←42.13 2
Hesaff ←26.68 1
Heslap - 0

Rotation (East Park, East South, Ensimag, Laptop, Resid)
SIFT ←36.19 ←46.09 ←5.36 ←8.15 ←52.08 ←55.38 6
SURF-64 ←17.68 ↑29.35 ↑25.08 ←28.22 ←28.79 2
SURF-128 ↑41.77 ↑34.80 ←18.95 ←21.10 2
Haraff ←4.69 ←52.87 ←52.41 5
Harlap ←49.51 ←47.73 4
Hesaff ←3.24 1
Heslap - 0

Zoom + Rotation (Laptop rs, Mars, Monet, New York, VanGogh)
SIFT ←10.66 ←11.68 ←67.07 ←58.86 ←64.57 ←88.36 6
SURF-64 ↑7.99 ←55.40 ←47.89 ←51.72 ←78.24 4
SURF-128 ←61.58 ←53.12 ←56.35 ←81.95 5
Haraff ↑11.21 ↑3.68 ←38.77 1
Harlap ←5.58 ←44.29 3
Hesaff ←40.28 2
Heslap - 0

Table 16: Rankings of feature operators for the larger database. The table is
sorted by the scores of algorithms, so the topmost one has the highest rank in
the pool.

Zoom Zoom + Rotation Rotation Overall Score
SIFT 6 6 6 18
SURF-128 5 2 5 12
SURF-64 4 2 4 10
Harlap 2 4 3 9
Haraff 2 5 1 8
Hesaff 1 1 2 4
Heslap 0 0 0 0

6.3 Results Using The Large Database

These experiments allow us to ascertain whether the small database contains
enough images to characterize the performances of algorithms: if differences
are obtained using a larger database, we should be concerned that there are not
enough. The larger database comprises 191 images in 13 datasets (Table 10),
and it was used in exactly the same way as described in the previous section.

In order to demonstrate an algorithm’s behaviour for a particular trans-
formation between image pairs, a summary of these results is presented in
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Table 17: ANOVA test results for datasets in the large database, grouped
according to images with the same transformation

Zoom Mean based groups’ ranking
Source of Variation Between Groups Within Groups Groups Mean Variance

SIFT 6.32 88.88
Sum of Square (SS) 1704064 9.67× 108 SURF-64 10.10 461.51
Degree of Freedom (df) 6 209991 Haraff 12.22 474.49
Mean Square (MS) 284010.69 4605.29 Heslap 12.55 23715.91
F 61.67 SURF-128 12.58 1983.18
P 9.07× 10−77 Hesaff 14.78 795.56
Fcrit 2.10 Harlap 15.53 4718.77

Rotation
SIFT 3.11 52.95

Sum of Square (SS) 198418.2 97346697 Haraff 3.27 63.67
Degree of Freedom (df) 6 671996 SURF-64 3.52 154.15
Mean Square (MS) 33069.70 144.86 SURF-128 3.70 147.36
F 228.28 Heslap 4.11 104.45
P 1.8× 10−292 Harlap 4.43 141.58
Fcrit 2.10 Hesaff 4.66 349.89

Zoom + Rotation
SIFT 1.56 1.28

Sum of Square (SS) 120086 12789590 SURF-128 1.75 1.92
Degree of Freedom (df) 6 412993 SURF-64 1.82 4.22
Mean Square (MS) 20014.34 30.97 Harlap 2.40 13.36
F 646.29 Haraff 2.42 92.74
P 0 Hesaff 2.93 73.47
Fcrit 2.10 Heslap 3.04 29.78

Table 15. This table identifies performance differences more clearly than ROC
or precision–recall curves and has the advantage of associating a statistical
confidence with each comparison. The Z-scores and directions of the arrows
show that SIFT’s detector and descriptor are effective in identifying stable fea-
tures under geometric transformations. The performance of SURF-128 closely
follows that of SIFT but there is a significant difference between their perfor-
mances, evident by Z-scores such as 3.42, 11.68 and 46.09 for zoomed images,
zoomed-and-rotated images, and images with only rotation respectively.

Table 16 gives a summarized characterization of the performances of all al-
gorithms by collecting their scores from Table 15. A comparison of the rankings
produced for the large and small databases shows broadly similar characteriza-
tion, because only SURF-64 and Haraff operators have changed their positions
in the table. Of course, one needs to keep in mind the difference in the image
transformation in both databases, which can be a critique to the comparison
of these results as being unfair.

