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Influence of the analysis window on the metrological

performance of the grid method

Frédéric Sur∗and Michel Grédiac†

Abstract

This paper deals with the grid method in experimental mechanics. It is one
of the full-field methods available for estimating in-plane displacement and strain
components of a specimen submitted to a load producing slight local deformation.
This method consists in, first, depositing a regular grid on the surface of a speci-
men, and, second, comparing images of the grid before and after deformation. A
possibility is to perform windowed Fourier analysis to measure these deformations
as changes of the local grid aspect. The aim of the present study is to investigate
the choice of the analysis window and its influence on the metrological performances
of the grid method. Two aspects are taken into account, namely the reduction of
the harmonics of the grid line profile, which are not pure sine because of manu-
facturing constraints, and the transfer of the digital noise from the imaged grid to
the mechanical measurements. A theoretical study and a numerical assessment are
presented. In addition, the interested reader can find in this paper a calculation of
the Wigner-Ville transform of a triangular function, which, to the best of the present
authors’ knowledge, is not available in the existing literature.
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1 Introduction

1.1 Motivation

The windowed Fourier transform (WFT) is one of the tools available to process fringes
in optics, or images of similar regular patterns like grids in experimental mechanics.
Pseudo-periodic patterns being modeled as phase-modulated 2D periodic signals, the
objective is to retrieve phase and phase derivatives, and ultimately displacement and
strain distributions, as explained, for instance, in [3, 4, 8, 17, 20, 21, 36]. In this context,
phase retrieval is somewhat a unique problem in the sense that the phase derivatives
have tiny values with respect to the grid pattern frequency. The efficiency of the WFT
is discussed in the aforementioned papers, but it seems that one of the parameters which
influences the quality of the results, namely the very nature of the analysis window, has
not really been studied in depth so far. In [21], it is proposed to employ a bidimensional
Gaussian window on the ground that it reaches the lower bound provided by the uncer-
tainty theorem [22]. However, it is also mentioned in [21] that “a simple square window
also works quite well.” In [3], the derivability of the Gaussian window is exploited to
provide phase derivatives without calculating the phase itself. In [36], it is suggested
to employ a triangular-rectangular window, and in [2] a bitriangular window is used,
this window reducing the influence of the harmonics of the grid profile on the phase
modulations which are identified. However, other 2D windows are used by some authors
in discrete frameworks [34]. Note finally that the general question of the selection of the
window is investigated in extensive review papers, for example, [14] or [26]. Concerning
the grid method in experimental mechanics, the case of the Gaussian window has been
extensively investigated in [11, 12, 32].

In this context, the objective of this paper is to shed light on the choice of the
analysis window employed in 2D WFT in the particular case of the grid method, which
consists in retrieving displacement and strain maps from regular bidimensional grids
slightly modulated by straining. This technique indeed raises an increasing interest in
material and structure characterization [5, 9, 27, 29, 30]. In particular, the objective
is generally to retrieve displacement and strain maps with the lowest random error
and the smallest systematic errors as much as possible at the same time, which are
contradictory requirements. Consequently, noise propagation between images of regular
patterns and final maps must be thoroughly assessed along with the bias which impairs
the measurements. Finally, since we deal here with full-field measurements, an additional
metrological parameter must be considered: the spatial resolution. Although not clearly
defined in metrology [19], it is obviously related here to the width of the analysis window.
Spatial resolution is of prime importance to reliably distinguish close features in such
maps. The reason is that when analyzing displacement and strain maps, the ultimate
goal is to observe in detail the mechanical response of materials at the local level to
understand and model subtle phenomena which occur at this scale, and establish the
link with the macroscopic mechanical response.

Before specifying the aim of the proposed contribution, the next section gives some
background information on the grid method.
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Figure 1: On the left: Typical experimental setup. A: camera; B: lighting; C: DC
transformer; D: digital camera; E: two translation stages; F: three-way photographic
head. On the right: close-up on a grid image.

