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Abstract. In this paper we consider denoising and
inpainting problems for higher dimensional combined
cyclic and linear space valued data. These kind of
data appear when dealing with nonlinear color spaces
such as HSV, and they can be obtained by changing
the space domain of, e.g., an optical flow field to po-
lar coordinates. For such nonlinear data spaces, we
develop algorithms for the solution of the correspond-
ing second order total variation (TV) type problems
for denoising, inpainting as well as the combination of
both. We provide a convergence analysis and we apply
the algorithms to concrete problems.

Keywords. Higher order total variation minimiza-
tion, vector-valued TV, cyclic data, combined denois-
ing and inpainting, cyclic proximal point algorithm.

1 Introduction

One of the most well known methods for edge-
preserving image denoising is the variational ap-
proach minimizing the Rudin-Osher-Fatemi (ROF)
functional [70]. In its basic form, it deals with scalar
data. Related variational approaches for vector space
valued data have gained a lot of interest in the liter-
ature and are still topic of ongoing research; we ex-
emplarily refer to [12, 42, 61, 67] and the references
therein. In this paper, we consider TV-type function-
als incorporating first and second order differences for
the nonlinear data spaces which combine vector space
valued data —in the following called linear space data
to avoid confusion— and vectors of cyclic data. In
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these spaces, we deal with denoising and inpainting
problems as well as simultaneous inpainting and de-
noising problems.

Image inpainting is a problem arising in many ap-

plications in image processing, image analysis and re-
lated fields. Examples are restoring scratches in pho-
tographs, removal of superimposed objects, dealing
with an area removed by a user, digital zooming as
well as edge decoding. Principally, any missing data
situation —whatever the reason might be— results in
an inpainting problem. This is not restricted to 2D im-
ages. Further examples are defects in audio and video
recordings, or in seismic data processing. In this re-
spect, also interpolation, approximation, and extrapo-
lation problems may be viewed as inpainting problems.
We recommend the survey [45] and Chapter 6 of [27]
as well as [16, 18] for an overview on inpainting and for
further applications. There are various conceptionally
different approaches to inpainting, cf. [27, 45] and [18]
which also includes some comparison. Among these
are methods based on linear transforms from harmonic
analysis such as curvelets and shearlets which are com-
bined with a sparsity approach based on ¢! minimiza-
tion on the corresponding coefficients [17, 32, 33, 51].
Other approaches are based on (often nonlinear) PDE
and variational models, cf., e.g., [13, 19, 25, 26, 34,
57-60, 74, 78].
In general, exemplar-based and sparsity-based meth-
ods perform better for filling large texture areas,
whereas diffusion-based and variational techniques
yield better results for natural images. Among the
variational techniques applied, total variation (TV)
minimization is one of the prominent models. The
minimizer of the corresponding TV functional yields
the inpainted image. TV inpainting works well for
elongated inpainting areas but has problems with
larger gap connections. In such situations higher or-
der, in particular curvature based, schemes perform
better.



The first TV regularized model was proposed in [70]
for denoising. It was first applied to missing data situ-
ations/inpainting in [4, 24]. Further references for TV
based image inpainting are [15, 28, 74]. In contrast to
classical methods, the results are typically not over-
smoothed; however, it is well known that these min-
imizers very often show ‘staircasing’ effects, i.e. the
result is often piecewise constant, although the under-
lying signal varies smoothly in the corresponding re-
gions. In order to avoid staircasing, higher order and,
in particular, second order differences and derivatives
(in a continuous domain setting), are often employed.
References are the pioneering work [20] as well as [14,
21, 23, 30, 31, 48, 53, 55, 56, 71-73]. TV functionals
for linear space valued data were considered in [12] in
the context of linear color spaces. The papers [63, 64]
deal with denoising and inpainting in the RGB color
space using linear combinations of first and second or-
der terms. A total generalized variational model can
be found, e.g., in [61]. In contrast to applying pure
second order terms or linear combinations of first and
second order terms, total generalized variational ap-
proaches try to find some optimal balancing between
the first and second derivatives. The advantage is that
the related schemes better preserve the edge struc-
tures. A detailed description may be found in [14].
The authors of [61] obtain a model for denoising lin-
ear space valued color data. Second order total gen-
eralized variation was generalized for tensor fields in
[80].

However, in many applications, data having values
in nonlinear spaces appear. Examples are diffusion
tensor images [5, 65], color images based on non-flat
color models [22, 50, 52, 81] or motion group-valued
data [69, 79]. Due to its importance, processing such
manifold valued data has gained a lot of interest in re-
cent years. To mention only some examples, wavelet-
type multi scale transforms for manifold data have
been considered in [44, 79, 83]. Statistical issues on
Riemannian manifolds are the topic of [10, 11, 37,
62, 66] and circular data are, in particular, consid-
ered in [36, 49]. Furthermore, manifold-valued partial
differential equations are studied in [29, 43, 77].

For TV functionals for manifold-valued data, an
analysis from a theoretical viewpoint has been car-
ried out in [39, 40]. These papers extend previous
work [38] on S'-valued functions where, in particular,
the existence of minimizers of certain TV-type ener-
gies is shown. An algorithm for TV minimization on
Riemannian manifolds was proposed in [54]. This ap-
proach uses a reformulation as a multi label optimiza-
tion problem with an infinite number of labels and a
subsequent convex relaxation. An approach for lin-
ear spaces using a relaxation of the label optimization
problem as well was presented in [41]. First order TV
minimization for S'-valued data has been considered
in [75, 76]. In particular, these authors consider in-

painting for S'-valued data in a first order TV setup.
We proposed a different approach to first order TV
minimization for manifold-valued data via cyclic and
parallel proximal point algorithms in [85]. We estab-
lished a second order setup for denoising S'-valued
data based on cyclic proximal point algorithms in [6].
Inpainting for S'-valued data was considered in the
authors’ conference proceeding [7].

Data consisting of combined cyclic and linear space
components appear in various contexts. For example,
such data appear when dealing with nonlinear color
spaces such as HSV, HSL, HSI or HCL. Such data
also appear in the context of optical flows. When con-
sidering the flow vectors between consecutive images
in polar coordinates which means separating magni-
tude and direction, the resulting data takes its values
in R x S*. In this context, this approach is natural
and interesting and seems promising to improve the
results obtained with the usual R2-valued approach.
In principle, whenever data is given as vectors of polar
coordinates, we are in the combined cyclic and real-
valued setup of data in (S!)™ x R™ considered in this

paper.

Contributions. In this paper, we consider inpaint-
ing, denoising as well as combined inpainting and de-
noising problems for combined cyclic and linear space
valued images in (S')™ x R™ based on a second or-
der TV-type formulation. We consider two variational
models: the first model deals with the noise free situ-
ation whereas the second one also considers the noisy
case combining denoising and inpainting (including
pure denoising by specifying the inpainting area as the
empty set). In our nonlinear setting, these higher or-
der approaches avoid unwanted staircasing effects as
well. For combined cyclic and linear space data, we
derive solvers for these variational problems based on
cyclic proximal point algorithms. We provide a con-
vergence analysis for both the noisy and the noise free
model based algorithms developed in this paper. For
both algorithms, we show the convergence to a mini-
mizer under certain restrictions which are typical when
dealing with nonlinear data. In particular, we assume
the data to be dense enough meaning that they are lo-
cally (and not necessarily globally) nearby. We apply
our algorithms to denoising, inpainting and combined
denoising and inpainting in the nonlinear HSV color
space. Furthermore, we apply our algorithms for de-
noising frames in volumetric phase-valued data — in
our case, frames of a 2D film. Our approach is based
on utilizing the neighboring k frames to incorporate
the temporal neighborhood. The idea generalizes to
arbitrary data spaces and volumes consisting of layers
of 2D data.

The novelties of the present work in relation to the
authors previous work [6, 7] are as follows. (i) In con-



trast to [6, 7] we consider the more general, practically
relevant, data spaces (S!)™ x R™ here. In contrast
to general manifolds, these product spaces still bear
enough structure relevant for our purposes. We point
out that both, the algorithmic and analysis part, are
more involved than only component-wise considering
the St-valued or real-valued situation. (ii) Concerning
the algorithmic part, we compute proximal mappings
of constrained problems arising in inpainting situa-
tions in this work. This is even new for S! data. In [7],
we used a less natural projection approach generaliz-
ing [6]. (iii) Concerning the analysis, we here include
an inpainting setup. The conference proceeding [7]
does not contain an analysis and [6] considers func-
tionals for denoising S' valued data. A more detailed
discussion may be found at the end of the paper.

Outline of the paper. In Section 2 we introduce
the variational models we consider for inpainting and
denoising of combined cyclic and linear space data in
this paper. We start with vector space data in Subsec-
tion 2.1; then we define absolute differences for com-
bined cyclic and vector space data in Subsection 2.2
which allow us to derive the corresponding variational
models for combined cyclic and vector space data.
This is done in Subsection 2.3 for both inpainting
noise free combined cyclic and vector space data as
well as inpainting and denoising combined cyclic and
vector space data. In Section 3 we develop algorithms
for minimizing the variational models introduced pre-
viously. These algorithms base on the cyclic proxi-
mal point algorithm we present in Subsection 3.1. We
present explicit formulas for the proximal mappings
needed for inpainting in Subsection 3.2. Using these
explicit representations, we derive a cyclic proximal
point algorithm for inpainting both the noisy and noise
free combined cyclic and vector space data in Subsec-
tion 3.3. The convergence analysis of both algorithms
is the topic of Section 3.4. Finally, in Section 4 we
apply the derived algorithms to various concrete situ-
ations. We consider denoising data living in the non-
linear HSV color space in Subsection 4.1. Then we
consider inpainting for noise-free as well as noisy data
in such color spaces in Subsection 4.2. Finally, we ap-
ply our algorithms for denoising frames of a S'-valued
2D film in Subsection 4.3.

2 Second order variational models for
inpainting and denoising combined
cyclic and linear space data

In this section we derive models for denoising, inpaint-
ing as well as simultaneous inpainting and denoising
data having cyclic and linear space components. In
Subsection 2.1, we first concentrate on introducing the
considered models based on first and second order ab-

solute finite differences restricting to the linear space
setting. In Subsection 2.2 we obtain suitable defini-
tions for absolute differences for combined cyclic and
vector space data. In Subsection 2.3, we use these
definitions to obtain inpainting and simultaneous in-
painting and denoising models for combined cyclic and
linear data. In particular, denoising is covered by con-
sidering the empty set as inpainting region.

Let us fix some notations. We denote by
(fi,j)(i,j)eﬂa QQ = {1, ceey N} X {1, ey M} images
of size N by M, which can also be seen as func-
tions f(7,7) on the image domain Q. For any subset
Q C Qq of pixel indices Q¢ := Qp\Q denotes the com-
plement of €2 in Qy. Each entry f;; € X is called a
pixel value, where X is some data space. Our main fo-
cus is the (m+n)-dimensional space X := (S!)™ x R™.
On a data space dx(zx,y), D1(x,y), D2(x,y, 2), and
D; 1(w,z,y, z) denote the distance on X, the abso-
lute first, absolute second, and absolute second order
mixed differences. If the space is clear from the con-
text or the setting holds for all spaces, we omit the
X. The elements = (x1,...,2,)T € R" are col-
umn vectors, where -T denotes the transposition. For
two vectors x,y € R™ we denote by (x,y) = 2Ty the
inner product. By (x)2r € [, 7) we denote the ele-
mentwise modulo operation, i.e. the unique value such

that x = 27k + (2)2x, k € Z™. Finally, for matrices
n,d

= (2ij)is1,-1 €

ey

R™*? we denote the columns by

2.1 Inpainting and denoising vector space
data

The Rudin-Osher-Fatemi (ROF) functional [70]

Z(fi,j —zij) + QZHV%J

i .3

|, a>0,

is one of the most well known and most popular func-
tionals in variational image processing. In its penal-
ized form, it consists of two terms: the first term mea-
sures the distance to the data f the second term is a
TV regularizer where V denotes the discrete gradient
operator, usually implemented as first order forward
differences in vertical and horizontal directions. Both
an isotropic version using the euclidean length or 2-
norm and an anisotropic version employing the sum
of absolute values or 1-norm for the second term are
widely used. In this work we will restrict ourselves to
the anisotropic version. In this form, the ROF Model
is typically used for denoising purposes. To avoid the
appearing staircasing effect, often higher order and,
in particular, second order differences (respectively,
derivatives, in a continuous domain setting) are em-
ployed [14, 20, 21, 23, 30, 31, 48, 53, 55, 56, 71-73].