To see a comparison between similar transformations, Table 18 presents a
ranking of algorithms for those image datasets featuring both zoom and ro-
tation. Again, the order of algorithms highlights the relative performance on
different amount of data. Unfortunately none of the algorithms share similar
positions in the tables. Interestingly, Heslap with GLOH is performing better
when there are smaller numbers of image pairs, while Hesaff secured last posi-
tion; this is not the case for the larger dataset. Having this level of dissimilarity
in results suggests that the size of the database used has a significant effect
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Table 18: Ranking of algorithms based on sample size (number of images with
zoom and rotation) from Table 13 and 16

Ranking based Score Ranking based Score
on 10 image pairs on 59 image pairs

SIFT 5 SIFT 6
Harlap 5 Haraff 5
Haraff 3 Harlap 4
Heslap 3 SURF-64 2
SURF-64 1 SURF-128 2
SURF-128 0 Hesaff 1
Hesaff 0 Heslap 0

on the ranking — and this means that existing evaluations based around the
small database need to be treated with some caution.

To confirm these results are not an artefact of the use of McNemar’s test,
the same general procedure has also been carried out with ANOVA, and the
mean performances of these operators can be compared by comparing the last
block of Table 17 and first block of Table 14. Both show different ranking of
algorithms for the larger and smaller databases of images with same transfor-
mation zoom+rotation. For the large database SURF-128 is second best but
for the small database its performance degrades and it is ranked fourth.

7 The Effect of Dataset Content

The use of different sample sizes for performance analysis revealed statistically
significant performance differences of algorithms. However, it does not show
whether these results will be different if the images are changed; in other words,
does image content play a role in favour of any operator? To explore this effect,
the larger datasets of images are divided into smaller subsets of fifteen image
pairs each and McNemar’s test and ANOVA have both been used to study the
behaviour of the feature operators.

One need to keep in mind that a different amount of transformation has
applied to each image in a dataset; the images in the Mars, Monet and New
York datasets are rotated at different angles compared to the first image which
is used to match with them. All of these operators are sensitive to these ge-
ometric transformations and may perform differently for different amounts of
transformation. Theoretically speaking, a sufficiently large sample size should
overcome this problem and one should be able to observe the general behaviour
of algorithms.

Let us examine the results generated for different subsets of the four
datasets Laptop, Mars, Monet and New York. All of these sets have more
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Table 19: Performance comparison of SIFT and SURF with other operators
for subsets of large dataset, where each subset contains 15 image pairs. The
result of each subset can be compared with the whole dataset result given at
the bottom of each set in bold.

Subsets Operator SURF-64 SURF-128 Haraff Harlap Hesaff Heslap
laptop 0 0 ← 12.962 ← 3.75 ← 5.66 ← 22.98
laptop SIFT ← 11.18 ← 11.40 ← 59.254 ← 46.658 ← 19.053 ← 62.282
laptop ← 11.18 ← 11.40 ← 59.25 ← 46.66 ← 19.08 ← 62.28
Mars 0 0 0 0 0 ← 2.67
Mars SIFT 0 0 0 0 0 ← 1.789
Mars 0 0 0 0 0 ← 2.67
Monet ← 13.47 ← 36.91 1.15 ← 27.695 ← 61.68 ← 55.60
Monet SIFT ← 18.71 ← 37.336 1.15 ← 27.166 ← 58.489 ← 59.523
Monet ← 20.27 ← 40.45 1.154 ← 27.69 ← 61.75 ← 60.93
New york ← 13.526 ← 7.5202 ↑ 13.55 ↑ 22.875 ↑ 9.0387 ↑ 11.172
New york 0.8157 ← 7.5884 ↑ 10.484 ↑ 14.404 ↑ 7.603 ↑ 10.929
New york SIFT ← 13.599 ← 22.101 ← 3.7275 1.072 ← 10.291 ← 16.614
New york ← 16.88 ← 18.83 ↑ 12.30 ↑ 22.87 ↑ 5.59 0.017
laptop 0 ← 13.417 ← 5.0709 ← 5.4801 ← 21.52
laptop SURF-64 0.47 ← 56.903 ← 44.812 ← 11.386 ← 60.202
laptop 0.468 ← 56.90 ← 44.81 ← 11.49 ← 60.20
Mars 0 0 0 0 1.79
Mars SURF-64 0 0 0 0 0.71
Mars 0 0 0 0 1.789
Monet ← 33.211 ↑ 12.123 ← 17.124 ← 60.22 ← 53.359
Monet SURF-64 ← 29.519 ↑ 18.6 ← 9.5549 ← 52.601 ← 53.371
Monet ← 31.43 ↑ 20.19 ← 7.76 ← 54.77 ← 54.18
New york ↑ 9.79 ↑ 22.92 ↑ 29.50 ↑ 19.13 ↑ 20.62
New york ← 10.332 ↑ 5.9465 ↑ 12.491 ↑ 6.7651 ↑ 8.7899
New york SURF-64 ← 11.77 ↑ 9.19 ↑ 12.61 2.17 ← 4.55
New york 1.36 ↑ 24.23 ↑ 33.61 ↑ 18.07 ↑ 12.17
laptop ← 10.536 ← 4.7246 ← 4.5873 ← 22.383
laptop SURF-128 ← 57.318 ← 45.35 ← 10.90 ← 60.856
laptop ← 57.31 ← 45.35 ← 10.94 ← 59.19
Mars 0 0 0 ← 1.79
Mars SURF-128 0 0 0 0
Mars 0 0 0 ← 1.78
Monet ↑ 36.824 ↑ 15.531 ← 47.605 ← 31.688
Monet SURF-128 ↑ 36.715 ↑ 16.671 ← 40.042 ← 38.258
Monet ↑ 40.01 ↑ 20.70 ← 41.59 ← 36.02
New york ↑ 20.193 ↑ 23.563 ↑ 12.863 ↑ 15.231
New york ↑ 15.602 ↑ 18.242 ↑ 14.504 ↑ 13.707
New york SURF-128 ↑ 19.015 ↑ 18.776 ↑ 8.9711 0.23
New york ↑ 29.78 ↑ 33.30 ↑ 19.67 ↑ 11.67

