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Abstract Recovering the 3D shape of an object from
shading is a challenging problem due to the complexity

of modeling light propagation and surface reflections.

Photometric Stereo (PS) is broadly considered a suit-

able approach for high-resolution shape recovery, but

its functionality is restricted to a limited set of object

surfaces and controlled lighting setup. In particular,
PS models generally consider reflection from objects as

purely diffuse, with specularities being regarded as a

nuisance that breaks down shape reconstruction. This

is a serious drawback for implementing PS approaches

since most common materials have prominent specular

components. In this paper, we propose a PS model that

solves the problem for both diffuse and specular compo-

nents aimed at shape recovery of generic objects with

the approach being independent of the albedo values
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thanks to the image ratio formulation used. Notably,

we show that by including specularities it is possible to

solve the PS problem for a minimal number of three

images using a setup with three calibrated lights and a

standard industrial camera. Even if an initial separation

of diffuse and specular components is still required for

each input image, experimental results on synthetic and

real objects demonstrate the feasibility of our approach

for shape reconstruction of complex geometries.

Keywords Photometric Stereo · Blinn-Phong model ·
Image ratio

1 Introduction

Since the seminal paper by Woodham [37], Photometric

Stereo (PS) has been considered a very accurate proce-

dure for tridimensional shape reconstruction. Despite

its wide use in many applications [34,39,38], PS suffers

from several limitations that constrain its applicability

to restricted scenarios. In particular, one of the most
challenging issues refers to specularity, where standard

PS remains substantially inaccurate. This spans from the

consideration that most works dealing with PS assume

objects under observation to give exclusively diffuse re-

flection (Lambertian). Considering the general theory of

image formation in which reflections have contributions
from both diffuse and specular components [36,25], PS

approaches implicitly assume specularities are negligible

with respect to the global reflection of light [16,15]. Due

to the usual sparsity of the specular component, this

assumption is reasonable when several images are used

(typically > 10). However, it fails when fewer images are

considered. This can limit considerably the application

of PS to (near-)real-time setups where a minimal set

of images (i.e. three) is necessary to optimize perfor-

mance. Consequently, one would greatly benefit from a

new methodology for PS shape recovery which considers

such minimal set of data. For this reason, extracting

information from the specular component is essential

even for well studied objects, such as ceramic objects

and faces, since in these cases neglecting specular effects

prevents accurate shape reconstruction as shown in Fig.

1.

Here we propose a method that, given an input image

separated into two components, diffused and specular,

can efficiently reconstruct the 3D shape of an object with

varying albedo using only three images under different

light conditions. Our approach results in improved shape

reconstruction compared to standard PS methods with

global reflection assumed purely diffuse. In addition,

our method also shows reconstruction improvements
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compared to PS in which only the diffuse component

separated from the specular one is considered [2].

In summary, this work contributes to the state of

the art with:

– a methodology for reconstructing surfaces with gen-

eral bidirectional reflectance distribution functions

(BRDFs) by using three images given a preliminary

diffuse and specular reflection separation [32,18];

– a processing procedure aimed at using both diffuse

[23] and specular components with a new mathemat-

ical formulation based on the Blinn-Phong shading

model.
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Fig. 1 The top row shows three images of a painted ceramic
cup. The bottom row shows the normal map where artifacts
have been highlighted and the 3D shape reconstruction using
traditional PS [37]. Bottom images show artifacts due to
specular reflections.

1.1 Related work

Aiming at providing a self-contained overview of the

PS approaches, we start by discussing methods dealing

with Lambertian reflection, and then we consider works

that explicitly model specular components.

Once we assume that objects reflect light diffusely,

the most complex case subsists whenever no information

is available about the lighting setup. In such uncali-

brated scenario, both the surface properties and lighting

parameters of the scene have to be computed. Regard-

ing this problem, factorization methods have provided

efficient and closed form solutions. They are based on

the fact that a set of images taken from a static point

of view and subject to varying lights lies in a certain

subspace. In particular, the reflection components can

be described with a bilinear model which is a com-

pact representation of the given image data. Hayakawa

[12] first made evident such bilinear modeling assuming
a Lambertian surface and a single light source. Basri

et al. [4] used a more descriptive photometric model

based on a spherical harmonic representation of light-

ing variations. Their approach can deal with images of

Lambertian objects under unknown lighting conditions.

These classical methods in PS, which do not have any

depth assumption of the shape, are always subject to

the Bas-Relief ambiguity [5]. On the contrary, Shi et al.

[33] performed an automatic radiometric calibration by

identifying a new set of constraints that can solve the

Generalised Bas-Relief (GBR) transformation. A recent

work by Papadhimitri and Favaro [27] approximates the

GBR parameters efficiently by taking into account the

information coming from the local diffuse reflectance

maxima.

Furthermore, there are several recent works that

study the uncalibrated PS problem with the added dif-

ficulty of dealing with specular reflection. In particular,

[19] uses more than one hundred images, limiting the

shape recovery to a concave/convex ambiguity and pro-

viding an approach capable to deal with objects with

uniform reflectance. Chandraker et al. [7] recover surface
iso-contours from differential images by restricting the

positions of the light sources to a circle around the cam-

era axis. In this case, additional information is required

such as an initial normal to determine surface normals.

In addition, such differential formulation uses image

equation ratios with the aim to simplify the problem
eliminating the dependence on photometric invariants

such as albedo.

Beside the specific limitations of the methods men-

tioned before, the most important drawback assuming

uncalibrated setups is the number of images required.

Since the image acquisition is achieved by sequentially

turning on and off the light sources surrounding the

static object under observation, this approach is not

feasible for shape recovery of movable or deformable

objects.

Robust PS has been deeply studied by Ikehata et al.

[16,15] where general isotropic surfaces have been taken

into account. These approaches are based on regressions

and they use tens of images for accurate shape recon-

struction. The reason why this method needs several

images is due to its mathematical formulation. In fact,
the irradiance equation is based on diffuse reflection and

specular components are considered outliers or negligible.

In a similar way, [10,17,24] treated strong specularities

and shadows as missing data and they solved for the

diffuse component through a matrix completion prob-

lem. However, when using a minimal set of images (e.g.

3, or 4 as in [3]), it is likely that specular components

make the bilinear regression fail.