Denoising. For pure denoising we consider the dis-
crete second order TV-type functional

J(x) = F(z; f) + a TVy(2)

+ﬁTV2(m)+'yTV1,1(x), (1)

where z, f are images defined on the image domain{
denotes the image domain. The data values f;; it-
self live in a certain data space. Then the data term
F(x; f) for given data f reads

N.M
F(z; f) = % Z d(fi g wiz)?, (2)

,j=1

where d is a distance on the data space. For data liv-
ing in a vector space, d(f; ;, ;) = || fi,; — xi ;| is an
appropriate choice. In the pure linear space data situ-
ation, the above quadratic data term (2) corresponds
to a Gaussian noise model. For other types of noise,
different data terms are more appropriate; e.g., for
Laplacian noise the term F(z; f) = vajfl d(fijsij)
is appropriate; cf. also [63].

The first order difference component aTVi(x) is
given by

N-1,M
aTVi(z) = o Z Di(i,5, Tit1,5)
ij=1
NM-1
+az Y Dilwig i)
1,j=1
N-1,M-1
Z Di(xi 5, Tig1,5+1)
ij=1
N-1,M-1
Z D1 (@i 41, Tiv1,5)-

ij=1

3)

+ 2
V2
ay

MRVG

Again, for a vector space any norm of the ordinary ab-
solute first order difference D1 (s, %iq1,5) = ||i,; —
Tit1,5|| is an appropriate choice. The first order TV
term incorporates horizontal, vertical and both diag-
onal differences. The diagonals are incorporated to
reduce unwanted anisotropy effects and are scaled by
% to take the length of the diagonal on the pixel grid,
i.e. the distance of two pixels, into account. We note
that J'(z) = F(x; f) + (a1, a2,0,0) TV (z) is just the
vector version of the anisotropic discrete ROF func-
tional above. Using the notation

and

D171(Ivyauav) = H.I'—y—u-i-UH,

for a norm of the standard second order differences for
vector space data, the second order difference compo-
nent, consisting of a horizontal and vertical component

BTV, (x) as well as a diagonal component v TVy 1 (z),
is given by

N—1,M
BTVay(z) =B1 > Da(wi-1j, @i ig1,;)
=2 =1
N,M—1
+ 5o Z Do(i 51,25 5, i j+1),

i=1,j=2

®)

(6)

We note that similar to the diagonal differences in the
TV, part the diagonal component v TV; 1(z), which
is based on the mixed second order difference D 1,
reduces unwanted anisotropy effects for the second or-
der part. Actually, D1 1(zij, Tiv1,5, i i1, Tit1,4+1)
may be interpreted as a diagonal difference: av-
eraging x; ;41 and x;41; yields an estimate for
the non-grid value m = “z;11/5;41/2". Then
Do(x; 5, m, xiq1,j+1) = Di1(xi 5,

Tit1,j, Tij+1, Tit1,j+1) Plays the role of a second order
diagonal difference. Interchanging the roles of x; j11,
ZTit1,; and @;;, @41 541 yields the other diagonal.
Hence, diagonal differences are already incorporated
in the second order term and we do not have to con-
sider terms of the form Dy (x;—1 j—1, Tit1,j+1, T4 ;) for
the reduction of anisotropy effects. The model param-
eters a1, g, sz, auy,

81, B2, regulate the influence of the different TV
terms.

One main reason for considering this anisotropic
model is that it is computationally feasible for the non-
linear space of combined cyclic and vector space data
considered in this paper as we will see later on. To
our knowledge there are no previous algorithms deal-
ing with any kind of second order TV-like problems
in this nonlinear situation —mneither in the isotropic
nor in the anisotropic setup. As explained, we employ
diagonal terms to milden unwanted effects caused by
the anisotropic formulation.

Next, we consider suitable modifications of the
above functional to obtain models for the inpainting
problem with noisy and noiseless data. We start by
first formulating the inpainting problem.

Inpainting problem in the presence of noise.
Given an image domain Qo = {1,..., N} x{1,..., M},
an inpainting region Q C Qg is a subset of the image
domain Qq, where the pixel values f; ;, (¢,7) € Q, are
lost. The noiseless or noisy inpainting problems now
consist of finding a function x defined on Qg from data
f given on the complement Q¢ of the inpainting re-
gion, such that x is a suitable extension to f onto (2
and for the second case additionally denoised.



Inpainting without presence of noise. To deal
with the noiseless situation, we consider the following
modification of the functional J given by (1). Since the
data is assumed to be noiseless, we add the constraint
that the target variable agrees with the data on the
complement of the inpainting region. Furthermore,
the data term considers only those indices for which
actually data are available. This eliminates the data
term from the functional. More precisely, the second
order variational inpainting problem considered in this
paper reads for a vector space as

argmin a TV (z) + S TVa(x) + 7TV 1(2),
v (7)
subject to x; ; = f; ; for all (4,7) € 0ne.

The TV terms TV, TV, TV 1 are defined by (3), (5)
and (6) using the difference terms Dy, Dy, D11 based
on a norm in the vector space. Due to the constraint
they actually only act on those difference terms that
affect an entry in the inpainting region.

Second order TV formulation of the inpainting
problem for noisy data. For the inpainting prob-
lem in presence of noise the requirement of equality
on Q¢ is replaced by z being a suitable, i.e., smooth
approximation. In this case, we search for a minimizer
of the following second order TV functional for cyclic
data for inpainting:

Ja(r) = Foo(z; f) + a TV (x)

+6TV2(1‘) +’}/TV171($), (8>

where for any subset B C {2 of the image domain, we
define
1 2
Fp(w;f) =5 Z(M)EB d(wi 5, fi )" )
This means we use a data term that enforces similarity
to the given data f on Q¢ while applying a regular-
ization based on (3),(5), and (6) for the whole image
domain. Specifying the inpainting area as the empty
set, we obtain the pure denoising problem (1).

2.2 Absolute differences for combined cyclic
and vector space data

In order to implement the above variational inpaint-
ing problem (7) and the simultaneous inpainting and
denoising problem (8) for combined cyclic and vector
space data, we have to find suitable difference opera-
tors D1, D2, Dy 1 for data consisting of combined cyc-
lic and linear space components. In order to do so,
we first find suitable definitions for vectors of cyclic
data. Then, we combine these definitions with those
for the linear space case in a way suitable to the space
of interest in this paper. We use the symbols D, al-
ready introduced in (3) for the linear space case, also

for the case of vectors of cyclic and combined data.
We further unify the notation to D(-; w) for different
weights w. This overload is employed to avoid addi-
tional notation and should not cause confusion since
the space under consideration will be clear from the
context.

Let w = (wj);i:l € R% w # 0, be a vector with
ijl w; = 0, and call such a vector w a weight. Spe-
cial cases are the binomial coefficients with alternating

Stgns
ba= ((-1pH1(2,)

For the vectors (/) € R, j = 1,...,d, we employ the
matrix z == (2, ..., 2(®)e R"*? to define the abso-
lute finite difference D for these vectors with respect
to the weight w € R? by

d+1

j=1"

d
D(z;w) = ||law|| = H ijx(j)H.
j=1

For w = by, we obtain the forward differences of order
d for the vectors (V... 2@+ je.

d+1
Dy(z) == D(x;bq) = HZ(_l)jer—l(jgl)x(j) )
j=1
Another useful weight used in this paper is w = b;; ==
(—=1,1,1,—1). We denote the corresponding finite ab-
solute difference by D1 1(x) = D(z;b11).

Example 2.1. For three points x1,x2,x3 € R™ and
w = by = (1,-2,1)T the second order absolute dif-
ference is given by Do(xq, 22, 23) = |21 — 229 + 23|,
cf. (4). This can be interpreted as measuring the dis-
tance from y to the midpoint my, = (1 + x3) of the
line segment connecting x1 and x3; more precisely, we
have Dy(z1, 2, 23) = 2||3(z1 + 23) — 22||. The situa-
tion is shown in Figure 1 forn = 2, but also illustrates
the situation for general n > 2 in the plane defined
by w1, T2, 3. For n =1 the situation simplifies to x2
always lying on the line —though not necessarily the
segment— connecting x1 and x3.

We consider the cyclic case next. Let S! denote the
unit circle St == {p? +p2 =1 :p = (p1,p2)T € R?}
endowed with the geodesic or arc length distance

dsi(p, q) = arccos (p,q), p,q€ st.

Given a base point g € S!, the exponential map exp,
R — S! from the tangent space T,S' ~ R of S' at ¢
onto S' is defined by

—sinx

cosx |’

This map is 27-periodic, i.e., exp,(r) = exp,((%)2x)
for any x € R, where (x)2, is the unique point such
that

cos T
sinx

equ(l') = R.q, R, = (

x =2mk+(z)2x with (2)2, € [-7,7),k € Z. (10)
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Figure 1. The three points x1,x2, 23 € R? illustrate the
multivariate finite difference Da(z1,z2,x3) = 2||ms —
x2||, i.e. the distance of z2 to the midpoint m, =
%(ml + x3) of z1 and x3. This measures how “near”

they are to lying equally distributed on a line segment

in the right order.

If we fix ¢, we obtain a representation system of S!,
i.e., exp, is a bijective map where exp,(0) = ¢ and
there is a unique x € [—m,7) for each p € S! such
that exp, () = p. A vector x € [—~m, 7)™ represents a
point in (S')™ by component-wise application, and for
a point ¢ € (S*)™, the map exp,: [~m,m)™ — (SHym,
exp,(z) = (expy, (21),...,exp, (zm))T, is bijective
where the properties from above hold component-wise.
A distance measure on (S!)™ is given by

d(stym (p,q) = H (aTCCOS (i Qi>)£1 || .

In the following, we introduce higher order differ-
ences on (S')™. We employ the representation system
S! 2 [—7,7) induced by using an arbitrary but fixed

exponential map. Let z() € [, 7)™, j = 1,...,d.
Using the notation = := (1), ... (@) € [—7, 7)™*4,
the absolute cyclic difference of x| ..., z(® with re-

spect to a weight w € R¥\{0} is defined as

D(z;w) = m}%ﬁn D([(zM + a, ..., 2D + a)]an; w),
aeR™

where [y]2, for some y € (S')™ is multivalued and its
ith component ([y]2r); is given by

([Yl2x)i = {gi/;)zﬂ,

if y; # (22 + 1) for all z € Z,
else.

(11)
This definition may seem a bit technical at first glance.
However, it allows for two points (9, () i, j € I ==
{1,...,d}, having the same value xl(z) = acl(j) in one
component [ € {1,...,m} to be treated differently, cf.
the definition for S! in [6, Section 2]. In fact, we may
choose any ¢q € (S!)™ as a base point for our represen-
tation system, which shifts any set of points given with
respect to exp,, by a fixed value of a = exp;l(q’).
When the shift by o € R™ is small enough, such that
no component of z is affected by the component-wise
application of []a,, both representation systems yield
the same value. Using this notation we can simplify
both the definition of the second order difference and

the proximal mappings derived later on. The mini-
mum in the definition of the difference simplifies to

D w) = min DD~z gt w),
d

where xj = (xl(gj));nzl This is illustrated in Figure 2
for three points x,y,z € (S')2. We note that this
definition contains the notion introduced in [6] for S*
as a special case.