1.2 From grid images to displacement and strain maps

This section explains how, in experimental mechanics, displacement and strain maps are
retrieved from grid images. First, a pseudo-periodic, two-dimensional grid is deposited
on the surface of a specimen to be analyzed. By “grid,” we mean two orthogonal sets of
parallel lines. For some practical reasons due to experimental setups which are generally
employed when testing materials and structures (size of camera sensors, focal distance
of typical lenses used for such experiments) and because of the area of the zones over
which phenomena are generally expected to occur (typically some squared centimeters in
most cases [9, 13, 28]), the distance between two consecutive lines is typically some tens
of micrometers. This distance becomes much lower (some micrometers or less) when
the surface is observed with a microscope [23, 24], or much greater when structural
components are tested [30]. Note that the distance between two lines is usually limited
to a few pixels in the images.

The specimen is subjected to a load, amplitude of which is measured, leading to
surface deformation, thus grid modulation. It is then possible to retrieve displacement
and strain maps from images of the grid taken before and after deformation. The
experimental setup makes it possible to align the imaged grid to the pixel grid [12]. It
is described in Figure 1.

The intensity at a pixel x = (x, y) of a grid image is thus modeled as (cf. [3])

s(x) = A
(

1 +
γ

2
· `(2πfx+ φx(x)) +

γ

2
· `(2πfy + φy(x))

)
+ n(x) (1)
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where

• A > 0 is the global field illumination;

• γ ∈ [0, 1] is the contrast of the oscillatory pattern;

• the line profile ` is a 2π-periodic real function with a peak amplitude equal to 1
and average value 0;

• f is the frequency of the carrier, p = 1/f being the distance between any two
consecutive lines;

• φx and φy are the carrier phase modulations due to specimen surface displacements
and manufacturing variabilities along the x and y−axes respectively. In practice,
their spatial derivatives are very small with respect to 2πf (typical values for the
phase derivatives are smaller than 10−2 pixel−1, while 1/f = 5 pixels);

• n is a noise term, inherent to any digital imaging device.

Although parameters A and γ may slightly vary in practice, they are assumed here to
be constant. This feature has no deleterious effect since, as we shall see, the proposed
estimation is based on local estimations.

Assuming that both phases φx and φy have been estimated before and after defor-
mation (Φ1 = (φ1

x, φ
1
y) and Φ2 = (φ2

x, φ
2
y) denoting the phase map pairs before and after

deformation, respectively), it is possible to show that the displacement map u is the
solution of the equation

u(x) = − p

2π

(
Φ2(x+ u(x))−Φ1(x)

)
(2)

with x = (x, y), cf. [12].
This equation is solved with a few iterations of a fixed-point algorithm. The com-

ponents of the linear strain tensor, which are the ultimate quantities of interest, are
afterward derived from the displacement components by numerical differentiation:

εij =
1

2

(
∂ui
∂j

+
∂uj
∂i

)
for i, j = x, y (3)

The reader is invited to consult the recent review paper [12] on this technique for fur-
ther details. In this paper, it is proved that, under the small displacement and strain
hypothesis, we have

u(x) ' p

2π

(
Φ2(x)−Φ1(x)

)
(4)
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and

εij(x) ' p

4π

(
∂φ2

i

∂j
(x+ u(x))− ∂φ1

i

∂j
(x) +

∂φ2
j

∂i
(x+ u(x))−

∂φ1
j

∂i
(x)

)
(5)

for i, j = x, y.
We can see that estimating the phases and their derivatives is a cornerstone of the

grid method to estimate displacement and strain maps. We investigate here a method
based on the windowed Fourier transform, localized (in the Fourier domain) on the
nominal value of the grid frequency: (f, 0) along the x-axis and (0, f) along the y-axis.
This method consists in first calculating the following integral [3, 36]:

Ψ(ξ, θ) =

∫∫
R2

s(x)wσ(x− ξ)e−2iπf(x cos(θ)+y sin(θ)) dx (6)

where θ = 0 or θ = π/2, and wσ is an analysis window of width σ (to be defined
later). This window is symmetric along both axes, positive, and integrates to 1, but it
is not necessarily isotropic. An estimation of φx (resp. φy) is then provided by arg(Ψ)
with θ = 0 (resp. with θ = π/2), up to an additive constant. More precisely, the
following first-order approximations were demonstrated in [32] under the small strain
hypothesis: {

arg ((Ψ(ξ, 0)) ' arg(d1) + gσ ∗ φx(ξ) + n̂1(ξ)
arg ((Ψ(ξ, π/2)) ' arg(d1) + gσ ∗ φy(ξ) + n̂2(ξ)

(7)

where d1 is the Fourier coefficient of the primary frequency of `, n̂1 and n̂2 are noise
terms caused by sensor noise in the original grid image, and ∗ denotes the convolution
product.