Alternatively, calibrated PS setups offer a more effi-
cient and reliable method for 3D shape recovery. This is
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due to the knowledge a priori of the parameters describ-

ing the light sources and the consequent reduction in the

number of images necessary for shape reconstruction.

In this framework, Higo et al. [14] proposed an energy

minimization method using six parameters to be tuned

and with the specular lobe parametrized as a weak ex-

tension of the Lambertian shading model. Furthermore,

the method works for surfaces showing either diffuse

or specular reflection. Chung and Jia [8] used at least

six images. However, the boundary of the shadow must

be accurately separated since it provides constraints for
calculating the normal of the surface.

In general, and for the diffuse component only, the

calibrated active system setup has led to a high number

of custom solutions [31] that typically require a lab-

oratory setup and accurate calibration of the devices.

Instead, Hernandez et al. [13] used a less restrictive
calibrated setup with only three non-collinear colored

lights in a dark room with surfaces that were also photo-

metrically calibrated. Recently, Anderson et al. [1] have
extended this approach to arbitrary colored surfaces.

Using three calibrated light sources is a convenient so-

lution that allows the implementation of real-time 3D

acquisition systems by multicolor illumination.

2 Formulation of the general model

The general model presented in this manuscript is based
on fixing a camera in a three-dimensional coordinate

system (Oxyz ) and illuminating an object with different

light sources. The camera is placed in such a way that

Oxy coincides with the image plane and Oz with the

optical axis.

Let ωi = (ωi1, ω
i
2, ω

i
3) = (ω̃i, ωi3) ∈ R3 (with ωi3 > 0

for each i-th vector) be the unit vectors that represent

the directions of the light sources. The images Ii : Ω →
[0, 1] are the grayscale values of the i-th image at point

(x, y) belonging to the image domain Ω, see Fig. 2.

The assumptions we consider are commonly used in

the PS field. We list them as follows:

A1. The light propagates uniformly for each source with

the direction ωi (therefore, the light rays are parallel

to each other)

A2. Orthographic viewing geometry

A3. There are no inter-reflections on the surface.

Under the assumption (A2) of orthographic projection,

the visible part of the scene is a graph z = u(x, y)

and the unit normal to the surface at the image point

corresponding to (x, y) is given by:

N(x, y) =
n(x, y)

|n(x, y)|
=

(−∇u(x, y), 1)√
1 + |∇u(x, y)|2

, (1)

where n(x, y) is the outgoing normal vector.

We consider the image function defined by the following

irradiance equation:

I(x, y) = R(N(x, y)), (2)

where I(x, y) is the normalized brightness of the given

grey-value image, N(x, y) is the unit normal to the

surface at point (x, y, u(x, y)) and R(N(x, y)) is the re-

flectance map giving the value of the light reflection

on the surface as a function of N(x, y) at each point.

Depending on how we describe the function R, different

reflection models are determined. We will describe and

use two of them. As proposed in [9], it would be useful

to introduce a representation of the brightness function

I(x, y) in which we can distinguish different terms rep-

resenting the contribution of ambient, diffuse reflected,

and specular reflected light such that

I(x, y) = kAA(x, y) + kDD(x, y) + kSS(x, y), (3)

where A(x, y), D(x, y) and S(x, y) are the above men-

tioned components and kA, kD and kS indicate the

percentages of these components respectively such that
their sum is equal to 1. In this paper we consider the

Lambertian model for the diffuse component D(x, y)

and the so-called Blinn-Phong model for the specu-

lar component S(x, y) [6]. We remark that even if the

Blinn-Phong shading model is not physically based, a

recent evaluation [26] shows that it provides good spec-
ular shading results compared to other physically-based

models. Finally, throughout the paper we neglect the

ambient component by setting kA = 0. We start with a

brief description of these models.

Lambertian Model. By definition, a Lambertian sur-

face is a purely diffuse reflector and, consequently, the

specular component does not exist. So, the general equa-

tion (3) becomes

I(x, y) = kDD(x, y), (4)

whose diffuse component D(x, y) is

D(x, y) = ρD(x, y) N(x, y) · ω, (5)

where ρD(x, y) indicates the albedo of the diffuse part,

i.e. the diffuse reflectivity or reflecting power of a sur-

face. In other words, the albedo consists of the ratio

of reflected radiation from the surface to incident ra-

diation upon it. Its dimensionless nature is expressed

as a percentage and it is measured on a scale from 0

for no reflection (a perfectly black surface) to 1 for a

perfect reflection for a white surface. Recalling that the

sum kA + kD + kS must be equal to 1, for a Lambertian

surface kD = 1 and this parameter can be omitted. In
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Fig. 2 The scheme explains the Blinn-Phong model for a sphere on a flat background. On the left, the greyscale image defined
in the rectangle Ω, sectioned through the central red line. On the right, its schematic section showing the unit vectors involved
in the shading modeling. The vector ω is uniform for all the points in the image plane and it points toward the light source.
The viewing vector V is fixed pointing in the vertical direction. The intermediate vector H bisects V and ω.

this way, the irradiance equation (2) can be rewritten

as:

Ii(x, y) = ρD(x, y) N(x, y) · ωi, (6)

for each image Ii(x, y) obtained by lighting up the sur-

face u using the i-th light source ωi. The orthogonal PS

problem consists in determining the function u : Ω → R
that satisfies Eqs. (6), where the unit vectors ωi and

the functions Ii(x, y) are the only quantities known in

the problem.

In this model, we can note that the measured light in

each image only depends on the scalar product between

N(x, y) and ωi and the parameter ρD(x, y), which de-

scribes the physical properties of the surface reflection.

In order to solve our problem, let us first fix the
number of images (i.e. light sources) to n = 2, and let

us recall from [20] that one can solve the PS problem
for Lambertian surfaces considering the following linear

differential problem:{
bD(x, y) ·∇u(x, y) = fD(x, y) ∀(x, y) ∈ Ω,

u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω,
(7)

where bD is a diffuse 2D vector field defined in Ω by

bD(x, y) = D2(x, y)ω̃′ −D1(x, y)ω̃′′, (8)

with ω̃′ = (ω′1, ω
′
2) and ω̃′′ = (ω′′1 , ω

′′
2 ), and

fD(x, y) = D2(x, y)ω′3 −D1(x, y)ω′′3 . (9)

From now, in order to avoid confusion between com-

ponents of the same vector and different vectors, we

will use the following notation: ′,′′ ,′′′ as superscripts will

denote three different vectors (e.g. ω′,ω′′,ω′′′), the num-

bers 1, 2, 3 as subscripts will indicate the components

of a vector (e.g. ω′ = (ω′1, ω
′
2, ω
′
3)).