than 15 images and allow subsets of 15 image pairs to be selected. The per-
formances of all operators are compared for these datasets. McNemar’s test
results are presented in Tables 19 and 20 and show Z-scores between pairs of
feature operators for each subset and for the whole dataset (at the bottom of
each set in highlighted and bold).

The results for the subsets from Laptop, Mars and Monet are consistent
with the whole dataset, showing that the appropriate evaluation framework
with sufficient dataset size can predict the behaviour of the algorithms. How-
ever, for the New York dataset, the better performing operator changes for dif-
ferent subsets. This appears to be principally because of the varying amounts
of transformation alluded to above: the first subset contains images with less
rotation, while the last subset has images with rotation up to 360◦. For these
kind of data, the subset size needs to be large to accommodate the maximum
variation in transformation.

ANOVA results for whole New York dataset, given in Table 21, mostly
agree with subsets results shown in Table 22 in showing statistically significant
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Table 20: Performance comparison of Harris- and Hessian-based operators for
subsets of large dataset, where each subset contains 15 image pairs. The result
of each subset can be compared with the whole dataset result given at the
bottom of each set in bold.

Subsets Operator Harlap Hesaff Heslap
laptop ↑ 9.3991 ↑ 8.9745 ← 14.425
laptop Haraff ↑ 25.017 ↑ 53.802 ← 7.9418
laptop ↑ 25.02 ↑ 53.75 ← 7.94
Mars 0 0 1.1547
Mars Haraff 0 0 0.7071
Mars 0 0 1.15
Monet ← 26.42 ← 62.081 ← 55.426
Monet Haraff ← 26.42 ← 62.177 ← 60.133
Monet ← 26.42 ← 62.17 ← 60.75
New york ↑ 12.556 ← 2.6052 0.4138
New york ↑ 7.9206 1.1107 ↑ 3.8999
New york Haraff ↑ 4.9357 ← 8.9805 ← 13.802
New york ↑ 14.81 ← 4.67 ← 8.92
laptop 0.8571 ← 19.372
laptop Harlap ↑ 39.068 ← 32.098
laptop ↑ 39.03 ← 32.09
Mars 0 ← 3.6148
Mars Harlap 0 ← 2.6667
Mars 0 ← 3.61
Monet ← 54.483 ← 43.723
Monet Harlap ← 50.938 ← 48.516
Monet ← 54.50 ← 49.90
New york ← 11.514 ← 8.3461
New york ← 4.0682 0.596
New york Harlap ← 10.99 ← 15.37
New york ← 14.42 ← 17.93
laptop ← 22.38
laptop Hesaff ← 59.425
laptop ← 59.40
Mars 1.5
Mars Hesaff 0
Mars 1.5
Monet ↑ 14.051
Monet Hesaff ↑ 4.1503
Monet ↑ 2.99
New york 0.9843
New york Hesaff ↑ 4.6988
New york ← 4.2632
New york ← 5.39
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Table 21: ANOVA test for New York dataset as a whole

Groups Mean Variance
SURF-64 2.53 2.28
Harlap 2.56 2.57
SURF-128 2.60 2.43
Hesaff 2.61 2.51
Haraff 2.63 2.56

Heslap 2.64 2.81
SIFT 2.64 2.61
Source of Variation Between Within

Groups Groups
Sum of Squares (SS) 474.40 791252.1
Degree of Freedom (df) 6 311619
Mean Square (MS) 79.07 2.54
F 31.14
P 1.23× 10−37