In the remainder of this paper, and without loss of generality, we focus on the x-axis,
so θ = 0 in (6), that is, on the estimation of φx.

1.3 Proposed contribution

Other full-field measuring techniques rely on regular pattern processing like fringes ob-
tained with interferometric setups [18, 21, 36].

The grid method differs from these techniques in different ways:

• this is a white-light technique, so neither laser nor optical component like beam-
splitters, mirrors, or magnifying lenses are required;

• the pattern is of higher frequency than that of classic fringe distributions in an
interferogram, the number of lines being generally greater than the number of
fringes obtained in classic interferograms, say some hundreds in an image;

• the frequencies of the regular pattern (one along x, another along y) remain very
close to the nominal frequency of the grid even after deformation, so that the
impact of deformation can be regarded as slight phase variation;
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• the interest of this measuring technique is its ability to measure, within certain lim-
its, slight phase changes and slight phase derivative changes between images, and
consequently small displacements and strains. For the application fields consid-
ered here, namely mechanics of materials and structures, it is of prime importance
to measure reliably such small quantities because most of the engineering mate-
rials only slightly deform when they are loaded. For instance, no movement is
detectable to the naked eye between images of reference and current (under load)
configurations. Retrieving quantitative information from such images is a topical
issue, the main challenges being to detect at any pixel the smallest displacement
and/or strain as possible between grid images, but often over the smallest areas (to
detect localized effects which generally occur in engineering materials, for instance
close to failure), and with the smallest systematic and random errors.

In this context, we propose to discuss the influence of the analysis window through
three important parameters governing the metrological performances of the grid method,
namely, measurement bias, spatial resolution, and measurement resolution. In Section 2
we recall some basic results from [32] and, in particular, we explore the influence of
the analysis window on harmonics attenuation in phase and phase derivative maps, as
well as on the measurement bias and the spatial resolution. Section 3 is devoted to
the propagation of the noise inherent to any digital acquisition device, from the grid
images to the displacement and strain maps. We generalize results from [32] to show
that noise affecting these maps is spatially correlated, and we discuss the impact on
the measurement resolution. Numerical and real experiments illustrate the theoretical
results. Appendices present technical details, among which one can find the calculation
of the Wigner-Ville transforms of the rectangular, triangular, and Gaussian functions.

1.4 Principal notations and reminder

In this paper, 2D-vectors are given in bold letters, as in the preceding paragraphs.
The Fourier transform of any integrable 2D function f(x) is denoted by f̂(u) and is

defined as

f̂(u) =

∫∫
R2

f(x)e−2iπ<x·u> dx (8)

where < x · u >= xu + yv denotes the canonical scalar product. We also write the
Fourier transform of a 1D function f(x) as

f̂(u) =

∫
R
f(x)e−2iπxu dx (9)

Let us recall that the value of the Fourier transform of f at the origin is the mean
value of f , and that the Fourier transform of a real symmetric function is also a real
symmetric function.

We denote by Z the set of integers, by ∇φ the gradient of any derivable function φ,
and by || · ||2 the Euclidean norm in R2.
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The modulus of any complex number z is denoted by |z|, and if z 6= 0, its argument is
denoted by arg(z). Any equality on arguments is implicitly supposed to hold modulo 2π.

The cardinal sine function is denoted by sinc. For any x 6= 0, sinc(x) = sin(πx)/(πx)
and sinc(0) = 1. We recall that for any non-zero integer n and a small ε, a first-order
approximation gives

sinc(n+ ε) ' (−1)n
ε

n
(10)

The indicator function of any interval [−a, a] (a > 0) is denoted by 1[−a,a]. It is
defined as 1[−a,a](x) = 1 if −a ≤ x ≤ a and 1[−a,a](x) = 0 otherwise.