Note that the problem in Eq. (7) is solved regardless

of the albedo values thus providing an approach that

can model objects with varying material properties.

Even if the differential problem (7) has a unique

solution, the need of the boundary condition g(x, y),

which is unknown in our case, obliges us to use a third

image. Section 5 will explain in practice how to use

the information coming from three diffuse available pix-

els and how to use (7) when the diffuse component is

corrupted (e.g. specularities).

Blinn-Phong Specular Model. There are different

models that account for specular reflections. In this

paper we consider one of the most popular ones, the

Blinn-Phong model [6]. As graphically explained in Fig.

2, it is a modification of the Phong model [28]. Briefly,

specularities are modeled based on the intermediate

vector H that bisects the angle between the unit vectors

ω and V. By using this model, it is possible to produce

a faster algorithm in terms of CPU time when both

observer and light source are placed at infinity because

H is independent of the position and orientation of the

surface.

For this model, the specular component related to

the i-th image Ii(x, y) is defined as follows:

Si(x, y) = ρS(x, y)(Hi ·N(x, y))c (10)

where ρS(x, y) is the specular albedo, Hi = V+ωi

|V+ωi| =

hi

|hi| = (
hi
1

|hi| ,
hi
2

|hi| ,
hi
3

|hi| ) and c is a positive constant that

measures the shininess of the surface. Next, we will use

the following notation: h̃
′

= (h′1, h
′
2) and h̃

′′
= (h′′1 , h

′′
2),

in order to compact the writing as already done for the

vectors ω̃′, ω̃′′.

We next present a novel approach regarding the

treatment of specularities. Our strategy is based on
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extending the differential method proposed in [20] to

specularities with image ratios. This yields to:

Equation for S2︷ ︸︸ ︷
n(x, y) · h′

|h′|(S1(x, y))
1
c

=
|n(x, y)|

(ρS(x, y))
1
c︸ ︷︷ ︸

Equation for S1

=
n(x, y) · h′′

|h′′|(S2(x, y))
1
c

(11)

which makes the differential problem similar to (7), that

is{
bS(x, y) ·∇u(x, y) = fS(x, y) ∀(x, y) ∈ Ω,

u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω,
(12)

with the same boundary conditions and defined by the

following functions:

(bS , fS) = |h′′|(S2(x, y))
1
c h′ − |h′|(S1(x, y))

1
c h′′. (13)

Note that also for the specular case the problem is

albedo independent.

Given this new set of equations, we can obtain the

solution for the normal field by extracting information

directly from the specular component. Even if the viewer

direction V has been considered arbitrary, we require

V3 > 0 as assumed for the vectors ωi (with ωi3 > 0 for

each i-th vector). From a theoretical point of view, such

assumption simply means that also Hi lie in the upper

semisphere. In the rigorous mathematical development,

we will see how this is required in order to prove the

uniqueness of the solution for (12).

We will explain in Section 6, devoted to the numerical

experiments, how the specular component affects the

reconstruction in the presence of noise.

3 The New Differential Approach

In the previous section we derived a new linear dif-

ferential problem for specular reflection (12) based on

previous work using diffuse reflection (7). With the aim
to merge both reflection effects, we combine these linear

equations with a weight α(x, y) ∈ {0, 1} as follows:{
b(x, y) ·∇u(x, y) = f(x, y) ∀(x, y) ∈ Ω,

u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω,
(14)

where

b(x, y) = α(x, y)bD(x, y) + (1− α(x, y))bS(x, y) (15)

and

f(x, y) = α(x, y)fD(x, y) + (1− α(x, y))fS(x, y). (16)

In this way, if α = 1 we have the differential problem

(7) for the Lambertian model. Instead, if α = 0 we

obtain the specular problem (12). We consider α as a

given coefficient, provided by the separation procedure

between specular and diffuse components. The well-

posedness of problem (14) is guaranteed by proving

that both diffuse (7) and specular (12) problems are

well-posed. Since (7) has been already proven to be

well-posed in [20], we only need to focus on (12).

Well-Posedness of the specular model. In order to

verify that the problem (12) is well-posed, we start by

proving that the vector field bS never vanishes in Ω.

Lemma 1 If there are no points (x, y) ∈ Ω of black

shadows for the image functions (i.e., I1(x, y) 6= 0 and

I2(x, y) 6= 0), we have that |bS(x, y)| 6= 0.

Proof Let us prove this result by contradiction. Suppose

that there exists a point (x̄, ȳ) ∈ Ω such that{
|h′′|(S2(x, y))

1
c h′1 − |h′|(S1(x, y))

1
c h′′1 = 0,

|h′′|(S2(x, y))
1
c h′2 − |h′|(S1(x, y))

1
c h′′2 = 0.

(17)

Since we want to consider the dependence of the im-

age functions I1(x, y) and I2(x, y) on all the other model
coefficients, we make these functions explicit by using

the equations (10), obtaining the following nonlinear

system:

|h′′|ρS(x, y)
1
c

n(x, y)

|n(x, y)|
· h′′

|h′′|
h′1

−|h′|ρS(x, y)
1
c

n(x, y)

|n(x, y)|
· h′

|h′|
h′′1 = 0,

|h′′|ρS(x, y)
1
c

n(x, y)

|n(x, y)|
· h′′

|h′′|
h′2

−|h′|ρS(x, y)
1
c

n(x, y)

|n(x, y)|
· h′

|h′|
h′′2 = 0,

(18)

that is{
n(x, y) · h′′h′1 − n(x, y) · h′h′′1 = 0,

n(x, y) · h′′h′2 − n(x, y) · h′h′′2 = 0.
(19)

Now, we compute
∂u

∂x
and

∂u

∂y
. We omit the de-

pendence on (x, y) in order to ease the notation. By

considering n =
(
− ∂u

∂x
,−∂u

∂y
, 1
)

we solve the following

system:{
(−∇u · h̃

′′
+ h′′3)h′1 − (−∇u · h̃

′
+ h′3)h′′1 = 0,

(−∇u · h̃
′′

+ h′′3)h′2 − (−∇u · h̃
′
+ h′3)h′′2 = 0,

(20)

that can be rewritten as follows{(
(−∇u · h̃

′′
+ h′′3),−(−∇u · h̃

′
+ h′3)

)
· (h′1, h′′1) = 0,(

(−∇u · h̃
′′

+ h′′3),−(−∇u · h̃
′
+ h′3)

)
· (h′2, h′′2) = 0.
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This means that the vectors (h′1, h
′′
1) and (h′2, h

′′
2) are

orthogonal to
(
(−∇u · h̃

′′
+ h′′3),−(−∇u · h̃

′
+ h′3)

)
simultaneously. We can consider two cases:

1. The vectors (h′1, h
′′
1) and (h′2, h

′′
2) are orthogonal and

coincident (that is, (h′1, h
′′
1) ≡ (h′2, h

′′
2)).