Fcrit 2.10

Table 22: ANOVA test for subsets of the New York dataset, each subset con-
taining fifteen image pairs

New York Dataset Subset (Image1-16) Subset Image13-27) Subset (Image21-35)
Groups Mean Variance Groups Mean Variance Groups Mean Variance

Harlap 2.34 2.16 SURF-64 2.78 2.63 SURF-64 2.40 1.96
SURF-64 2.41 2.13 Heslap 2.79 3.02 Harlap 2.42 2.09
Haraff 2.44 2.26 Hesaff 2.83 2.85 SURF-128 2.46 2.02
Hesaff 2.44 2.24 SURF-128 2.85 2.74 Haraff 2.51 2.25
SIFT 2.48 2.33 Harlap 2.91 3.27 SIFT 2.52 2.36
Heslap 2.48 2.68 SIFT 2.92 3.01 Hesaff 2.56 2.36
SURF-128 2.48 2.41 Haraff 2.93 3.03 Heslap 2.64 2.69
Source of Between Within Between Within Between Within
Variation Groups Groups Groups Groups Groups Groups
Sum of Squares (SS) 256.17 243110.6 360.13 308371.8 617.53 228337.8
Degree of Freedom (df) 6 104993 6 104993 6 101619
Mean Square (MS) 42.69 2.32 60.02 2.94 102.92 2.25
F 18.44 20.44 45.80
P 1.54× 10−21 4.75× 10−24 2.41× 10−56

Fcrit 2.099 2.099 2.0989

performance differences of feature operators (F >> Fcrit) but do not yield
similar rankings based on low means and variances. The major problem with
ANOVA is that the data are required to be Normally distributed and the
variances homogeneous; the data under analysis do not obey these rules and,
even though they have been transformed by calculating its square root —
the most effective of the standard transformations for these data — they do
not fit a Normal distribution well. This transformation makes these rankings
unreliable and so the rankings produced by McNemar’s test are considered
more trustworthy.

The underlying concept of the this study was to highlight the importance
of the amount of data for comparison and an appropriate testing framework.
Furthermore, the performance metrics discussed and critically analysed here
are not specific to image matching problem but can be and have been used
for comparing several other image processing algorithms. These include image
stitching, tracking, navigation, augmented reality, visual SLAM and many
more. Therefore, suggested evaluation framework and data centric rules can
be easily applied to other domains where the analysis is done using a number
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of features, images, frames of a video, recognition of a number of objects or
classification tasks etc. in order to provide a comprehensive benchmark.

8 Conclusions

Performance characterization is a sensitive problem and therefore needs to be
dealt with carefully. Graphical methods for evaluation appear to be unreli-
able and sometimes misleading. The use of statistically reliable methods is
more rigorous. To explore this, McNemar’s test has been used to carry out a
statistically-valid examination of the performances of vision algorithms. It is
also important to note that McNemar’s test can be used to carry out tasks such
as ranking algorithms based on their performance, in which case comparison
between algorithms and ground truth has been established as being sufficient.
As McNemar’s test alone can be criticised because it involves assigning an
arbitrary threshold for distinguish success from failure, a companion study us-
ing ANOVA has been carried out to see whether a similar characterization is
obtained. Although the testing procedures for the tests are slightly different,
the results are broadly similar.

Unlike previous studies, this research takes account of the size of the dataset
used in making comparisons. Contrary to previous evaluation studies [19,55], in
which overlapping precision–recall curves made it difficult to determine which
algorithms outperformed others, the results presented here are not only sta-
tistically reliable but also clearly indicative of differences in the performances
of algorithms for the same set of data. Table 18 reflects the changes in rank-
ing when the evaluations were performed on datasets with different sample
sizes. Therefore, one needs to be very careful in drawing conclusions when the
amount of data is not sufficiently large.

The paper has attempted to establish some valuable rules of thumb re-
garding data size when evaluating the performances of vision algorithms. The
homography testing framework proposed and used for the evaluation of feature
operators should use a minimum of 700 points. Similarly, it has been estab-
lished that 5 images pairs are not sufficient; at least 15 image pairs are needed
for statistically-valid results to be obtained.

Using these rules, a number of feature operators have been characterized
based on their performances and the results are compared with the standard
dataset of 5 to 10 image pairs widely used for this purpose. The results show
that the SIFT detector and descriptor are more distinctive and robust for
matching under different image transformations and give consistent perfor-
mance regardless of the type of images. Conversely, the Harris-based detector
combined with the GLOH descriptor (which is an extended form of SIFT de-
scriptor) gives good performance only when there is a significant viewpoint
change in images. It should therefore be most useful when used in conjunction
with another reliable feature descriptor, such as SIFT or SURF.
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