Finally, we come to the space of interest in this pa-
per which is & = (S!)™ x R™. In this space a vec-
tor = (z;)7" consists of two parts: the phase-
valued s = (p;)™, € (S!)™ and the real valued
components zg = (z;)“4", € R" of z € X. In
the following, we will use any representation system
in order to write the cyclic components xs as a vector
xg € [—m,m)™. This also allows for € X to be seen as
a vector, where the first m components are restricted
to [—m,7) and the remaining n ones are real-valued.
The distance of two points z,y € A on this product
space is given by

dax(w,9) =\l — yell? + digrym (s, y5)*

For a set of points (1), ..., 2(9 € X, using the nota-
tion z = (), ..., 2(?) as before, the finite difference
for cyclic and noncyclic data with respect to a weight
w € RN\{0} is defined by

D(z;w) == \/D(zg;w)2 + D(zs; w)2.
We further introduce the short hand notations

Dg(z) = D(2,bg), =€ X deN, (12)
to denote the corresponding absolute finite differences
of order d. Furthermore we introduce —with a slight
abuse of the difference notation— the second order
mized difference of four points, e.g. given on a 2 x 2
subset of the pixel grid ®q) by D1,1(z) == D(x;b1,1) for
r € X% with by ; = (—1,1,1,-1)T. For the weights
corresponding to first and second order differences, we
have a particularly nice representation, which is given
by the following Lemma.

Lemma 2.2. For w € {by,ba,b11} and z € X¢
where d denotes the length of w, we have
D(z,w)? = ||(zsw)2x||* + [|lzrwl]?, (13)
Proof. For the real-valued components there is noth-
ing to show. Hence we may restrict to n = 0 (which
corresponds to purely cyclic data) and thus have to
show that D(z,w) = |(zw)ar| for 2 € (S})"*?. To

this end we apply Proposition 2.5 of [6] to each row x
and conclude the validity of (13). O
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(b) Three representation systems with points z,y, z at
+7 in at least one dimension.

Figure 2. For given points z,y, z € [—, 71')2 in a representation system Fs, i.e., with base point s the two subfigures
illustrate different shifts: ((a)) shifts by arbitrary a € R?, e.g., to s’ = s + « yielding the same value of D5 |
and ( (b)) cases yielding different values for the second order difference and a minimum occurring for z,y, z at the

borders of the representation system.

2.3 Inpainting combined cyclic and vector
space data

We can now apply the definition of absolute differ-
ences for combined cyclic and vector space data we
derived in Section 2.2 to obtain variational models for
inpainting and simultaneous inpainting and denoising.
This extends the models for the Euclidean differences
in Subsection 2.1 using a first order TV term (3) as
well as to the second order TV terms (5) and (6) to a
more general setting. The noiseless inpainting model
now reads

argmin o TVy(z) + 8TVa(z) +vTVyi1(x),
2EXNXM
subject to x; ; = f; ; for all (i,5) € Q°.
(14)

Here, TV, is defined by (3) incorporating the first or-
der absolute differences D; given by (12) and the sec-
ond order TV terms TVy,, TVy; are defined by (5)
and (6) employing the second order absolute differ-
ences Do, D1 given by (12), respectively.

Proceeding similarly, we get a variational formula-
tion of the inpainting problem for noisy combined cyc-
lic and vector space data by computing a minimizer
of

Jolw) = Foe &3 f) +a TV (@) i~

+ ﬁTVz(l’) + ’YTVLl(I’).
Here the data term is given by (9) using the distance
function on X = (S!)™ x R™. As in the noiseless sit-
uation, TV is defined by (3) again incorporating the
first order absolute cyclic differences D; and the sec-
ond order TV terms TVa, TV;; are defined by (5)

and (6) employing the second order absolute cyclic
differences Dq, Dy ; from (12), respectively.

3 Algorithms for inpainting and
denoising combined cyclic and linear
space data

In this section, we derive algorithms to solve the in-
painting problem (14), and the combined inpainting
and denoising problem (15). Note that the latter in-
cludes the denoising of combined cyclic and vector
space data for the case of 2 = (), an empty inpainting
set. These algorithms are based on a cyclic proximal
point algorithm whose concept we recall in Section 3.1.
We derive explicit formulas for the proximal mappings
that are needed for inpainting and denoising of such
combined data in Section 3.2. Using these explicit
representations, we derive a cyclic proximal point al-
gorithm for inpainting noiseless combined cyclic and
vector space data and similarly for simultaneously in-
painting and denoising data in Section 3.3. This also
includes an efficient choice for the cycles involved. Fi-
nally in Section 3.4, we prove convergence of our algo-
rithm to a minimizer under certain conditions that re-
flect the space-inherent non-convexity of the involved
functionals.

3.1 The cyclic proximal point algorithm

For a closed, convex and proper functional ¢: R™ —
R U {oo} the prozimal mapping is given by
1

prox,,,(f) = argmin in — J:||2 + Ap(z), feR",
zERn



where A > 0 is a tradeoff or regularization parame-
ter. The fixed points of prox,,(f) are minimizers of
¢. Hence, if the proximal mapping prox,,(f) can be
computed in closed form, an algorithm for finding a
minimizer is given by iterating

k) = Prox,,

z( (x(kfl)), k=1,2,...

for some starting value z(®).  This algorithm is
called prozimal point algorithm (PPA) and was intro-
duced by Rockafellar [68]. It was recently extended
to Riemannian manifolds [35] and also to Hadamard
spaces [3]. Denoting the distance on a Riemannian
manifold M by daq the proximal mapping on a man-

ifold reads for a function ¢: M™ — R as

prox,,, (f) == arg min %d/\/l(f,ac)2 + Ap(x), feM™
zEM™

We note that on some manifolds, e.g. the spheres S?

there is no definition of a (globally) convex function.

Hence the minimizer might not be unique. This is for

example the case when looking at our space X%, as

this is not even the case for cyclic data, cf. [6].

If the function ¢ can be split into simpler parts, i.e.
© = Yi_, @i, for which then individually the proxi-
mal mappings are known in closed form, a similar al-
gorithm is given for a sequence { Ay} of regularization
parameters by

L =1
o) = ProXy, o, (x(k+ ¢ ))’

l=1,...;¢,k=1,2,...,

2(

and it is called cyclic proximal point algorithm
(CPPA). Its formulation on Euclidean space is derived
in [9], see also the survey [8]. It converges to a mini-
mizer of ¢ if

oo o0
A, =00, and A2 < 0.
Zkzo k ’ Zk:o k

The concept of CPPAs for Hadamard spaces has been
treated in in [2]. A CPPA for TV minimization for
manifolds and in Hadamard spaces has been derived
in [85]. For second order TV type problems, a CPPA
to denoise S' data was derived in [6]. A preliminary
model, different to the one appearing in this paper,
was applied to inpainting of S' data in [7]. For man-
ifold data in general, the main challenge is to derive
proximal mappings which are as explicit as possible.

(16)

3.2 Proximal mappings for inpainting

Here we derive closed form expressions for the prox-
imal mappings needed to make the cyclic proximal
point algorithm from Section 3.1 work for the inpaint-
ing problems (14) and (15) in the nonlinear spaces con-
sidered in this paper. In particular, we derive proximal
mappings incorporating constraints directly.

We first need some basic results on the linear case
which involves vectors of real-valued data only. To
this end, we start with a generalization of [6, Lemma
3.1]. We derive explicit expressions for the proximal
mappings of functions living on linear spaces which
are of the form

o(x) = |lzw —al|, a€R",

where the target variable z is a matrix in R™*%, and
where d corresponds to the length of w. The vector a
introduces an offset. We employ the notation ||y|lr =

Z:l]dzl (yi(j))2 to denote the Frobenius norm of a

matrix y.
Lemma 3.1. Let f = (fO,..., f@D) € R be q
matriz whose columns f(i) represent the data vectors,

let 0 # w € RY (w not necessarily a weight), and A > 0
be given. For the functional

1
B(z; foa,w) = S = @l[f+ Mlazw —all,  (17)

with target variable x € R™*?, the minimizer & is given
by

&= f—msw’, (18)
fw—a . N
where s = [ fw—all Zf ||fw a’” # 0,
0 else,
and m = min{/\, lfw—al } The minimum
[l
E(Z; f,a,w) is given by
E(&:f, a,w) (19)
_ Jsllfw—al? ifm <A,
w2 (322 4+ A(| %H — ) otherwise.

Furthermore, given data f,f € R™ and different
offsets a,a € R™, the following implication holds:

| fw—all < |lfw—a] (20)
= in E(z; f,a,w) < min E(; f,a,w).
S, Bleifew) < _min Bl@;f,4,0)

Proof. We first reduce the functional to be minimized
to an equivalent problem without offset. By assump-
tion there is an index j such that w; # 0, which allows
us to write (17) as

1 a w
B(w: fua.w) = g1 —alf+ Moyl (= — ) ()]
(@i f.aw) = 51 = ol + Myl (o = Z=eF) ()]
Defining the new target matrix y = x — wijejT, the
new data matrix g = f — ﬁeﬁ the new regularizing
J
parameter v = A w,||, and the new (not necessarily
weight) vector v = u%’ we obtain the new problem

1
Fy;9,v) = 5llg =l + vyl (21)



where the second term is free of an offset. The relation
between minimizers & of E and ¢ of F' is given via
T
i

We now consider the problem (21) and first
show (18) for F. The corresponding statement for E
follows by carrying out the resubstitution. If ||gv]| = 0
then we have F(g;g,v) = 0 and hence § = g is the
minimizer of (21). So we may assume ||gv|| # 0 in the
following. We now distinguish whether ||yv|| # 0 or
[lyv]| = 0. In the first case, we may differentiate F,
and setting the gradient of F' to zero results in

.~ a
Y=z - -

1%
0=y—g+ ——(yv)v’.
lyvll

We multiply by v to obtain yv — gv = 2.
flv]?
Iyl

g Yv
Y oy 10

Rearranging yields (1 +v )yv = gv, which implies

% = ”Z:j”, i.e., both vectors have the same direc-
tion.

This leads to
y=g—v T

lgvl
For |lyv|]| = 0 we look at the subgradient of F. As
condition for a minimizer ¢, we have that § — g is in
the subgradient of v||gv||. For y with ||yv|| = 0, this
subgradient is given as {zvT: ||z|| < v}. When con-
sidering the functional F, the amplitude m from the
assertion of the lemma reads m = min{v, ||gv||/||v] }.
If |lgv|l/llvll < v, then F is differentiable at y =
g — msvT, |jyv| # 0, and we are in the previously
considered case. Hence, we may assume that m = v.
Then, for §j = g — msv™, we have §j — g = msv™ with
m = v. This shows that g fulfills the condition of a
minimizer. In consequence, (18) is true for the func-
tional F. Then resubstituting shows (18) for E, and
plugging & into E we get (19).

It remains to show the implication (20). To this
flﬁ;Ha and fi == % By the assumption
of (20), |lp|l < ||&]|. We consider three cases. If ||| <
A, then ||p]| < A. Hence, the minimizer of E(z; f, a, w)
equals 3 |lw||3|x]|?, and the one of E(x; f,a,w) equals
w312 > L w3l which shows (20). If ] >
A and [|ju|| < A, we have to consider the second line
of (19) for ||i||. From this we obtain a minimal value
of E(x; f,a,w). We have to show that

end, let u =

1 - 1
llPAGA+ (1] = 2) > 5wl el

but this is a consequence of the second summand on
the left hand side being positive and A > ||u||. Finally,
if both ||i]| > X and ||u|| > A, we apply the second
line of (19) and see that we need ||| — A > ||| — A
for the statement to hold. This is true by assumption
which completes the proof. O

Example 3.2. We continue with the situation from
Ezample 2.1 and take three points f9) € R2, j =1,2,3

and denote f = (f, f@ G, Depending on the
chosen value for X in the proxrimal mapping, there are

two possibilities: If m = Ufwll - 17521 < A, we obtain

flwl]? 6

three points x = prox,p, (f) = f —msb3 that lie on a
line, cf. Figure 3 (a). If m > X, then the result x of
the prozimal mapping does not yield Da(x) = 0, but
the ‘movement’ of the points in direction s is restricted
by Ab3, cf. Figure 3 (b).