2. Both (h′1, h
′′
1) and (h′2, h

′′
2) are orthogonal and placed

in the opposite direction (that is, h′1 = −h′2 and

h′′1 = −h′′2).

By parametrizing the vectors h′,h′′ with spherical co-

ordinates having ϕ and θ as zenith and azimuth angles

respectively, we can rewrite the previous two cases ac-

cordingly. That is, the first case is when θ1, θ2 ∈ {π4 ,
5π
4 },

whereas in the second case θ1, θ2 ∈ { 3π4 ,
7π
4 }.

For both cases we can consider, instead of the two

null components of the vector bS , only one equation (be-
cause they are the same in such cases). Let us consider,

for example, the first

(−∇u · h̃
′′

+ h′′3)h′1 − (−∇u · h̃
′
+ h′3)h′′1 = 0, (21)

that is

−∂u
∂x
h′′1h

′
1 −

∂u

∂y
h′′2h

′
1 + h′′3h

′
1+

∂u

∂x
h′1h

′′
1 +

∂u

∂y
h′2h

′′
1 − h′3h′′1 = 0,

which is

−∂u
∂x
h′′1h

′
1 −

∂u

∂y
h′′1h

′
1 + h′′3h

′
1+

∂u

∂x
h′1h

′′
1 +

∂u

∂y
h′1h

′′
1 − h′3h′′1 = 0.

This implies

h′′3
h′3

=
h′′1
h′1

=
h′′2
h′2
.

Then, using the spherical coordinates parametrizing the

vectors h′,h′′, we get

cosϕ2

cosϕ1
=

sinϕ2 cos θ2
sinϕ1 cos θ1

=
sinϕ2 sin θ2
sinϕ1 sin θ1

. (22)

Our goal is to prove that θ1 = θ2 in order to obtain the

contradiction because in this case we have that h̃
′

= h̃
′′

(i.e., ω̃′+Ṽ = ω̃′′+Ṽ⇔ ω̃′ = ω̃′′ that implies ω′ = ω′′)

and this it is not the case for the photometric stereo

technique.

It is clear that, for both cases, if cos θ2
cos θ1

= +1, then

θ1 = θ2, while cos θ2
cos θ1

= −1 means θ1 6= θ2.

Let us suppose, by contradiction again, that θ1 6= θ2.

Then, from (22) we have

cosϕ2

cosϕ1
= − sinϕ2

sinϕ1
⇒ tanϕ1 = − tanϕ2,

which is not possible because ϕ1, ϕ2 ∈ [0, π2 ] since the

vectors ω′, ω′′ and V belong to the superior part of

the unit sphere, which implies that h′ and h′′ will also

belong to the same region of the unit sphere.

�

With the aim to use the characteristics method, we

need to show that the information traveling on such

curves crosses the image domain. For Lipschitz contin-

uous surfaces the image function could present jump

discontinuities corresponding to the curves where the

surface is not differentiable. Let us call such curves

as γ(t) and since they could represent an obstacle to

the information propagation due to the characteristics

method, we need the following result showing that a

unique (then weak) solution exists.

Theorem 1 Let γ(t) be a regular curve of discontinuity

for the functions bS(x, y) and fS(x, y). Let (x, y) ∈ γ(t),
and let n(x, y) be the outgoing normal with respect to

the set Ω+ located on the right of γ(t); then we have[
lim(x,y)→(x,y)

(x,y)∈Ω+

bS(x, y) · n(x, y)

]
·[

lim(x,y)→(x,y)

(x,y)∈Ω−
bS(x, y) · n(x, y)

]
≥ 0.

(23)

Proof We give the guideline of the proof which can be

seen as a variation of the equivalent proof in [20]. Let

us define the quantities

I+1 := lim
(x,y)→(x,y)

(x,y)∈Ω+

I1(x, y), I−1 := lim
(x,y)→(x,y)

(x,y)∈Ω−

I1(x, y),

I+2 := lim
(x,y)→(x,y)

(x,y)∈Ω+

I2(x, y), I−2 := lim
(x,y)→(x,y)

(x,y)∈Ω−

I2(x, y).

In order to work with the vector field bS(x, y) in the

neighborhood of (x, y), we consider the relations

lim
(x,y)→(x,y)

(x,y)∈Ω+

bS(x, y) = (b+1 , b
+
2 )

= |h′′|(I+2 )
1
c h̃
′
− |h′|(I+1 )

1
c h̃
′′
,

lim
(x,y)→(x,y)

(x,y)∈Ω−

bS(x, y) = (b−1 , b
−
2 )

= |h′′|(I−2 )
1
c h̃
′
− |h′|(I−1 )

1
c h̃
′′
.