The covariance of two random variables X and Y is denoted by Cov(X,Y ), the
variance of X being Var(X).

When visually representing a 2D discrete function f(x, y) as the intensity of an image,
x denotes the row number and y denotes the column number.

2 Influence of the analysis window on the retrieved phase

The goal of this section is to explore to which extent the choice of the analysis win-
dow wσ influences the estimation of the phase as the argument of Ψ. As we shall see
in Section 2.1, the analysis window must be carefully tuned in order to smooth out the
harmonics of the line profile, so that they do not spoil the retrieved phases. The noise
term in (1) is not considered in this section, it is the subject of Section 3.

2.1 Phase estimation with windowed Fourier analysis

All of the analysis windows which are actually used are separable. That is, they are the
product of two 1D windows wxσx and wyσy of respective width σx and σy (such that σ
denotes (σx, σy)), i.e., wσ(x, y) = wxσx(x)wyσy(y). The Fourier transform of wσ is thus

also separable, thus ŵσ(ξ, η) = ŵxσx(ξ)ŵyσy(η) holds.
Let us introduce some notations. Following [32], we introduce:

I1(ξ) =

∫∫
wσ(x− ξ)e−i2πfx dx (11)

I2(ξ) =

∫∫
`(2πfx+ φx(x))wσ(x− ξ)e−i2πfx dx (12)

I3(ξ) =

∫∫
`(2πfy + φy(x))wσ(x− ξ)e−i2πfx dx (13)

so that:

Ψ(ξ, 0) = AI1(ξ) +
γA

2
I2(ξ) +

γA

2
I3(ξ). (14)

Since ` is a 0-mean 2π-periodic function, its Fourier series writes:

`(x) =
∑
k∈Z

dke
ikx (15)
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where d0 = 0 and the dk are complex numbers. We also define D =
∣∣∑

k∈Z kdk
∣∣, which

is finite as soon as ` is smooth enough, for instance of class C3.
Let us define for any C2 function φ from R2 to R:

Mσ(φ)(ξ) =
1

2

∫∫
|xHξxxT | · wσ(x) dx (16)

where Hξx is a 2× 2 matrix whose coefficients bound from above in [ξ, ξ + x]× [η, η + y]
the coefficients of the Hessian matrix of φ at ξ.

We can see that Mσ(φ) is a weighted norm, localized around (x, y) = (0, 0), depend-
ing on the width of the analysis window.

The following theorem is a reminder of Theorem 2.1 in [32]. It permits us to further
simplify each of the I1, I2, and I3 integrals, and to emphasize the link between the
Fourier transform of the analysis window wσ and the Fourier series expansion of the
grid line profile.

Theorem 1 The three following relations hold:

|I1(ξ)| = |ŵσ(f, 0)| (17)

|I3(ξ)| ≤
∑

k∈Z\{0}

|dk|ŵσ
(
f − k

2π

∂φy
∂ξ

(ξ), fk − k

2π

∂φy
∂η

(ξ)

)
+D ·Mσ(φy)(ξ) (18)

I2(ξ) = d1

∫∫
wσ(x− ξ)eiφx(x) dx+ I ′2(ξ) (19)

where:

|I ′2(ξ)| ≤
∑
k 6=0,1

|dk| · ŵσ
(

(1− k)f − k

2π

∂φx
∂ξ

(ξ),
k

2π

∂φx
∂η

(ξ)

)
+D ·Mσ(φx)(ξ) (20)

This theorem states that, if integrals I1, I ′2, and I3 can be neglected, then the argu-
ment of Ψ is simply arg(d1) + arg

(∫∫
wσ(x− ξ, y − η)eiφx(x,y) dx dy

)
. When the argu-

ment φx is properly unwrapped, arg(Ψ) turns out to be well approximated by arg(d1) +
wσ ∗ φx [32].