After these preparations, we now deal with the prox-
imal mappings needed for the inpainting problems (14)
and (15) for combined cyclic and vector space data.
In particular, each data item now is an element of
X = (SY)™ x R™. As motivation, let us first have a
look at the first order difference Dy and the inpaint-
ing problem (14) for noiseless data. By the constraint
x;j = fi; outside the inpainting region, it might hap-
pen that at the boundary of the inpainting region the
member xz;; = f;; is fixed but its neigbor, say x; j11,
may vary. Then, we have to study the correspond-
ing functional D1 (z;;, z; j+1) for fixed x; ; and find its
proximal mapping. The following theorem deals with
this issue in a more general setup.

Before we state the theorem we introduce some
notation: By again using a representation system
St = [—7,7), we can interpret any z € X as a vec-
tor z = (zg,7r)T € X%, where the same representa-
tion system is used for all cyclic components.

We define (-)y: Rm+m)xd _ yd by

(x)X = ((ffs)zme)T,

where (xs)a, is defined as the component-wise appli-
cation of (-)2, as given in (10), i.e. is applied to the
m cyclic components of each column vector z(9) € X
Similarly we define

[‘r]/\-’ = (['TS]QTH xR)Ta

where [-]o, defined in (11) is applied to the phase-
valued components of x.

In the following we consider a weight vector w € RY,
a data matrix z = (..., 2(?) with each member
() having values in X = (S')™ x R™ and a subset
A C {1,...,d}. We partition w into a variable part
w® and into a fixed part w according to whether the
index i of w; belongs to A or not. Accordingly, we
partition x into a variable part x® and into a fixed
part  and consider the mappings

va:x® = D(z,w) (22)

for the corresponding differences D(z,w), where only
the x® are considered as variable and the Z are fixed
values. We derive an explicit representation for the
corresponding proximal mappings in the following the-
orem.



(a) Minimizing Da(f) = 2|lmy; — ]| to
zero by moving f to x, where ') = m,.

o )
O E—

(b) Tradeoff between minimizing D> and a maximal
movement of ), j=1,2,3.

Figure 3. Two cases of the second order difference D2(f) in R™ by looking at the plane generated by f(l), f(2), f(3) €
R™: The original points f are moved onto x towards forming a line: ((a)) yielding D2(z) = 0, i.e. x2 is the mid
point m, of z1 and z3, and ((b)) reducing D2(z) < D2(f) but restricting the movement to be less then A € R

for f(l),f(g) and 2\ for f(2) respectively.

Theorem 3.3. Let w be one of the weights w =
(-1,1), w = (1,-2,1), or w = (—1,1,1,—1) which
corresponds to considering the first order difference
D1 and the second order differences Dy and D 1, re-
spectively. Let d be the respective length of w, A C
{1,...,d}, and w be partitioned into the correspond-
ing variable part w® and into a fized part w. We par-
tition z, f € X? accordingly and let f = 2. Then, the
prozimal mapping of wa defined in (22) is given by

proxy,, (f*) = (f* —ms (w*) "),

with the parameter A > 0; here, the direction(s) s and
amplitude m are given by

s = {lgﬂﬁ if || (fw)x| #0,

0 else,

and

m = min{/\, ”(fw)"} (23)

[[we]?

Remark. We note that the bracket [-|x and thus the
prozimal mapping (having an additional value for each
additional instance of s), is multivalued if some com-
ponents of (fsw)ar are equal to —w. More precisely,
if there are l € {1,...,n} such components, we obtain
2L solutions from the different instances the vector s
might take. The reason for this is, that the mapping
wa is no longer convex for data in X, and that the
minimizer defining the prozimal mapping is not neces-
sarily unique. Owing to this observation, we consider
set valued proximal mappings gathering all minimiz-
ers. We notice that the above proximal mapping is
single-valued if and only if (fsw)ar € (—m,m)%. This
s the generic case. The degenerate case involving an-
tipodal points appears rather seldom in practice; at
least, in a non-artificial noisy setup, it is very un-
likely to encounter antipodal points. Then, at least the
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proximal mapping is single-valued yielding a determin-
istic result. However, we notice that jumps of hight
close to w are problematic since then stability issues
appear. Furthermore, data with antipodal points or al-
most antipodal points may often be interpreted as not
fine enough sampled data. This means, if the sampling
rate is higher, the distance of nearby data items might
get smaller and the situation might just disappear. We
note that this does not exclude the possibility of jumps
in the finer sampled data. The point is that large crit-
ical jumps might be revealed as smaller jumps.

Proof of Theorem 3.3. In order to derive explicit for-
mulae for the proximal mappings, we have to find the
minimizer(s) of

1 . .
gX(xa;faaw) = 5 ZdX(x(])af(J))Q + )\D(x,w)
jeA
By Lemma 2.2 we may rewrite Ex(x%; f*, w) as
Ex (% f* w)
1 i ME
L
JEA

1 . . . ) 2
" 2 k(??érzlm Hfs(]) - xéj) — k(@) H
jeA

+ min \/|zrw|? + [|zsw — 2702
oezZ™

We now use that Z = f and employ the notation ||-||p
for the Frobenius norm. For the remaining part of the
proof, let t := |A|. We obtain that

Ex(x%; f* w)

= min
k‘eZ”” Xt

1 a a 1 a a
<2fR —agl% + §Hfs — a§ — 27k||%
oezZ™

+ )\\/||xﬁ‘§wa + frid||2 + |Jzgw® — (2mo — fgﬁ))H?).



Using this, we rewrite the minimization problem to

. a, ra
Iae[iﬂ’fg)l}rthRnxt EX (:17 ’ f ’ w)
— 3 3 a.,
=L i B ey B (@5 fr0)
oezZ™
— 3 3 a,
=L e B, e PR (75 F,0)(24)
oez™
where
Ek,a(ma;fv ’LU)
1 1
= 5 & — ablF + 15§ — a8 — 2k

0y laguwe + Few|? + legwe — (20 — fm) 2.
(25)

Having a look at (25), there exist values k, & such that
B} 5(2) = Ej 5(Z). Summing up, the problem reduces
to finding the minimizers of all Ey , in [—m, 7]™>* and
comparing their value. For the remaining part of the
proof, let 0,, be a zero (column) vector of length n and
0n,: be a zero-matrix of dimension n x t.

For any k, o, the functional E} , has a unique min-
imizer given by Lemma 3.1 as

~a a k a
i, =f"—2r <0 ) — Sk,oMik,o (W )T. (26)

n,t

We first derive s;, using Lemma 3.1, where we use
the notation,
Skyo = Vo [Vk,o|l2-

We notice that the data for Lemma 3.1 is given by
fe=2m(oF,) and the offset a in the same lemma is

a=2mn(f)— fiw. We get
Yo = (" = 2m (on ) w' +fo0 —2m () )
= fw =27 ((o},)w" +(d.)),
and

k,o

= min{)\, ”Vi’
w

mg,o

a2 }
By (20), we have to find the minimum of the norms
lvg,o|| with respect to k,o in order to find the mini-
mum or minima and their corresponding minimizers of
the Ej ,. We first consider the following special case,
where

(fw ,m}.

More precisely, in none of the cyclic data dimensions
i=1,...,mof f € X% the scalar product with the
weight (fw); is an odd multiple of 7. There exist
,Tm € Z such that (fw); —27r; € (—m, 7) for all

)i ¢ 2nZ — 7w forall ie{l,... (28)

T1y-.-
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i €{l,...,m}. Then ||k || is minimal with respect to
k, o if and only if kw®+0 = r where r = (r1,...,7m) 7,
cf. (27). For each fixed matrix k € Z™*! there is a
uniquely determined vector & = 6(!%) solving this sys-
tem of linear equations. Such a pair minimizes ||vg ||

w.r.t. k,o and
= (fw)x

Using (26) we obtain the corresponding minimizer
w.r.t. x as

. k
x%,&:fa_zﬂ(o

n,t

)t

with m, s as given in (23). Now there is precisely one
k* with its corresponding 6 = & (k*) such that i}. , €
[, m)™*t x R"¥t which implies that

= (f* = ms(w)")x

is a minimizer of €y by (24). Concerning uniqueness
we notice that o +— ||v; | has a unique minimizer.
By (20) this implies that one may minimize w.r.t. k,x

Th 5

X

in (24) choosing o = O'(Ak) as previously in this proof.
This unique minimizer is z* since it is the only can-
didate with its first m components in [—m, 7). This
finishes the special case (28).

For the general case, let G C {1,...,
such that

m} be the set

(fw), €2rZ —7 for i€qG

If G is empty, we are in the case (28) we considered.
Furthermore let G = {1,...,m}\G. Hence for each
i € GY we find r; such that (fw); — 27r; € (—7,7)
with the same arguments as for the case (28). For
each i € G there is r; € Z such that (fw); = (2r; —
1)m. Then vy, attains its smallest value exactly when
k;w® + o; = r;, for all i € G and when kw® + o; €
{ri,mi — 1}, for all i« € G. Following the same steps
as above, let us fix k and determine all &, = 6(1%7u),
u € {0,1}™ u; = 0 for i € G, that fulfill one of the
systems of equations

olk,u)=1r— kw® —u, where r = (ri,. . rm) T

These are 2/Cl systems systems of equations, one
for each value of u, each having a unique solution.
By (20), we only have to consider the functionals Ej, ,
corresponding to such a pair of parameters (k,6,).
We get that the components of Vi o with indices in
GY are given as in (27), whereas the components with

indices in G are given by
(v

From vy , , we obtain s; ; again by using (23) for this
special v. We furthermore notice that mj s equals

)i = (1t

$O-‘U.

k



the m given in (23) and is especially independent of A splitting for noiseless inpainting. Each sum-

the particular choice of u. Hence we get

f*—2m <0

Now we follow the lines of case (28) to conclude that

$a

k

n,t

o
Ll

) - Sk,&,um(wa)T~

% = (f* — smw®)x, where s is one of the 2/¢I in-
stances of H([}c:;’%’; T and these are precisely the mini-

mxXt X

O

mizers of £(z%; f% w) w.r.t. % lying in [—7, 7)
R™*t. This completes the proof.

Example 3.4. We continue with the situation from
Examples 2.1 and 3.2, but split the three points f =
(fO, F@ £G3)) into an active and fized part using
A = {2,3}. In other words fV s fized, we have
W = fO and both (@2 and f(@3) are active, i.e.
2@ 2B are affected by the restricted prozimal map.
The movement again depends on the chosen value for
A which is also illustrated in Figure 4.

We also need proximal mappings for the data term

F(x; f).
Proposition 3.5. For f,g € X*, k= NM, let

k
E@ig, f) =3 dalg,2D)2 + Ada(FD, 20))2.
=1

Then, the minimizer(s) & of € are given by

T = (g+>\f A 27111)
CVI4A 14 x’
where v = (vj(z))f;:m € X* is defined by
0 if j > m,
o) =q0 g = i <m i <m,
sgn(gﬁ” — fjm) if \gﬁz) - f;z)| >, 5 < m.

Proof. We observe that the functional £ under consid-
eration only involves squared distances. This can be
handled separately for every index (,7) € {1,...,k} x
{1,...,n+ m}. Hence, the proposition follows from
considering both the R-valued data and the S'-valued
data case separately. This has been done in [6] in
Lemma 3.3 and Proposition 3.7, respectively. O

3.3 Cyclic proximal point algorithms

The proximal mappings from Theorem 3.3 can be
efficiently applied in parallel to compute minimizers
of (14) and (15) using a cycle length in the proximal
point algorithm from Section 3.1 by splitting the func-
tionals accordingly.
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mand in the first and second order differences in (14)
is incorporated into a proximal mapping using Theo-
rem 3.3 by setting the values affected by the subjection
as fixed and keeping the remaining ones as active.