(24)

Denoting by (n1, n2) = (n1(x, y), n2(x, y)) the two coor-

dinates of n(x, y) and replacing (24) in the inequality

(23), we obtain

b+1 b
−
1 n

2
1 + b+2 b

−
2 n

2
2 + n1n2(b+1 b

−
2 + b+2 b

−
1 ) ≥ 0,
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which gives, in explicit terms,

(|h′′|(I+2 )
1
c h′1 − |h′|(I+1 )

1
c h′′1)·

(|h′′|(I−2 )
1
c h′1 − |h′|(I−1 )

1
c h′′1)n21

+ (|h′′|(I+2 )
1
c h′2 − |h′|(I+1 )

1
c h′′2)·

(|h′′|(I−2 )
1
c h′2 − |h′|(I−1 )

1
c h′′2)n22

+
[
(|h′′|(I+2 )

1
c h′1 − |h′|(I+1 )

1
c h′′1)·

(|h′′|(I−2 )
1
c h′2 − |h′|(I−1 )

1
c h′′2)

+ (|h′′|(I+2 )
1
c h′2 − |h′|(I+1 )

1
c h′′2)·

(|h′′|(I−2 )
1
c h′1 − |h′|(I−1 )

1
c h′′1)

]
n1n2 ≥ 0. (25)

For each coefficient that multiplies n21, n22 and n1n2 we
substitute the equations (10) and, after some algebraic

simplifications, we get respectively the following (26),

(27) and (28)

i−1 i
+
1 (h′′1)2 − i+1 i

−
2 h
′
1h
′′
1 − i−1 i

+
2 h
′
1h
′′
1 + i−2 i

+
2 (h′1)2 (26)

i−1 i
+
1 (h′′2)2 − i+1 i

−
2 h
′
2h
′′
2 − i−1 i

+
2 h
′
2h
′′
2 + i−2 i

+
2 (h′2)2 (27)

−i+1 i
−
2 h
′′
1h
′
2 − i−1 i

+
2 h
′′
1h
′
2 + 2i−2 i

+
2 h
′
1h
′
2

+2i−1 i
+
1 h
′′
1h
′′
2 − i+1 i

−
2 h
′
1h
′′
2 − i−1 i

+
2 h
′
1h
′′
2 (28)

where

i+1 :=

(
− ∂u

∂x
,−∂u

∂y

)+

· (h′1, h′2) + h′3,

i−1 :=

(
− ∂u

∂x
,−∂u

∂y

)−
· (h′1, h′2) + h′3,

i+2 :=

(
− ∂u

∂x
,−∂u

∂y

)+

· (h′′1 , h′′2) + h′′3 ,

i−2 :=

(
− ∂u

∂x
,−∂u

∂y

)−
· (h′′1 , h′′2) + h′′3 .

(29)

This allows us to write the following equalities

i+1 − i
−
1 = ξ · (h′1, h′2),

i+2 − i
−
2 = ξ · (h′′1 , h′′2),

(30)

where ξ =∇u− −∇u+. This reduces the problem to a

previously solved one in [20], which allows to end the

proof.

�

4 W-PS with no boundary condition

In the previous section we considered the PS problem

with only two images assuming knowledge of the bound-

ary condition g(x, y). However, for most real applications

the depth on the boundary is not available. It is there-

fore important to find a way to solve the PS problem

without requiring knowledge of the boundary condition.

An interesting way to do that is by using more than

two images obtained by using different light sources.

However, in this case an additional constraint on the

lighting directions is required: the light sources have to

be non-coplanar. This inconvenience has been studied

in [22] with respect to the PS with three images.

To solve the PS problem without knowledge of the

boundary condition, we consider the following numerical

strategy. First, we select a single arbitrarily valued initial

seed point within the reconstruction domain. Next, we
robustly manipulate the path of the characteristics as

in [21].

4.1 Controlling the characteristic field

Let us start by considering the PS problem with three

images. We can consider a set of unique image pairs and

arrive to the following system of linear PDEs:
b(1,2)(x, y) ·∇u(x, y) = f (1,2)(x, y)

b(1,3)(x, y) ·∇u(x, y) = f (1,3)(x, y)

b(2,3)(x, y) ·∇u(x, y) = f (2,3)(x, y)

(31)

where b(h,k)(x, y) and f (h,k)(x, y) are linear combina-

tions using data acquired with the hth and kth light with

(h, k) ∈
(
3
2

)
, that is the set of pairs of integer indices

with no repetition, i.e. (1,2), (1,3) and (2,3).

In order to define a numerical strategy we need to

manipulate the path along which the information travels.

To do that, we can use following theorem:

Theorem 2 Let bp(x, y) be the vector field of (31)

where p ∈
(
3
2

)
. Then, ∀p1, p2 ∈

(
3
2

)
and ∀(x, y) ∈ Ω

we have:

bp1(x, y) · bp2(x, y) 6= ±|bp1(x, y)||bp2(x, y)|. (32)

Proof In order to not involve too many parameters, let

us fix the indices p1 and p2 as (1, 2) and (1, 3) respec-

tively. In order to prove that b(1,2) and b(1,3) are never

parallel, we consider the contradiction assuming that

there exists a point (x̃, ỹ) ∈ Ω such that

b(1,2)(x̃, ỹ) · b(1,3)(x̃, ỹ) = ±|b(1,2)(x̃, ỹ)||b(1,3)(x̃, ỹ)|.
(33)

For the sake of clarity we omit the dependence on (x̃, ỹ).

Now, by squaring both sides of (33), we obtain:

[b
(1,2)
1 · b(1,3)1 + b

(1,2)
2 · b(1,3)2 ]2

= [(b
(1,2)
1 )2 + (b

(1,2)
2 )2] [(b

(1,3)
1 )2 + (b

(1,3)
2 )2]

(34)
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that, with simplifications, means that we have just to

verify

2 [b
(1,2)
1 · b(1,3)1 ] [b

(1,2)
2 · b(1,3)2 ]

= [b
(1,2)
1 b

(1,3)
2 ]2 + [b

(1,3)
1 b

(1,2)
2 ]2.

(35)

By writing b(1,2) and b(1,3) explicitly we get

2 [(αA+ (1− α)B) (αG+ (1− α)L)

(αC + (1− α)D) (αE + (1− α)F )] =

[(αA+ (1− α)B) (αG+ (1− α)L)]2

+ [(αC + (1− α)D) (αE + (1− α)F )]2

(36)

where

A = D2ω
′
1−D1ω

′′
1 , B = |h′′|(S2)1/ch′1−|h′|(S1)1/ch′′1

C = D2ω
′
2−D1ω

′′
2 , D = |h′′|(S2)1/ch′2−|h′|(S1)1/ch′′2

E = D3ω
′
1−D1ω

′′′
1 , F = |h′′′|(S3)1/ch′1−|h′|(S1)1/ch′′′1

G = D3ω
′
2−D1ω

′′′
2 , L = |h′′′|(S3)1/ch′2−|h′|(S1)1/ch′′′2 .

After some manipulation on (36), we arrive to the fol-

lowing condition

α(AG− CE) + α(1− α)[AL+BG− CF −DE]

+(1− α)2(BL−DF ) = 0. (37)

Depending on the values of α, we can distinguish two

cases.