On the one hand, if these terms cannot be neglected, the argument of Ψ is affected
by terms depending on the harmonics of the line profile ` (as can be seen from I ′2 and I3),
and by the argument of I1 which writes

arg(I1(ξ, η)) = 2πfξ (21)

because I1 = e2iπfξŵσ and ŵσ is a real-valued function.
On the other hand, these terms can be neglected provided that:

• ŵσ(f, 0) = t̂xσ(f) is negligible (from (17));
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• The harmonics of the grid pattern (coefficients dk) are discarded, that is, the
corresponding weights ŵσ(·, ·) vanish in (18) and (20);

• Mσ(φx) and Mσ(φy), that is, the second order terms in the sense of the weighted
norm, are neglected.

Terms Mσ(φx) and Mσ(φy) depend on the behavior of the second-order phase deriva-
tives inside the analysis window. The order of magnitude of these derivatives being very
low in experimental mechanics applications, these terms can be confidently neglected,
whatever the shape of the analysis window. As we shall see, this is not the case of the
two first terms which involve the harmonics of the grid profile. Since the coefficients dk
are likely to quickly decrease with |k| as the Fourier coefficients of any smooth function,
we are practically interested in canceling the influence of |dk| for small values of |k|. In
practice, the grid is sampled with a few pixels per period (typically between 5 and 10
pixels), which means that k is at most between 3 and 5 if the grid image is well sampled.

2.2 Effect of the analysis window on harmonics attenuation

As mentioned in the introduction, papers from the literature focus on three analy-
sis window families, namely birectangular (product of two 1D rectangular windows),
triangular-rectangular (product of a 1D triangle along x-direction and a 1D rectan-
gle along y-direction, the window being rotated to calculate Ψ(x, y, π/2)), bitriangular
(product of two 1D triangular windows), and Gaussian windows. The 1D profiles of
these windows are given in Table 1 and illustrated in Figure 2. It should be mentioned
that the width of an analysis window has no univocal definition: for instance, the sup-
port of Gaussian windows is not compact. The comparison of the different windows in
terms of spatial resolution is thus not obvious. Consequently, we will not keep the same
notation for the parameter governing the window width, and we will argue about the
comparisons in Section 2.4. From now on, a, b and σ are used for the parameters of a
1D rectangular, triangular, or Gaussian function, denoted by ra, tb, and gσ, respectively.
The parameters of the two 1D windows, product of which makes the 2D window, are
potentially different.

As explained in the preceding section, we are interested in imposing that

• ŵσ(f, 0),

• ŵσ
(
f − k

2π
∂φy
∂ξ (ξ, η),−fk + k

2π
∂φy
∂η (ξ, η)

)
for k 6= 0,

• and ŵσ

(
(k − 1)f − k

2π
∂φx
∂ξ (ξ, η),− k

2π
∂φx
∂η (ξ, η))

)
for k 6= 0, 1

have the smallest possible values for “small” k, the phase derivatives being itself small
with respect to f in our applications.

The remainder of this section gives the values of these quantities in the cases of
interest.
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Window Profile Fourier transform

Rectangular ra(x) = 1
2a1[−a,a](x) r̂a(u) = sinc(2au)

Triangular tb(x) = b−|x|
b2

1[−b,b](x) t̂b(u) = sinc2(bu)

Gaussian gσ(x) = 1√
2πσ

e−x
2/(2σ2) ĝσ(u) = e−2π2σ2u2

Table 1: Some popular 1D profiles and their Fourier transform. All of the profiles are
symmetric and integrate to 1.

-20 -15 -10 -5 0 5 10 15 20

#10 -3

0

2

4

6

8

10
ra; a = 10
tb; b = 10
g<; < = 5

-10 -5 0 5 10
-0.2

0

0.2

0.4

0.6

0.8

1 bra; a = 10btb; b = 10bg<; < = 5

Figure 2: Graphical representation of the rectangular, triangular, and Gaussian profiles
(on the left), and their respective Fourier transforms (on the right).