If two summands act on distinct data, their proxi-
mal mappings can be computed in parallel. This re-
duces the cycle length ¢ of the CPPA tremendously
and provides an efficient, parallel implementation. In
the following, we will split each of the summands

J(x) =aTVi(z)+ BTVa(z) +yTVii(x)

into
18
J = lel J;

where the summands for the first order horizontal dif-
ference are split as

Ji+J = Z D1 (22,5, 2i41,5)
(4,9)
+ aq Z D1 (22i41,5, T2i42,5),
(4,9)

which similarly yields J3, J4 for the vertical first order
difference and Js,...,Js for the two diagonal sums.
The second order term is decomposed into three sums
Jg, Jl(), Jll, given by

Jg = b1 E Do(23i-1,5, %315, T3i41,5)s
(4,9)

Jio =B E D2($3i,j,1U3i+1,j,963i+2,j),
(1.5)

Ji1 = g D2($3i+1,j,$3i+2,j,$3i+3,j),
(1,5)

and analogously we obtain Jyo, ..., Ji4 for the vertical
second order difference. Splitting the term v TVy 1(x)
in this manner yields Jis, ..., Jig as follows:

Jis = Y E D1,1($2i,2j,$2i+1,2j,$2i,2j+1,$2i+1,2j+1),
(4,5)
Jis =" g D1,1(5172i+1,2j7392i+2,2j;172i+1,2j+17x21+2,2j+1)a
(4,5)
Jir =7 E D1 1(%25 2541, ©2i41,2j+15 20,2425 £2i+1,2j+2)5
(4,5)
Jig =1 E D1 1(%2i41,2j415 ©2i42,2j+15

(i,3)
T2i41,2j+25 £2i42,2j+2)-

In any of these functions J;,1 € {1,...,18}, any data
point z; ; € X is occurring at most once and hence all
proximal maps a function J; consists of can be evalu-
ated in parallel. This leads to a cycle length of ¢ = 18.



(a) Minimizing D> < X with fixed f™).

(a;3)

F = 4

i)

(b) Minimizing £ Ds > X with fixed f).

Figure 4. Minimizing a second order difference in R?, where FW s fixed, i.e. s = fM and 4 = {2, 3} are the active
data points. Again, two different values of A are shown: ((a)) A > $Ds(f;w), i.e. the corresponding proximal
mapping reaches the minimum, ((b)) A < +D2(f;w), i.e. the corresponding proximal mapping is just a step

reducing the value Ds(z;w) < Da(f;w).

A splitting for combined inpainting and denois-
ing. In order to derive a cyclic proximal point al-
gorithm for the combined inpainting and denoising
model (14), we encounter two differences compared
to the previous derivation: All data is always marked
as active because no index (i,5) € g is restricted by
a constraint and we further obtain a data term, i.e.
we additionally have

Jig = Z(i,j)eﬂc dx(zij, fij)?

which can be evaluated in parallel using the proximal
mapping given by Proposition 3.5.

(29)

Initialization. In order to initialize the algorithm,
we employ an the idea of unknown boundary used
in [1], which can easily be implemented during the
first iterations of the CPPA: all unknown values
x; 5, (i,7) € Q are initialized whenever setting a corre-
sponding difference D(x,b) = 0 yields a unique value
for this pixel. Afterwards, this data item is set to be
known and can be used to initialize other unknown
pixel. Hence after at most k = max{N, M} iterations,
all pixels are known.

The complete procedure for both models of noiseless
and noisy inpainting is summarized in Algorithm 1.

3.4 Convergence Analysis

As typical when dealing with nonlinear geometries,
we show convergence under certain conditions. These
conditions are comparable with the ones employed
in [6]. In particular, the data is assumed to be dense
enough in the sense quantified later on. This means
that the data has to be locally nearby which does not
mean that circular data components are (globally) re-
stricted to certain sectors — the data in these com-
ponents my wrap around. Similar restrictions on the
nearness of data and even more severe restrictions re-
quiring almost equidistant-data have been imposed in
the analysis of nonlinear subdivision schemes; see, e.g.,
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[46, 82, 84]. As it is also pointed out in these references,
the analysis is qualitative in the sense that empirically
convergence is observed for a significantly wider range
of input data.

Compared with the pure denoising setup considered
in [6], there are several issues we have to deal with in
the inpainting situation here: first, the proof there
relies on the uniqueness of the minimizers in the un-
wrapped situation which is not given for inpainting;
second, a main step in the aforementioned proof is
based on bounding the distances dx(f; ;,x; ;) for all
pixels (, 7), to get information on x, while for inpaint-
ing the values f; ;, (4,7) € Q, are missing. In addition
we consider a more general data space.

We first discuss the conditions we impose for our
convergence analysis. Then we derive the necessary
information to prove our main result formulated as
Theorem 3.14. It states that both the algorithm pro-
posed for inpainting and the algorithm proposed for
simultaneous inpainting and denoising converge to a
minimizer.

We employ the following notation to denote the dis-
tance on the first m components of two data items
x,y € X. We notice that those are the S'-valued com-
ponents. We let

dxm(z,y) = drym (Ts, ys).

Our first condition is that the data f: Q¢ — X given
on the complement of the inpainting region €2 is dense
enough in the sense that the distance between pixels
and their neighbors in Q¢ is sufficiently small (in the
respective spherical components).

In order to give a precise definition of this we re-
quire some preparation first. On the domain grid,
we consider the distance d((¢,7), (k,1)) which is the
length of the shortest path with respect to the eight-
neighborhood (with diagonal distance v/2) connecting
the indices (7, ) and (k,). We consider a covering of
the image domain Qg with balls {B((4, ), 7:;) : (i,7) €



Algorithm 1 CPPA for minimizing (1) for (S!)" x R™ valued data

Input a sequence {\}y of positive values, cf. (16),
parameters a = (0(1,0627043,064), ﬁ = (ﬁlvﬁQ)v e

a set Q C Q, and data f € XNXM

function CPPA(a, 3, v, { e}k, f)

Initialize :Jc,(;?j) = fij, (i,4) € Q°, xg,oj)

as active, as unknown for (4,j) € Q and k =0

Initialize the cycle length as ¢ = 18 (noiseless case) or ¢ = 19 (noisy case)

repeat
for [+ 1tocdo -
h _
whFe) Proxy, j, (7))

employing Theorem 3.3 and Proposition 3.5

k+—k+1
until a convergence criterion are reached
return z(¥)

Q€1 centered at pixels (i,5) € Q¢ in the complement
of the inpainting area. Ne note that the radius of
the ball B((4,7),r; ;) may vary with (i,j) € QF and
that balls are formed w.r.t. the distance d((, ), (k,1))
introduced right before. We require that the graph
induced by this covering is connected. Here the in-
duced graph is formed by using the indices in Q€ as
vertices and by connecting to vertices (i, ) and (k,1)
whenever (k,1) € B((i,7),r;;) or vice versa meaning
that (i,7) € B((k,1), r%,1)-

Using such a covering {B((i,4),7:;) : (i,j) € Q°},
as well as the shorter notation N; ; = B((¢,7),7; ;), we
let

s (f) =

max ma.

X d m\Ji gy .
(1,0) €9 (DEN: ;n0C (ig» fiet)

(30)
We emphasize that imposing a bound on (30) still al-
lows for jumps which are not too high. As already
pointed out, such restrictions on the nearness of data
are typical for the analysis of algorithms of nonlin-
ear data in general; cf. [6, 46, 82, 84]. We note that
d2 (f) depends on the chosen covering and that we
suppress this dependence in the notation. The above
definition takes the inpainting region into account and
only restricts the spherical components. It turns out
that for the non-spherical linear space components, no
restrictions are necessary, and that large distances in
these components do not influence the behavior in the
spherical components negatively. When there is no in-
painting region, i.e. £ = ), and we are in the pure
denoising situation, we fix the covering by fixing N; ;
to be the eight-neighbourhood of (i,j) and use the
notation
doo(f) = d2(1)-

Using this notation, we assume that (i) the quantity
d2 (f) is small enough; precise bounds on d’2 (f) are
given in the lemmas and theorems later on.

Our second requirement is that (ii) the parame-
ters «a, 8,7 are sufficiently small. For large parame-
ters, solutions become almost constant which is often
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undesired and causes an interpretation problem, e.g.
when the original data is equally distributed around
the circle. Finally, we require (iii) that the parameter
sequence { Ay} of the CPPA fulfills (16) with a small
£2 norm. The latter can be achieved by rescaling the
parameter sequence.

Our analysis is based on an unwrapping procedure
which means that we ‘lift the whole setup’ to the uni-
versal covering of X which we denote by Y = R*+™,

Similar to the notation dx ,,, we use

|z = yly.m = l(z5)721 — ()7Ll
to denote the distance on the first m components of
the data z,y € V.

Universal coverings stem from algebraic topology.
We refer to [47] for an introduction. A covering con-
sists of a covering space and a canonical projection
(inducing discrete fibers). We here explicitly consider
the canonical projections 7, which are for x € X given
by

Wz(y) = Wm(ySayR) - (expmg (yS)ayR)a Y€ ya

i.e. the linear space components remain unchanged
and the cyclic components undergo the exponential
mapping component-wise meaning that

exp,. (Ys) = (exp,, (Y1), .- exp, (Ym))-

It is well known that continuous mappings to the base
space have a lifting to the covering space. The lifting
is uniquely determined by specifying 7= (x) for only
one z. This lifting construction also applies to discrete
mappings g: 2y — X defined on the rectangular grid
Qo whenever do(g) < 7. We record this observation
for further use.

Lemma 3.6. Let g: Q9 — X be an image
with deo(g) < m, and consider ¢ € X fulfill-
ing dsi(qi, (1,1)i) < m, @ = 1,...,m, i.e no pair



of cyclic data components is antipodal. We choose
Gg11 € Y such that m4(g1,1) = g1,1. Then there exists
a unique lifted image §: Qo — Y such that my§ = g
holds component-wise and doo(g) < 7.

Next, we lift the inpainting functionals and derive
relations between the lifted and not lifted functionals
and lifted and non lifted discrete functions. To pre-
cisely formulate these relations we need some prepa-
ration.

For § > 0 and data f: Q¢ — X given on the com-
plement of the inpainting region €2, we consider the
class S?(f,9) of grid functions x defined on the whole
domain 2y, which we define by

SUf,0) ={z: Qo = X : exs(w, f) < 6},

where
exo(, f) = (igl)égéo dx.m(Tij, fuig))s (31)
and the mapping
v: Qo — QF assigns (i,5) € Q
0 gus (i,7) 0 32)

a nearest neighbor in Q.

Here we measure the vicinity with respect to the dis-
tance on the grid induced by taking shortest paths
with respect to the eight-neighborhood. The x speci-
fied this way are ‘near’ to the images f on Q¢ and do
not vary too much in 2. We also need an extension
operator F extending a function f defined on Q¢ to a
function E(f) defined on . A particularly simple ex-
tension operator is the nearest neighbor operator E,,,
defined, for all (3, ), by

Evfij = fuiy (33)

with v as in (32). Then there is a constant B,, inde-
pendent of f but dependent on €2, such that

doo(E,(f)) < B, (Q)d2(f). (34)

We now consider the ‘lifted’ inpainting functionals.
We first note that we may write the problem (14) in
the form (15) modifying the distance term to be infi-
nite if  # f on Q¢. Then, on the universal covering
space ) of X, the inpainting functional Jg reads

Jo(z) = Fac (z; f) + oTV, (2)

— — (35)

+ ﬁTVg(l‘) + ’YTV1,1($),
where fv 0c — Y is alifted image of f. The function-
als I, TV, TV, TV, are given by the correspond-
ing functionals of Section 2.1 (there denoted without
tilde) using ) as the underlying vector space. We get
the following relations:
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Lemma 3.7. Let f: Q¢ — X with d’L(f) < ﬁ(ﬂ) be

giwen and let ¢ € X be a point not antipodal to f,1 1)
i any cyclic component. Choose a point fy(lyl) with
Wq(fl,(l,l)) = fua,1) and let f denote the lifting of E,, f .
Then every x € SQ(f,%) has a unique lifting &
w.r.t. the base point q fulfilling |, 1) — fy(1)1)|y7m <
5+ Furthermore,
Jo(z) = Jo(@) forall e S, g), (36)
where Jq either denotes the functional from (14) or
from (15) and Jq is its analogue in Y by (35).