Case 1: Purely diffuse case. This is the case when

just the diffuse vector field bD is considered (α = 1). We

have to verify which condition leads to AG− CE = 0.

AG− CE = 0

⇔ (D2ω
′
1 −D1ω

′′
1 ) (D3ω

′
2 −D1ω

′′′
2 )

− (D2ω
′
2 −D1ω

′′
2 ) (D3ω

′
1 −D1ω

′′′
1 ) = 0

(38)

that holds only if the light sources are coplanar (see [23]

for details on the proof).

Case 2: Purely specular case. When α = 0, just the

specular vector field bS is considered. We have to verify

the condition for BL−DF = 0.

BL−DF = 0

⇔ [|h′′|(S2)1/ch′1 − |h′|(S1)1/ch′′1 ] ·
[|h′′′|(S3)1/ch′2 − |h′|(S1)1/ch′′′2 ]

−[|h′′|(S2)1/ch′2 − |h′|(S1)1/ch′′2 ] ·
[|h′′′|(S3)1/ch′1 − |h′|(S1)1/ch′′′1 ] = 0

⇔ |h′| |h′′|(S1)1/c(S2)1/c (h′2h
′′′
1 − h′1h′′′2 )

+|h′| |h′′′|(S1)1/c(S3)1/c (h′1h
′′
2 − h′2h′′1)

+|h′|2(S1)1/c (h′′1h
′′′
2 − h′′2h′′′1 ) = 0

⇔ |h′| (S1)1/c [|h′′|(S2)1/c(h′2h
′′′
1 − h′1h′′′2 )

+|h′′′|(S3)1/c (h′1h
′′
2 − h′2h′′1) (39)

+|h′|(S1)1/c (h′′1h
′′′
2 − h′′2h′′′1 )] = 0.

Recalling the definition of Si from (10) and the definition

of the normal N(x, y) from (1) we can rewrite (39) as

|h′|ρ1/cS (S1)1/c√
1 + |∇u|2

[(−h′′1ux − h′′2uy + h′′3) (h′2h
′′′
1 − h′1h′′′2 )

+(−h′′′1 ux − h′′′2 uy + h′′′3 ) (h′1h
′′
2 − h′2h′′1) (40)

+(−h′1ux − h′2uy + h′3) (h′′1h
′′′
2 − h′′2h′′′1 )] = 0.

After some algebraic manipulation we get

|h′|ρ1/cS (S1)1/c√
1 + |∇u|2

[h′1h
′′
3h
′′′
2 − h′2h′′3h′′′1 + h′2h

′′
1h
′′′
3

−h′1h′′2h′′′3 + h′3h
′′
2h
′′′
1 − h′3h′′1h′′′2 ] = 0. (41)

Assuming a non shadowed point for the first image (i.e.

S1 > 0), we have that (41) is satisfied only if the three

vectors h′,h′′,h′′′ are coplanar. This is equivalent to

having coplanar light sources, since from (41) one can

write:

det

 h′1 h′2 h′3
h′′1 h′′2 h′′3
h′′′1 h′′′2 h′′′3

 = 0

which is verified when the light directions are coplanar.

This is in contradiction with the photometric stereo

assumption and proves (32).

�

This theorem states that by considering a linear
combination of PDEs as in (14), obtained by coupling

different pairs of images, characteristic strip expansion

can be performed according to the most convenient

direction as in [21].

4.2 Upwind scheme

In this section we describe the numerical methods that

we employ in order to verify the validity of the pro-

posed model. We use these methods to approximate
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our problem (14). The schemes considered originate

from [20] where finite difference upwind schemes and

semi-Lagrangian schemes are used for the forward and

backward approximation of the differential problem (7).

The difference with respect to the schemes presented in

[20] consists in faster implementations which allows to

speed up the convergence of the numerical schemes de-

scribed below. The faster implementations use the Fast

Sweeping technique [40,29] which exploits the regularity

of the diffuse vector field b, similar to that presented in

[20] for the case of only two images.
Let us start with a square domain Ω like the set

[a, b]2 (in particular considering in the numerical tests

[−1, 1]2) and with a uniform discretization space step

∆ = (b− a)/m where m is the number of intervals that

divides the side of the square (that is xi = −1 + i∆x,

yj = −1 + j∆y with i, j = 0, . . . ,m). We will denote

by Ωd all the points of the lattice belonging to Ω, by

Ωd all the internal points and by ∂Ωd all the boundary

points.

In order to simplify the notation, in what follows we

shall denote b(xi, yj) by bi,j = [b1i,j , b
2
i,j ] and f(xi, yj)

by fi,j .

Let us consider the following implicit upwind scheme,

obtained by adding vanishing viscosity:

b1i,j
Ui+1,j − Ui−1,j

2∆x
+ b2i,j

Ui,j+1 − Ui,j−1
2∆y

=

|b1i,j |
∆x

2

Ui+1,j − 2Ui,j + Ui−1,j
∆2
x

+ |b2i,j |
∆y

2

Ui,j+1 − 2Ui,j + Ui,j−1
∆2
y

+ fi,j , (42)

for i, j = 1, . . . ,m − 1. The artificial diffusion intro-

duced in the right hand side of (42) allows to follow

the vector field b by considering the most appropriate

discretization for the first derivative in order to track

the characteristic lines [30,35]. In particular, it consists

of a numerical scheme of consistency order equal to one

with respect to both partial derivatives.

By writing (42) as

Ui+1,j

(
b1i,j − |b1i,j |

2∆x

)
− Ui−1,j

(
b1i,j + |b1i,j |

2∆x

)
+ Ui,j

( |b1i,j |
∆x

+
|b2i,j |
∆y

)
+ Ui,j+1

(
b2i,j − |b2i,j |

2∆y

)
− Ui,j−1

(
b2i,j + |b2i,j |

2∆y

)
= fi,j ,

(43)

and by assuming ∆x = ∆y = ∆, we get the following
fixed point iterative scheme

U
(k+1)
i,j =

−U(k)
i+1,j(b

1
i,j−|b

1
i,j |)+U

(k)
i−1,j(b

1
i,j+|b

1
i,j |)

2(|b1i,j |+|b2i,j |)
+ (44)

−U(k)
i,j+1(b

2
i,j−|b

2
i,j |)+U

(k)
i,j−1(b

2
i,j+|b

2
i,j |)+2∆fi,j

2(|b1i,j |+|b2i,j |)

re-written as follows,

U
(k+1)
i,j =

|b1i,j |U
(k)

i−sgn (b1i,j),j
+ |b2i,j |U

(k)

i,j−sgn (b2i,j)
+∆fi,j

|b1i,j |+ |b2i,j |
.