2.2.1 Birectangular window

In this case, the analysis window wa1,a2 is the product of two rectangular functions, of
width 2a1 along the x−direction, and 2a2 along the y-direction. With Table 1,

ŵa1,a2(f, 0) = sinc(2a1f) (22)

ŵa1,a2

(
f − k

2π

∂φy
∂ξ

(ξ),−fk +
k

2π

∂φy
∂η

(ξ)

)
= sinc

(
2a1f −

ka1

π

∂φy
∂ξ

(ξ)

)
· sinc

(
−2a2fk +

ka2

π

∂φy
∂η

(ξ)

)
(23)
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ŵa1,a2

(
(k − 1)f − k

2π

∂φx
∂ξ

(ξ),− k

2π

∂φx
∂η

(ξ))

)
= sinc

(
2(k − 1)a1f −

ka1

π

∂φx
∂ξ

(ξ)

)
· sinc

(
−ka2

π

∂φx
∂η

(ξ))

)
(24)

As we can see, (22) implies that 2a1f has a non-zero integer value, i.e., the parame-
ter a1 must be chosen such that a1 = n/(2f) for any non-zero integer n. If, in addition
to this, a2 is chosen such that 2a2f = m is an integer, the small derivative assumption
and the first-order approximation given by (10) permit to approximate (23) and (24) by

ŵa1,a2

(
f − k

2π

∂φy
∂ξ

(ξ),−fk +
k

2π

∂φy
∂η

(ξ)

)
' (−1)n+km k

4π2f2

∂φy
∂ξ

(ξ)
∂φy
∂η

(ξ) (25)

ŵa1,a2

(
(k − 1)f − k

2π

∂φx
∂ξ

(ξ, η),− k

2π

∂φx
∂η

(ξ, η))

)
' −(−1)(k−1)nk

2π(k − 1)f

∂φx
∂ξ

(ξ, η) (26)

since sinc(ε) ' 1 when ε ' 0.
Note that the quantities given by (23-24) are null only in the case of constant phases.

2.2.2 Triangular-rectangular window

The analysis window wb,a is the product of a triangular function of width 2b along the
x−direction and a rectangular function of width 2a along the y-direction. With Table 1,

ŵb,a(f, 0) = sinc2(bf) (27)

ŵb,a

(
f − k

2π

∂φy
∂ξ

(ξ),−fk +
k

2π

∂φy
∂η

(ξ)

)
= sinc2

(
bf − kb

2π

∂φy
∂ξ

(ξ)

)
· sinc

(
−2afk +

ka

π

∂φy
∂η

(ξ)

)
(28)

ŵb,a

(
(k − 1)f − k

2π

∂φx
∂ξ

(ξ),− k

2π

∂φx
∂η

(ξ))

)
= sinc2

(
(k − 1)bf − kb

2π

∂φx
∂ξ

(ξ)

)
· sinc

(
−ka
π

∂φx
∂η

(ξ))

)
(29)

This time, (27) implies that bf is a non-zero integer, i.e., b = n/f is a multiple of the
pattern pitch p. If, in addition to this, 2af = m is a non-zero integer, Equations (28)
and (29) give:

ŵb,a

(
f − k

2π

∂φy
∂ξ

(ξ),−fk +
k

2π

∂φy
∂η

(ξ)

)
' (−1)mk+1k2

4π3f3

(
∂φy
∂ξ

(ξ)

)2 ∂φy
∂η

(ξ) (30)

ŵb,a

(
(k − 1)f − k

2π

∂φx
∂ξ

(ξ),− k

2π

∂φx
∂η

(ξ))

)
' k2

4π2(k − 1)2f2

(
∂φx
∂ξ

(ξ)

)2

(31)

We can see that these error terms are an order of magnitude smaller than in the birect-
angular case, the derivative along ξ being squared.
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2.2.3 Bitriangular window

In this case, the analysis window wb1,b2 is the product of two triangular functions, of
width 2b1 along the x−direction and 2b2 along the y-direction. With Table 1,

ŵb1,b2(f, 0) = sinc2(bf) (32)

ŵb1,b2

(
f − k

2π

∂φy
∂ξ

(ξ),−fk +
k

2π

∂φy
∂η

(ξ)

)
= sinc2

(
b1f −

kb1
2π

∂φy
∂ξ

(ξ)