Proof. Let us consider z € S(f, Z). For (k,l) in the
eight-neighborhood of (i, j), we have

dxm(Tij, Trey) < daem(Tig, fuig))
+ dX,m(fu(i,j)a fl/(k,l))
+dxm (o) Th)

< T B ()<Y

g 67

By assumption, we have dx . (z,(1,1), fr1,1)) < §-
Therefore, every x € S(f, §) has a unique lifting & by
Lemma 3.6 w.r.t. to the base point ¢ fulfilling ||#1,1 —
fiall £ %

In order to show (36) we show equality for each
of the involved summands. First, we consider TV;.
By Lemma 3.6 we have dynm(xij,2r) = |%i; —
Zrlym, k€{(,i+1),(E+1,5),6+1,7+1)}. Hence
the definitions of TV; and ﬁl imply TV;(z)
ﬁl(i‘) Concerning second order differences, we first
consider the expressions Do (x;—1 5, T; j, Tit1,5). Simi-
lar to (37), we have dx m(%i—1j,%iy1,5) < 5 which
implies that the distance between any two members of
the triple is smaller than 7. Due to the properties of
the lifting Z this implies D(-i’ifl,ia .’Z’Z‘}j, fi+1’j; bg) <.
The same argument applies to Da(x; j_1, % j, Ti j+1)
which yields the equality for the TV, terms. A
similar argument shows that TVyi(z) = TVy1(2).
Concerning the data term F'(z; f) we define r;; =
dx}m($i}j,fy(i7j)) and Fi“j = ‘i‘i’j — fy(iyj)|y)m. We
show that 7;; and 7;; agree for any (i,j) € Q.
By definition of S%(f,§), we have r;; < g for all
(i,j) € Qo. Furthermore, by the construction of f
and Z it holds ’F@j =75+ 271']{31'7]', with ki,j € N and
kl/(l,l) = 0. We estimate |fi,j+1 — fi,j‘ = “féi,j-&-l —

Fotgtn |y = 1% = Fotqlym| < 5 I ki # ki,
then there exists k € Z\{0} such that

= ‘fz’,j—&-l *fi,j +27Tk| > 21 — % > %

IPig1 = Ti
This is a contradiction and therefore k; ; = k; j11.
Similarly we conclude k; ; = k;11,;. Hence, k;; =
kl/(l,l) = 0 for all (Z,j) € Qo which implies Tij = 7:2'7]'
for all (i,7) € Q¢ and completes the proof. O



To formulate the next lemma we need the quantity
d$? for functions defined on the complement of the in-
painting region. We consider f: Q¢ — X, and define
d(f) in analogy to (30) by

aL(f) = max  dxm(fij, fri)s
r(f) ()ZQ oy 8% o datm(figs fit)
with AV; ; being again the eight-neighborhood of (¢, j).
For the nearest neighbour extension operator E, de-
fined in (33) we have the following estimate: there is
a constant C,,, independent of f but dependent on 2
(and on ), such that

di(E,(f)) = d)(E,(f)) < Co()dL(f).

As a further preparation, we need the following ob-
servation. We consider the pure inpainting functional
(14). We let u* be a minimizer of (14) for given data
f. Then there is a constant BJ,(€2) > 1 which depends
on €2, but not of f, such that

daem (Ul j, fi.;) < BL(Q) dos(f).

(38)

(39)

For functions f with small values dS} (f), this estimate
follows from the boundedness of second differences by
first differences. For the remaining f, the estimate
(39) follows from the boundedness of the sphere S! as
a set. For vector space valued data, the boundedness
of second differences by first differences implies the
estimate for arbitrary input. We note that we inten-
tionally choose the symbol u* to avoid confusion when

applying (39).

Lemma 3.8. Let ¢ > 0 and consider f: Q¢ —

X with d&L(f) < @ We define p =
max{ay,...,aq, 51, 82,7}, and assume that p is so
small that

62

B = 5000, @B

(40)

where C, () is given by (38). Then any minimizer x*
of the inpainting functional Jq given in (14) or (15)
fulfills

eco(@™, f) <e.

Proof. For a minimizer a* of Jo given by (14) or
by (15), we consider 2’ which we define as the clos-
est point extension E, of the restriction z*|qgc to the
non-inpainting region Q. In view of the definition of
€s in (31) we consider the estimate

dX,m(x;ﬁ fu(i,j)) < dX,m(-'L‘;:ja w;,j)

(a1)
+ d.)c',m (552,]', fV(iJ))'

We start with the second summand on the right hand
side and notice that z} ; = x}; for (i,j) € Q¢ which
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implies dx (2] ;, fi.j) = dxm (] ;, fi ;) for all (i,7) €
QC. We extend the data f given on Q€ to a grid func-
tion g defined on Qq by setting g; ; = (E, f)i; = fu(ij)
for all (i,7) € . We get the estimate

Ja(z*) < Ja(g) = aTVi(g) + BTVa(g) + v TVi1(9).
(42)

We further estimate the right hand side of (42):
since the second order differences may be estimated
by two times the first order differences, we get
B8TVa(g) < 2(max; $;)(1,1,0,0) TV;(g), and an anal-
ogous inequality for v TV 1(g). Hence

JQ(g) S 5max{a1, s 7044,ﬁ1,,82,’}/} (L 1; 17 1) Tvl(g)

Next, we estimate each summand appearing in TV(g)
by the corresponding summand in d;(g) to conclude
that (1,1,1,1) TV (g) < 4d1(g). We use (34) to get

Jo(g) < 20pdi(g) < 20pC,, (VL (f).
As a consequence we obtain for (i,7) € Q¢

dX,m(x/i,j7fi,j)2 = dX,m(x;ﬁfi,j)Q < Ja(x¥)
< Ja(g) < 20pC,(Q)dL(f)
< (smry)” < (§)%

By the definition of &/, this implies that for all (i, j) €
Qo, we have

(43)

dx m(5 5, fuigy) < §- (44)

Next, we look at the first summand in (41). Since

zj ; =z for (i,7) € QF, we may restrict to estimate
dx,m(x} ;, o} ;) on Q. For this purpose, we consider the

pure inpainting problem (14) for the inpainting region
Q) for data z*. Using (39) with data f = z* we have
that

dXJH(xg,jv x:j)

< By (Q) di. (')
/ Q / (45)
S BV(Q)<doo(f)+2 .In.aX dX’m(‘rEiﬁfV(ivj)))
(i,5)€Q ’
<s.

For the second inequality we used (43). Combining
the estimates (44) and (45), we get

dx m(x;'k,ja x;,j) + dX,m(xg,ja fu(i,j))

dx m (%7 ;, fu(ig)) :
+

IN A

NI

=&

[S][0)

which implies that

* - d m f‘a v(i,j <
coo(”, f) = max {dxm(2i;, fuq)} <<

and this finishes the proof. O



Lemma 3.9. The statement from Lemma 3.8 does
also hold for data f: 0° = Y and the inpainting func-
tionals Jo given by (35).

Proof. The statement is obtained following the lines
of the proof of Lemma 3.8. O

Now we combine Lemma 3.7 and 3.8 to locate the
minimizers of J and J. This part of the proof is rather
similar to [6] which is the reason for streamlining it.

Lemma 3.10. Consider € with 0 < e < % and let the

function f: Q€ — X fulfill both d%(f) < sEL) 48
well as dL(f) < 4'%@) and assume that the parame-
ters o, 8,7y of Jo from (14) or (15) fulfill (40) w.r.t.
€.

Then any minimizer * of Jo lies in S®(f, 5). Fur-

thermore, denote by thhe unique lifting of f w.r.l. a
base point q and fived f, 1,1y with mq(fu(1,1)) = fu,1)-
Then each minimizer y* of Jo defines a minimizer
¥ = my(y*) of Jo. Conversely, the uniquely defined
lifting * of a minimizer x* of Jo is a minimizer of
Ja.

Proof. By Lemma 3.8, any minimizer z* of the in-
painting functional Jqo fulfills ey (z*, f) < e. Since
e < g, weget z* € S (f, §). For the second state-
ment we notice that the mapping z + 7 is a bijec-
tion from S(f,8) to the set S%(f,8) = {y: Q —
V:|ij— fuiglym <0} for every § with 0 < 6 < %.
In particular, we may choose 6 = 5. If y* € Vis a
minimizer of Jo, it lies in S2(f, %) by Lemma 3.9.
By (36) and the minimizing property of y* we obtain
for any = € S(f, %) that Jo(me(y*)) = Jaly*) <
Jo(#) = Ja(z). As a consequence, m,(y*) is a mini-
mizer of Jo on S%(f,%). By Lemma 3.8 all the min-
imizers of Jq are contained in S%(f,%) and hence
mq(y*) is a minimizer of Jg. For the last state-
ment let * be a minimizer of Jg. For its lifting 2~
and any § € SQ(]E,%), we get Jo(i*) = Jo(z*) <
Jo(my(#)) = Ja(§). Thus, &* is a minimizer of Jq
on gﬂ(f, %). Since by Lemma 3.9 all minimizers of J
lie in §Q( f, %), the last assertion follows. O

After establishing relations between these function-
als and their lifted versions, grid functions and data,
we next formulate a convergence result for vector space
data in Y. It is a reformulation of a convergence result
which can be found in [2] for the more general class of
Hadamard spaces or which can be derived from [8].

Theorem 3.11. Let J =Y ;_, J;, with each J; being
a proper, closed, convex functional on Y and assume
that J has a global minimizer. Assume further that
there is L > 0 such that the iterates {x(*7)} of the
CPPA, cf. Algorithm 1, fulfill

l

Jl(gj(k)),Jl(I(kJr%)) < LHx(k),z(’Hz)

l, 1=1,...

367

for all k € Ny. Then the sequence {x\®)}, converges
to a minimizer of J. In particular, the iterates fulfill

|}x<’“+l?1) _ gt h)

and, for all x € YISl

o) = 2* < [|o®) — 2|
— 22, (J(®) — J(2)) (47)
+2X2L%¢c(c + 1).

Next we locate the iterates of the CPPA for vector
space data in )Y on a ball whose radius can be con-
trolled. Since the data f: Q¢ — Y is not defined on
the whole grid g, we incorporate an extension oper-
ator F, e.g. F,. An extension is needed as an initial-
ization of the CPPA. We note that there is a positive
number L’ such that the iterates {x(’”é)} produced
by Algorithm 1 fulfill

[EB(f) — 20

| <L (48)
This can be seen by taking mg, My € R as the min-
imum and maximum of all components and pixels
of E(f), respectively, and by letting m;_ 1, M; 1 € R
the corresponding minima and maxima of the iterates
pk+0), Looking at the concrete form of the proxi-
mal mappings, the only proximal mappings which can
increase the maximal value or decrease the minimal
value during the iteration are those of the second or-
der differences. The possible increase is immediately
decreased to initial niveau (of the macro-step) by the
proximal mappings of data and first order terms if
outside [C - mg,C - My] for sufficiently large C. We
note that L’ does not depend on the particular vector-
valued f but only on My — my.

Lemma 3.12. Let f: Q¢ — Y and a parameter se-
quence A = { A }r of the CPPA with property (16) be
given. Further let {x(’”%)} be the sequence produced
by Algorithm 1 for the inpainting functionals Jo given
by (35). Let z*: Qo — Y be a minimizer of Jo. Then,
for allk € Ng and olll € {1,...,c}, we have

(k+1)

|E3 —z*|| <R (49)

where

R:=/|E(f) —a*|? + 2| APL2c(c + 1) + 2/| A sccL,

where L = max(4, L") using L' from (48) and ¢ denotes
the number of inner iterations, i.e. ¢ = 18 in case
of (14) and ¢ = 19 in case of (15), respectively, and
E is an operator extending Y valued functions defined
on Q° to Qg used for initializing the algorithm. Here,
A2 =32, A% and [l = sup; A;.
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Proof. Equation (47) in Theorem 3.11 tells us that

[+ —2]” < [|o® — o
— 2\ (j(x(k)) — J(z)]
+2X2L2%¢c(c+ 1).