(45)

5 Shape Reconstruction using diffuse and

specular components

The shape recovery approach we present here is based

on finding a solution to Eqs. (7) and (12). Such a so-

lution can be obtained by considering the geometrical

properties of these equations, expressed as the general

linear PDE:

(b(x, y), f(x, y)) · (−∇u(x, y), 1) = 0 (46)

Notably, the three-dimensional vector field v = (b, f)

has to be orthogonal to the normal vector parametrized

as in Eq. (1), i.e. tangent to the surface itself. In this

way, the computation of the normal field can be derived

from such orthogonality. In particular, let us assume

to have three images I1, I2 and I3 taken from different

and non-coplanar light sources. We can use two out of

three available vector fields v(1,2), v(1,3) and v(2,3) to
compute the normal vectors to the surface as follows:

n±(x, y) = v(1,2)(x, y)× v(1,3)(x, y) (47)

where the ambiguity is eliminated by choosing the nor-

mal oriented along the third component with the positive

sign

n(x, y) = sgn(n±3 (x, y))n±(x, y). (48)

In the case where the three available diffuse or spec-

ular components are known only locally, we compute

the normals considering Eqs. (47) and (48) pointwise.

Then, given the normal field, the 3D surface can be

approximated by an integration procedure as in [11].

Section 2 illustrated how it is theoretically possible to

reconstruct the shape of an object in two independent

ways: by using purely diffuse components (8) or by

using purely specular ones (13). In practice, since the

signal-to-noise ratio is typically very low for the specular

components, it is difficult to carry out the correct shape

recovery from purely specular light. However, specular

images can still be used to reconstruct the shape of an

object in the areas where specularities are dominant.

Our aim is to provide a general PS method that

results in optimal shape reconstruction whether spec-

ularities are present or not (very often, traditional PS

relies on images which have favorable lighting conditions

in order to avoid pixels under shadows or saturations).
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For this reason, we define two different cases for which

we provide a specific solution at a given pixel (x, y).

They include the main 2 situations that one encoun-

ters in real experiments. In both cases, separation into

diffuse and specular components is assumed.

A. At least two diffuse image pixels at (x, y) are

available as represented by Fig. 5. In such a case we

can solve for the diffuse equations and treat for the

third image pixel entry as a missing data exploiting

the strategy suggested in [23]. Specularities can be

ignored.

B. Less than two diffuse image pixels at (x, y) are

available. That is, specularities are overlapping or

partially overlapping throughout the different images
(see Fig. 9). In this case, we use the specular image Si
equations in order to perform the 3D reconstruction

in the areas where specularities are dominant.

6 Numerical Tests

In order to show the performance of our approach, we

consider the synthetic case for quantitative results, while

qualitative evaluation is provided for real tests. Finally, a

numerical test on synthetic images via radial expansion

of the characteristics method is shown.

6.1 Synthetic Case

This experimental section explains how diffuse and spec-

ular components have different behavior when subject

to noise. To do that, we start by considering the data

(Test 1) in Fig. 3 without noise. These images depict

the paraboloid shown on the top right corner in Fig. 3.

We then compute the 3D reconstruction by using the

methods described in the previous sections in which

diffuse and specular images are considered as separated

sources of information. The corresponding normal map

is presented in the last column of Fig. 3. We repeat the

same procedure but, in this case, we add 1% of Gaussian

noise to all the images in Fig. 3, as shown in Fig. 4. The

reconstructed 3D shape, represented as a color coded

normal map for both specular and diffuse components,

is shown in the right column of Fig. 4. In the case of

reconstruction using specularities, signal-to-noise ratio

is a very critical parameter. This is due to the spar-

sity of the specular images. More in details, since the

information provided by the specular component con-

centrate in white peaks where the normals bisect the

viewing and the light directions, specular images are

mostly composed by dark regions. In fact, reduced num-

ber of pixels belonging to those regions usually do not

provide enough information to reconstruct the shape.

From a numerical point of view, the specular reflec-

tion model requires the computation of Si(x, y)
1
c in (13)

which is highly sensitive to noise. Consequently, shape

reconstruction from the specular component is greatly

deteriorated even for a very small amount of noise. In

contrast, the reconstructed shape obtained using the

diffuse component is barely affected by such low level

of noise.

6.2 Real Cases

To demonstrate the feasibility of our approach, we ana-

lyze real cases by using three white light bright LEDs

synchronized by an Arduino-Nano micro controller to-
gether with a Basler camera taking images of size 1278

pixels by 958 pixels. The code has been implemented in

MATLAB using a 2,3 GHz Intel Core i7 processor with

4GB RAM.
After image acquisition, we separate diffuse and spec-

ular components by using the procedure in [32], which

works as qualitatively good as [18] and easier to tune

by choosing just two parameters. It is important to

note that pixel saturation should be avoided in order

to facilitate image separation into diffuse and specular

components. This can be a difficult task, but new de-

tectors with an extended dynamic range are making it

easier to perform in practice. In the current experiments,

saturation effects were kept at a minimum.

In order to evaluate shape recovery for the case A

explained in Section 5, we consider three different ob-

jects: the painted ceramic cup (Test 2) from Fig. 5, the

painted ceramic statue (Test 3) displayed in Fig. 6 and

the plastic ball from Fig. 7 (Test 4) whose smoothness

allows us to qualitatively evaluate the deformed recon-

struction we achieve with traditional PS. For each of

these objects, specular pixels exist in only one of the set

of three images acquired, which indeed corresponds to

case A.

Fig. 8 shows the results for the normals and 3D re-

constructions of Tests 2, 3 and 4 by using 3 different

methods. The left column corresponds to reconstruc-

tions obtained with the traditional PS approach. In this

case, global reflection is considered to be purely diffuse.