)
· sinc2

(
−b2fk +

kb2
2π

∂φy
∂η

(ξ)

)
(33)

ŵb1,b2

(
(k − 1)f − k

2π

∂φx
∂ξ

(ξ),− k

2π

∂φx
∂η

(ξ))

)
= sinc2

(
(k − 1)b1f −

kb1
2π

∂φx
∂ξ

(ξ)

)
· sinc2

(
−kb2

2π

∂φx
∂η

(ξ))

)
(34)

As in the preceding case, b1f must be an integer to cancel out (32). If b2f is also an
integer,

ŵb1,b2

(
f − k

2π

∂φy
∂ξ

(ξ),−fk +
k

2π

∂φy
∂η

(ξ)

)
' k2

16π4f4

(
∂φy
∂ξ

(ξ)

)2(∂φy
∂η

(ξ)

)2

(35)

ŵb1,b2

(
(k − 1)f − k

2π

∂φx
∂ξ

(ξ),− k

2π

∂φx
∂η

(ξ))

)
' k2

4π2(k − 1)2f2

(
∂φx
∂ξ

(ξ)

)2

(36)

We can see that these error terms are still an order of magnitude smaller than in the
triangular-rectangular case, the derivative along η being squared.

2.2.4 Gaussian window

In this case, the analysis window is the product of two Gaussian functions, of standard
deviation σx along the x−direction and σy along the y-direction. With Table 1,

ŵσx,σy(f, 0) = e−2π2σ2
xf

2
(37)

ŵσx,σy

(
f − k

2π

∂φy
∂ξ

(ξ),−fk +
k

2π

∂φy
∂η

(ξ)

)
= e
−2π2σ2

x(f− k
2π

∂φy
∂ξ

(ξ))2

· e−2π2σ2
y(−fk+ k

2π

∂φy
∂η

(ξ))2

(38)

ŵσx,σy

(
(k − 1)f − k

2π

∂φx
∂ξ

(ξ),− k

2π

∂φx
∂η

(ξ))

)
= e
−2π2σ2

x((k−1)f− k
2π

∂φy
∂ξ

(ξ))2

· e−2π2σ2
y(− k

2π

∂φy
∂η

(ξ))2

(39)
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Contrary to the preceding windows, the Gaussian window does not need any condition
on the x-direction width. It just needs σxf to be large enough so that e−2π2σ2

xf
2

is
negligible. Although σf ≥ 1 is sufficient in practice to satisfy this condition, we can
note that this term does not rigorously cancel out.

Moreover, under the small derivative assumption

ŵσx,σy

(
f − k

2π

∂φy
∂ξ

(ξ, η),−fk +
k

2π

∂φy
∂η

(ξ, η)

)
' e−2π2σ2

xf
2
e−2π2σ2

yf
2k2

(40)

ŵσx,σy

(
(k − 1)f − k

2π

∂φx
∂ξ

(ξ, η),− k

2π

∂φx
∂η

(ξ, η))

)
' e−2π2σ2

x(k−1)2f2
(41)

We can note that these terms do not depend on the phase derivatives and are numerically
negligible as soon as σxf ≥ 1 and σyf ≥ 1.

2.2.5 Discussion

Equations (22), (27), and (32) show that the window parameter should be a multiple of
the pattern pitch p = 1/f (triangular case) or of half of the pattern pitch (rectangular
case) to avoid the influence of I1(ξ, η) on the phase, hence an additional 2πfξ term in
the phase (see (21)). In the Gaussian case, this term, given by (37), cancels out as soon
as the windows width is “large” with respect to 1/f , σ larger than 1/f being practically
sufficient.

Under these conditions, the behavior with respect to the phase derivatives of, on the
one hand, (25), (30), (35), (40), and, on the other hand, (26), (31), (36), (41), suggests
that the Gaussian window should be the most able to cancel out the harmonics of the line
profile, followed by the bitriangular, triangular-rectangular, and birectangular windows,
in this order. It is also important to note that in the small derivative assumption, the
attenuation of the harmonics does not depend on the phase derivatives in the Gaussian
case, (40) and (41) having always negligible numerical values. This is not the case
for bitriangular, triangular-rectangular, and birectangular windows, where the absolute
values of (25-26), (30-31), and (35-36) increase with the phase derivatives.