(50)

We choose L” as the maximum of the Lipschitz con-
stants for the terms J; of Section 3.3 originating from
the splitting of the terms TV, TV, and TV, ;. We
note that these Lipschitz constants which are formed
w.r.t. the Euclidean norm on ) are all bounded by 4
which, for the second order differences, is seen by esti-
mating second order difference by sums of first order
differences. This implies L” < 4. For the quadratic
data term, we may differentiate z; ; — 1|fi; — x; ;|
Then we notice that the x; ; are confined to an L' ball
around E(f);; (cf. (48)) which bounds the Lipschitz
constant of the data term (where the metric on Y is
the Euclidean metric) by L’ in this case. Therefore,
we can set I = max(L’;4). We apply (50) with a
minimizer x = z* to obtain the estimate

[E3

E+1) a:*| 2

< Ha:(k) — a:*”2 +2X\iL2%c(c+ 1)
0 |2 k 272
< e @ — x| +2Zj:0 A2L%c(c +1).
Using 2@ = E(f) yields [2®+) — 272 < ||B() -

x*[|2 + 2||A|||3L%¢(c + 1). Now we use (46) and the
triangle inequality to estimate

— x|
< 2xpel + |2 — 2|
< 2\weL +V|E(f) — =2 + 2| A|2L2¢(c + 1).

|k +e)

This completes the proof.
O

The following lemma shows that lifting commutes
with applying the proximal mappings for the previous
assumptions.

s

Lemma 3.13. Let f: Q¢ — X with d'L(f) < SB[

and its lifting f of f w.r.t. a base point q as before.
For each summand J; in the splitting Jo =Y, Ji from
Section 3.3 for both inpainting functionals Jo defined
via (14) and (15), their corresponding functionals Jo
from (35), any x € S(f, %), and its lifting & w.r.t. q,
we have

prox, j, (x) = ﬂ'q(prox/\jl (@), (51)
for alll € {1,...,18} in case of (14), and for alll €
{1,...,19} in case of (15).

Proof. The functional Jig from (29) appearing in the
splitting of (15) is based on the distance to the data
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f for indices (i, j) € Q°. Since x € S®(f, £), it holds
d;(,m(xi,j,fi,j) < % for all (’L,j) € Q¢ The com-
ponents of the proximal mapping prox, ;& are given
by Proposition 3.5 from which we conclude (51) for
I = 19. The other proximal mappings of Ji,..., Jis,
are given via proximal mappings of the first and sec-
ond order cyclic differences from Theorem 3.3. We
first consider cyclic components of the first order dif-
ferences, i.e. summands involving D;. By the triangle
inequality we have

dx m(%ij, Tij11)

< dX,m(xi,ja fu(i,j)) + dX,m(fv(i,jﬁ fu(i,jJrl))

+dxm(Tij11, fui,j+1))
<2 4 B(Q) dL(f) < T
8 8

Analogously we get dx m(2ij,Tity1,5) < %". By the
explicit form of the proximal mapping given in The-
orem 3.3 we obtain (51) for the J;, | = 1,...,8,
which involve first order differences. Next we consider
the second order differences Dy with respect to the
cyclic components. Let us exemplarily consider the
vertical second order difference Da(2; j—1, i j, T j41)-
Analogously as above, we see that the inequali-
ties dx7m(a:i7j_1, mm) < i%r’ dx7m(1‘i7j,.fci,j+1) < :%T
and dx (25 5-1,7:;) < 5 hold. Hence all the cyclic
parts of the contributing values of x lie in a common
ball of radius /2. Applying the proximal mapping in
Theorem 3.3 the cyclic parts of the resulting points lie
in a common open ball of radius 7.

An analogous statement holds true for the horizon-
tal part. Hence the proximal mappings of these second
differences agree with the cyclic version under iden-
tification via m,. This implies (51) for Jy, ..., Ji4.
It remains to deal with the cyclic components of the
mixed second order differences D1 1 (2 j, Zit1,5, Tij+1,
Tit1,+1). As above, we have for neighboring data
items that the distance on the cyclic parts is smaller
than %’r. For all four contributing values of x we have
that the pairwise distance on the cyclic parts is smaller
than 7. So their cyclic parts again lie in a boll of ra-
dius smaller than 7 and the proximal mappings agree
under identification. This completes the proof. O

In the following main theorem we combine the pre-
ceding lemmas to show that the output of the applied
proximal mappings remains in S(f, %). This then
allows for an iterated application of Lemma 3.13.

Theorem 3.14. We choose the sequence A = { g}k
fulfilling property (16) and € > 0 such that
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s
)

V42 + 2| N[2L2¢c(c + 1) + 2||A[|oocL <

where ¢ = 18 or ¢ = 19 and L = max(4,L') with
L' as in (48). We consider data f: Q¢ — X with



€

both dSL(f) < sEL and dL(f) < 5@ We as-
sume further that the parameter vectors a, 3,7 of the
inpainting functionals Jo given by either (14) or (15)
satisfy (40) and that the initialization of the inpainting
region E(f) is close to the nearest neighbor extension
E,(f) in the sense that

dxm(E(f), Eu(f)) = maxdym(E(f)ij, B (F)ij) < e
Then the sequence {x™}, generated by the CPPA
given by Algorithm 1 converges to a global minimizer

of J.

Proof. Let f be the lifting of E,(f) with respect to a
base point ¢ not antipodal to f, (1 1) and fixed f,(1 1)
with wq(f,,(ljl)) = fu(1,1)- Furthermore, let Ja denote
the analogue of Jg for ) valued data given by (35).
Since dx . (E(f), E,(f)) < e < 35, the function E(f)
is in S?(f, 25) € S%(f, %) (which is important for the
application of Lemma 3.7 to the grid function E(f)
later on.) From Lemma 3.8 we conclude that the min-
imizer y* of Jq fulfills lly* — f|| < € < 35, where f
is defined at the beginning of this proof. By (49) we
obtain

R=y/]

< \/QHy* — fI2+ 2| F = ECD|” + 2N2L2e(c + 1)

v — E(N)|)? + 2 N[2L2¢(c + 1) + 2| A|ocL

+ 2|\ sccL
< V422 12 APL2(c + 1) + 2| M| socL <

71'
1a°

16

—

where FE(f) denotes the lifting of FE(f). By
Lemma 3.12 the iterates y(’“%) of the CPPA for Y-
valued data fulfill

T

lly Y| < 6

Hence, combining these estimates yields [jy*+¢) —
FIl < Ny = || +lly* = fIl < %5 Estimating the
discrete £°° norm by the €2~ norm, we get from the pre-
vious line that [|ly*+&) — f|lo < 37 which means that

. L 1. A0 F
all iterates y(** <) stay within S?(f, )

After these preparations we now consider the se-
quence {z(T)} of the CPPA for X-valued data f
with initialization E(f). We show that z(*+¢) =
mq(y59)

q .

By definition and by Lemma 3.10, we know

E(f) = 7o (E(f)) = 7 ().

We continue a proof by induction and assume that
11—

s+ = equ(y(’”l%l)). By the local bijectivity of

the lifting shown in Lemma 3.7, and since y*+=") €

20 —
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S2(f,m), we conclude 2+ %) € S2(f, T).
By Lemma 3.13, we obtain

1—
c

(k+12

")

)y = gkt 8,

1
ma(y*F T e)) = 7q (prox, ; (y

(k:+lfl

c

= prox,, s, (z

By the same argument as above we have again
a2 ¢ S(f,g)- Finally, Theorem 3.11 tells us that

2™ =7, (y®) = 7w, (y*) as k— oo

and by Lemma 3.10 we finally obtain that z* :
is a global minimizer of .J.

mq(y*)

O

4 Applications

In this section we apply our algorithms to various im-
age processing tasks. These are denoising in HSV
space in Section 4.1, inpainting in both a noise-free
as well as a noisy setting in Section 4.2 for both syn-
thetic as well as real world data. Finally, we apply our
algorithms for denoising frames in volumetric phase-
valued data —in our case, frames of a 2D film— in
Subsection4.3. Our approach is based on utilizing
the neighbouring [ frames to incorporate the temporal
neighbourhood. The idea generalizes to arbitrary data
spaces and volumes consisting of layers of 2D data.

The algorithms were implemented in MATLAB The
computations for the following examples were per-
formed on a MacBook Pro with an Intel Core i5,
2.6 Ghz and Mac OS 10.10.1. For all following ex-
periments we set the sequence {Ax}x to A\x = 5 and
set the number of iterations k to be 400 as a stopping
criterion for Algorithm 1.

4.1 Denoising nonlinear color space data

As a first application, we consider denoising color
space data. Various nonlinear color spaces have
been considered in the literature; examples are luma
plus chroma/chrominance based spaces such as YIQ,
YUV and YDbDr and HSL type color space such as
HSL, HSI or HSD. We here consider the HSV (hue-
saturation-value) color space: the hue component is
cyclic, the saturation and the value component are
real-valued.

We apply our algorithm for denoising combined cyc-
lic and linear data to these S' x R? valued data. We
compare the results with the usual approach using the
linear RGB color space. For both spaces, we compare
our approach on the product space with a model that
denoises each channel separately. Finally, we com-
pare the results of all these approaches under differ-
ent noise models: we impose Gaussian noise on each
component in RGB space. We impose Gaussian noise
to saturation and value, and wrapped Gaussian noise,
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Figure 5. Denoising an image with independent wrapped Gaussian and Gaussian noise o = % on each of the HSV chan-
nels. The RGB-based approaches (b), (c) produce less colorful results than the HSV-based approaches (d),(e). In
contrast to channel-wise denoising (d), the combined approach proposed in this paper (e) gets the object boundaries
more properly and outperforms the other approaches in both PSNR ans SSIM.

i.e. wrapping the normal distribution on the circle
or in other words computing mod 27 after adding the
noise, to the hue component of the HSV space.

In Figure 5, a colorful drawing of a sailboat! of
size 512 x 512 pixel is obstructed by noise on all three
channels of the HSV color space: for the hue, which
is given on [0,1] we applied wrapped Gaussian noise
(mod 1) with standard deviation 0 = 1 and mean 0,
for saturation and value, which are also given on the
same range but are not cyclic, we applied Gaussian
noise, also with ¢ = % and set all pixels exceeding 1
to 1 and all deceeding 0 to 0. The resulting image
is shown in Figure 5 (a). We then apply four differ-
ent first and second oder differences based approaches,
where for each, the best result among the range of pa-
rameter from o :'= a1 = ag € %NO, i.e. the grid con-
sisting of multiples of é including 0 as long as 5 # 0
and the same range applies for g =, = B2 = 7. We
further for this example a3 = a4 = 0, i.e. we focus on
the purely anisotropic first order discrete total varia-
tion and a second order isotropic version. We measure
the quality using a peak signal to noise ratio (PSNR)
and the structural similarity index (SSIM) on RGB
color space and. We record the best result with re-
spect to PSNR in 5 (b)—(e) and the original is shown
in 5 (f) for comparison of the enlarged regions.

First, we apply a real valued approach to each of
the RGB channels separately. For o = 3%, 8 = %
we obtain the best PSNR of 21.41, which is shown

ITaken from the USC-SIPI Image Database, see http://sipi.
usc.edu/database/database.php?volume=misc&image=14
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in Figure 5(b). Applying a vector valued approach
on RGB, i.e. setting m = 0,n = 3 in Algorithm 1, the
best result obtains a PSNR of 21.46 for a = 8 = %, cf.
Figure 5(c). While this outperforms the component
wise denoising by taking combined color space edges
into account, it does not reconstruct the colorfullness
of the image.