As expected, artifacts can be observed around specular-

ities. The central column shows reconstructions using

traditional PS in which the images have been separated

into diffuse and specular components. In particular, the

diffuse component has been used to reconstruct most of

the shape. The empty specular sets have been filled by

computing the almost planar surface where the outgoing

normal vectors have been approximated by inverting the

Blinn-Phong shading model at each highlighted pixel.
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Fig. 3 Test 1: Images of a paraboloid without noise before (first line) and after the reflection separation. In the last column:
on the top, the original 3D shape. In the second and third rows are shown the color coded normal maps of the reconstructed
shape using only the diffuse and the specular component, respectively.
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Fig. 4 Test 1: Images of a paraboloid with 1% of Gaussian noise before (first row) and after the reflection separation (second
and third row). The last column shows the ground truth on top, the color coded normal map computed by using the diffuse
(second row) and the specular (third row) data having respectively 2.032 and 147.72 degrees as maximum angular error with
respect to the real normal field.

Artifacts are still present in all Tests, but an improve-

ment on the reconstructed surface is observed, especially

evident in Test 2. The right column in Fig. 8 corresponds

to surfaces reconstructed using our approach. In this

case, we use only the diffuse component, or in other
words, we solve Eq. (7). This is possible since, for each

set of three images, one can always find two pixels with

known boundary conditions and that do not present

specularities. Notably, this strategy results in a signifi-

cant reduction in artifacts when compared to the other

tested approaches.

In order to analyze the performance of our approach

for case B (as in Section 5), we consider a human face

(Test 5, Fig. 9). Interestingly, the tip of the nose gener-
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Fig. 5 Test 2: Images of a painted ceramic cup before (first
row) and after the reflection separation (second and third
row).
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Fig. 6 Test 3: Images of a painted ceramic statue before
(first row) and after the reflection separation (second and
third rows).

ally collects the specular component independent of the

orientation of the illumination source. In this way, spec-

ularities typically overlap for the three images acquired

with different illumination (definition of case B). As in

the previous set of experiments, image reconstruction

of the human face is performed using three different

approaches (Fig. 10). The traditional PS approach con-

sidering the entire captured image as purely diffuse (no

reflection components separation), leads to severe arti-

facts in the prominent specular areas, i.e. the nose tip

as well as the bottom lip. When using the traditional

PS approach with the image separated into diffuse and
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Fig. 7 Test 4: Images of a plastic ball before (first row) and
after the reflection separation (second and third row).

specular components (center column), the quality of the

reconstruction improves but artifacts are still clearly

visible. The third column shows the reconstructed face

obtained with our approach. In this case, we solve Eq.

(14) with α = 1 (purely diffuse reflection) everywhere

except in the areas where specularities are dominant,

in which we use α = 0. As it occurred with case A,

the face reconstructed by using our method presents

little artifacts, with a substantial improvement over the

traditional PS strategies.

Finally, we compare our method with a recent ap-

proach aimed at shape reconstruction with specular

highlights. In particular, we select the method of Ike-

hata et al. [16] that reconstructs the shape of the object

by optimizing a bilinear Lambertian model where spec-

ular highlights are considered as sparse noise.

For comparison purposes we use the synthetic Bunny

shape (Test 6) shown in Fig. 11. In this case the image

separation needed by our method does not suffer from

saturation problems since images have been computed

synthetically. Fig. 11 shows the normal error of the

reconstruction for the Ikehata method using 10 images

and our method just using 3 images. Notably, the lower

error of our method for a lower number of images proves

the feasibility of our approach for shape reconstruction

with a minimal set of only 3 images.

6.3 Synthetic Case via radial expansion of the

characteristics method

With this final experiment (Test 7) we want to show the

performance of the radial expansion of characteristics

applied to the surface visible in Fig. 12(a).

The input images used for the reconstruction and visible

in Fig. 13 have been generated by using α = 0 and the

specular shininess power c = 15, without adding noise.
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Fig. 8 Reconstructions of Tests 2, 3, 4 corresponding to case A. On the first column, traditional PS approach with global
reflection assumed purely diffuse. The second column shows the reconstruction from the diffuse component where the normals of
the surface in the highlighted sets have been recovered by inverting the Blinn-Phong shading model. The last column presents
the reconstruction obtained by using our method showing visible improvements in the 3D reconstruction and normal map.

In this test, the fast-marching algorithm (45) has

been implemented with the aim to expand the charac-

teristics field from a single point as explained in [21],

meaning that the need of boundary conditions has been

restricted to the knowledge of a single arbitrary point

that we consider as the central one.

Table 1 shows that convergence is obtained in only

one iteration (our code compute a second iteration only

for check). By increasing the size of the three input

images, we can note that the errors computed with the

L∞ norm decrease and the CPU time reported in the

last column of the same Table remains small (just 34.77

seconds for image size 2048 × 2048). This shows the

computational efficiency and the high performance of

our method.
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Fig. 9 Test 5: In the first line a human face before the
separation of diffuse and specular reflections which are shown
in the second and third row, respectively.

Table 1 Test 7: L∞ Error for different size of the images.

Iter Size L∞ Error CPU time [s]

1 256× 256 0.050433 2.20082

1 512× 512 0.032530 2.578903

1 1024× 1024 0.021131 7.860613

1 2048× 2048 0.013670 34.778780

In Fig. 14 we can see the error map obtained by
doubling the size of the input images starting from

256× 256 to 2048× 2048 pixels.

7 Conclusions and future works

This paper presents a new approach for three light pho-

tometric stereo aimed at reconstructing surfaces with

general BRDF. We derive a new mathematical model for

specular surfaces based on the Blinn-Phong reflectance

model leading to PDEs having the same linear structure

of the one used in [23]. The new model for specular

surfaces enables one to extract information of tridimen-

sional shapes from specularities. Moreover, due to the

use of the image ratio formulation, the method can deal

with materials showing variable albedo. Even if an initial

separation of diffuse and specular components is still

required, the results show improved 3D reconstruction

in synthetic and real experiments. Our method based on

a PDEs optimization framework able to merge diffuse

and specular components is a promising approach for

real-time 3D shape recovery.

Future works will attempt to develop a more accu-

rate technique for reflection separation and to include

more robust approaches to merge diffuse and specu-

lar components into the PDEs optimization framework.

In addition, we will try to model the ambient compo-

nent in the global image irradiance equation. Due to

very different and non-linear physical effects involved in

this component, a substantial effort for modeling light

propagation is required. The ambient component would

provide a step forward allowing the PS to work outside

the laboratory.
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