On the other hand, we apply Algorithm 1 to each
of the channels of HSV, i.e., setting m = 1,n = 0 for
the first channel and taking the real valued case from
above for the second and third. In order to keep the
channels unscaled, the algorithm presented in this pa-
per is rescaled to run w.r.t. to mod 1. The result is
shown in Figure 5 (d) yielding a PSNR of 22.08. Fi-
nally, applying a vector valued approach on HSV, i.e.
setting m = 1 and n = 2 —again having the cyclic
channel w.r.t. mod 1— yields an image shown in Fig-
ure 5 (e), having a PSNR of 23.43, the best result of
all four compared algorithms. Note that especially the
colors are much better reconstructed than in the RGB
based denoising approaches, which both suffer from re-
duced saturation. This increase in quality can also be
seen in the SSIM values denoted at the subfigure cap-
tions in the bottom right. Interestingly the SSIM value
of the componentwise approach on RGB is just a bit
better than the vector valued approach. Furthermore,
edges can be much better recognized in the vectorial
approaches than in both channel-wise approaches, see
especially the magnified region of the sail.

Nevertheless there is are two tradeoffs. One con-
cerns the overall amount of the parameters: Increas-
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Figure 6. The best results on éNg of the parameters and
the noise described in 6 but with respect to SSIM.
While the best result w.r.t. SSIM coincides with the
best PSNR value for the vectorial HSV approach in,
see (b), the best vectorial RGB approach only increases
slightly in SSIM, still suffering the same effects.

ing the parameters smoothens the image and removes
noise in larger constant regions like the sky but also
destroys small details, like the leaves or the sail. The
best PSNR is something in between: while the sky still
resembles a little noise, the sail is only smoothened
a little, but its main features are kept. The second
tradeoff is between the first and second order terms.
While a dominant value of o would keep edges in the
image, it also introduces the well-known stair casing
effect. This effect is reduced by the second order term,
i.e. the parameter(s) 3, which also smoothens edges.
Due to the existence of both smooth regions and edges
in natural images, a certain equilibrium has to be cho-
sen.

4.2 Inpainting nonlinear color space data

Inpainting noise-free data. Here we consider the
situation where some data items are missing, are lost
or have been removed by a user. As example space
we again consider the HSV color space. As in Section
4.1, we compare the results with the usual approach
using the linear RGB color space and with the HSV
approach working component-wise.

We consider a synthetic image in the HSV color
space given by the function

(ataan7 1—a?, 1—|ac—|—y|), T,y € [—%,%]2, (52)
Yy

where the first component is the arctangent function
with two arguments. This extends a synthetic S' ex-
ample used by the authors in [7]. The original image
is shown in Figure 7 (f). The initial data is obtained
by removing a disc with radius r i as shown in
Figure 7 (a). The goal is to “recover” the image in
Figure 7 (f). For the inpainting we again apply Algo-
rithm 1 using K = 800 iterations and performing a
parameter search on o = a1 = g, = 1 = B =
2 =7~¢€ %No. Then, the real valued approaches in
RGB color space, both channel-wise (b) and vectorial
(¢), do not reconstruct the original colors correctly. In
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contrast, the channel-wise approach (d) and the vec-
torial approach (e) on the HSV space keep the colors
and both produce very satisfactory results. The result
of the vectorial approach in Figure 7 (e) is a nuance
“sharper”, its reconstruction is a little bit better in
PSNR at least.

Inpainting and denoising data. In many situa-
tions data is noisy and parts are lost or invalid. This
results in an combined inpainting and denoising prob-
lem for which we apply the proposed methods next.
As in Section 4.1 before, we consider the HSV color
space and compare the results with the usual approach
using the linear RGB color space and with the HSV
approach working component-wise.

As a test scenario, we add wrapped Gaussian and
Gaussian noise with o = % to the cyclic and non-cyclic
components, respectively, similar to Section 4.1. Fur-
thermore, we remove a ball in the center as also done
in Section 4.2; see Figure 8. This initial is shown in
Figure 8 (a). Again, we would like to get back the
image shown in Figure 8 (f), which is data defined
in HSV space and therefore also has features e.g. in
the hue. The parameters for the algorithm are ob-
tained using the same setup for Algorithm 1 as in Sec-
tion 4.1. Then, the real valued approaches in RGB
color space, both channel-wise (b) and vectorial (c),
do not reconstruct the significant features. In con-
trast, the channel-wise approach (d) and the vectorial
approach (e) on the HSV space reconstruct all signifi-
cant features and produce almost perfect results. The
result of the vectorial approach in Figures 8 (e) is a
nuance “sharper” yielding a slightly higher PSNR.

Inpainting real world data. Looking at real world
data, we compare an inpainting of the image “beach”2.
In Figure 9 ( (a)) some areas of the image were lost. We
compare the vectorial approach on RGB color space in
Fig. 9( (b)) and HSV in Fig. 9((c)) for the same set
of parameters o = %, B = 3—12: the HSV color model
is able to also incorporate color changes as shown in
the magnification, where the HSV model is able to re-
construct the violet part of the clouds. We note that
we employed the inpainting algorithm as described in
Algorithm 1 also for the diagonal differences. Even it-
erating alternatingly the anisotropic differences yields
preference of the diagonal directions, which is even
enhanced by the diagonal differences. Therefore both
models tend to create wavy structures, when the sur-
rounding is not isotropic as in the last examples.
Despite the most bottom left inpainting area, the
HSV model performs better than the RGB model with
respect to PSNR, where the HSV model obtains 30.612

2 Available at http://pixabay.com/de/strand-lagune-
sonnenuntergang-164288/ and published under public
domain.
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(b) RGB channels,
a=L1p3=323
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PSNR: 22.76.

(a) Synthetic image,
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(c) HSV channels,
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=1,
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(f) Original image.
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Figure 7. Reconstruction of a synthetic image with the black inner circle missing in a noiseless setup. The RGB-based
reconstructions (a),(b) both yield a degrading of the colors, while the HSV-based approaches (c),(d) reconstruct
the colors. The proposed approach (d) based on a S' x R? model yields the best PSNR.

and the RGB model is slightly behind with 30.548.
The same holds for the SSIM, though there the dif-
ference is quite small, because even the SSIM of the
lost version —setting lost pixel to white as in Fig-
ure 9((a))— yields an SSIM value of 0.9202. We
obtained an SSIM value of 0.98866 for the complete
image with the HSV based inpainting and 0.98862 for
the RGB based inpainting.

4.3 Denoising sections in volumetric cyclic
data

Finally, we apply our algorithms for denoising frames
in volumetric data. Examples of volumetric data are
frames of a 2D film or a stack of slices, each slice being
a 2D image as appearing, e.g., in computed tomogra-
phy. We want to denoise such slices incorporating the
temporal/spatial information stemming from the third
dimension, which is, e.g., the temporal neighborhood
information in a film.

To be more precise, we consider volumetric data
I.(4,7), where I(i,7) is a vector valued pixel at the
pixel location 4, j in the kth frame/slice. The setup
is rather general, and we can assume [Ij(7,j) being
data from some rather general space M — say a man-
ifold; here we exemplarily consider M = S'. We take
a look at the [ neighboring (left and right) frames
In,h=k—1,...,k,...,k+1, around a center frame
I = I at position k. With the position k, we now
associate bivariate data living in M?!*! being the vec-
tor of data points at the same position (i,7) in the
neighboring frames. To be precise, we consider the
bivariate data Jj, with Ji(i,5) € M2+ given by
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1
Ji(i,j) = (Ik_h(i,j))h ; We apply our algorithms
to the derived data Ji and compare the result to the
usual denoising of the single frame I}.

The video underlying Figure 10 is constructed as
follows. As basis, we use the image given by the first
component of (52) on [—31, 2]%; outside the disc of ra-
dius %, we add 7 which is the same as rotating the
input (4,7) of each pixel in o by the same amount
clockwise. The video consists of 13 frames rotating the
disc clockwise by 7 and the outer region by 7 coun-
terclockwise, i.e. from —37 before the center frame to
5 at the end of the sequence for the inner and with
changed signs for the outer redgion. This corresponds
to a rotation of 5 per frame and region. We finally
sample each of these frames with 256 x 256 pixel on
4 4P

In our example, Figure 10, we show in (d) the sev-
enth frame of the constructed video from the previous
the paragraph. On each frame, we impose wrapped
Gaussian noise with standard deviation o = %, see
Figure 10 (a) for frame 7 of the video. In (b), we per-
form denoising just on the frame k = 7. Performing
a first and second order denoising yields staircasing
and/or reduction of the sharp edge at the disc border.
Choosing the parameters a = a1 = ag,8 = 1 = B
from the set € 6L4N0 and setting K = 400 as maximal
number of iterations of the CPPA, we obtain the opti-
mal value o = 3—12, £ = 0. This indicates that staircas-
ing still resembles a better result than unsharpening
the edge, which would be the effect of including sec-
ond order differences. In (c¢), we perform a combined
vectorial denoising in (S')!3 as proposed for a total of
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(f) Original image.
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Figure 8. Reconstruction of a synthetic image with the black inner circle indicating missing data and the measurement
itself being noisy. The RGB based reconstructions (b),(c) miss the main smooth features. The HSV model based
reconstructions (d),(e) reconstructs these features yielding a satisfactory result. The proposed vectorial approach
(e) yields the best PSNR.

(a) Lost area (white).

(b) RGB model.

(¢) HSV model. (d) Original image.

Figure 9. Inpainting the real world image “beach”: The HSV based model better reconstructs the clouds than an

RGB based approach.

13 frames (I = 6,k = 7) and show the central seventh
frame. At the cost of being computationally more ex-
pensive due to the increased data set, this approach
outperforms the first, single frame based approach.

Discussion and Future Research

In the following we discuss the relation of the present
work to the author’s previous work [6, 7]. These works
consider the S'-valued situation, whereas we here con-
sider the product space (S!)™ x R™. These product
spaces are practically relevant: they appear, e.g., in
the context of color space and, more abstractly, when-
ever considering polar coordinates (magnitude and
phase). In contrast to general manifolds the spaces
considered here still allow for a solution to the con-
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sidered minimization problem, i.e. the involved prox-
imal mappings, to be given in explicit form. We are
convinced that this is no longer possible for general
manifolds. The product spaces further imply changes
in both the algorithms and the convergence analysis.
Although this paper as well as [6, 7] (and also the
previous work [85]) use a CPPA, the derived proximal
mappings are different. In particular the mappings de-
rived here do not arise as component-wise application
of the one dimensional situation. This is especially
not the case for the setting, where several data items
are fixed by constraint. In this context, we again men-
tion that the natural second differences on (S!)™ x R™
which we defined in this paper couple the components
of the range space, which also affects the convergence
analysis The employed methods are based on the ones



(a) center video frame, (b) Single frame,

Gaussian noise, 0 =
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(c) Vectorial frames,
PSNR: 35.01.

a = &, PSNR: 29.69. a =

(d) Original Frame.

Figure 10. Denoising S'-valued video frames. The proposed approach for denoising S'-valued video frames (c) yields
significantly better results than frame-wise denoising (b).

used in [6] (which themselves are based on [82]), but
the concrete analysis involves an additional degree of
complexity stemming from the mentioned coupling.

This work also contains material which is even new
for S'-valued data. First, in contrast to pure de-
noising, additional/different proximal mappings are
needed when dealing with the inpainting problem due
to the additional constraints. In [7], we simply used
the proximal mappings computed in [6] and applied
projections to ensure the constraints. Here, we com-
pute the proximal mappings of the constrained prob-
lems explicitly. This is more natural and also advanta-
geous in the analysis. Concerning the analysis, we here
include an inpainting setup. Even for the S' setting,
this has not yet been done. In the conference proceed-
ing [7] we do not provide a convergence analysis. The
paper [6] which provides an analysis considers func-
tionals for denoising in the S* setting only.

A topic of future research are algorithms for higher
order TV-type functionals for data living in more gen-
eral manifolds.
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