In [36], it is advised to employ a triangular window with a width equal to twice the
period of the pattern. Concerning the grid method, this advice is valid under the implicit
assumption that the phases are constant inside the analysis window, as demonstrated
by our calculations.

As a last comment, let us question the main assumption of the grid method, namely
that the grid pattern is parallel to the sensor, with a pattern pitch p = 1/f perfectly
known. While it is practically a sound assumption, an imprecise experimental setting
may yield a slight rotation of the specimen about any axis within the plane defined by
the grid, leading to an out-of-plane displacement and making its surface not rigorously
parallel to the image sensor. Denoting by δp an error on the pattern pitch, this gives an
error δf on the frequency f such that p+δp = 1/(f+δf ), thus a first-order expression δf =
−δp/p2. As we can see from (1), an error δf on the frequency is equivalent to an additional
2πδfx term on the phase φx, thus an additional 2πδf term on the phase derivatives. Since

13



the alignment of the grid on the pixel rows and columns is assessed on a 1, 000 pixel -
width image, an error of δp = 0.001 pixel is realistic. With a typical value of p = 5 pixels,
this gives 2πδf = −2πδp/p

2 = −0.00025 pixel−1. This value is lower than usual phase
derivatives. While this constant term vanishes in the phase difference used to estimate
the strain component (see (5)), a larger δp error would prevent harmonics attenuation
in the case of triangular or rectangular windows. Such an error could be also caused
by geometric distortions induced by a cheap optical device, which would locally impair
the grid alignment assumption. This property also advocates for the Gaussian window
which does not require carefully setting its width.

2.3 Illustrative numerical experiment

While the theory of the preceding section was developed in the continuous case, we
expect it to be still valid in the realistic discrete case. Moreover, the quantities of
interest in experimental mechanics are not the phase and phase derivatives, but the
displacement and strain maps. The goal of this section is to illustrate the theory by a
numerical experiment. We generate 12-bit 2, 000× 500 synthetic grid images according
to the model of (1), with:

• A = 211, γ = 0.9, f = 1/6 pixel−1;

• the line profile is the sine-cubed function (giving, with the notations of Section 2.1,
d1 = −d−1 = 3/(8i), d3 = −d−3 = −1/(8i), and dk = 0 otherwise);

• φx and φy are equal to zero in the reference images, and, in the deformed image,
given by the phase maps in Figure 3, normalized such that the phase derivatives
(thus the strain maps) have a peak value of 0.005.

The resulting gray value being quantized over 12 bits, some information is irremediably
lost.

To assess the influence of the analysis window on displacement and strain map esti-
mation, we estimate the difference between the retrieved maps M̃(x) and the expected
maps. Theorem 1 claims that the expected phases and phase derivatives are the con-
volution of the actual phases and phase derivatives by the analysis window, provided
additional terms can be neglected. Under these conditions, the expected displacement
and strain maps are approximately the actual mapsM(x) convolved by the analysis win-
dow. We propose to measure the difference through the normalized root-mean-square
error defined as

NRMSE(σ) =
1

N

√
1

#Ω

∑
x∈Ω

|M̃(x)− gσ ∗M(x)|2 (42)

where Ω is the pixel domain of the maps, #Ω its cardinality, and the normalization
term N is given by

N = max
x∈Ω

{
gσ ∗M(x)

}
−min

x∈Ω

{
gσ ∗M(x)

}
(43)
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Figure 3: Synthetic phase maps for the deformed state. φx is a triangle function from
y = 950 to y = 1050 of slope 0.005, constant along the x-direction. φy is a made of a
sine wave along the x-direction whose period linearly varies between 2 pixels at y = 1
and 80 pixels at y = 2000.

For the sake of simplicity, we test analysis windows of the same width in both direc-
tions, namely, with the notations of Table 1:

• birectangular window: ra(x)ra(y)

• triangular-rectangular windows: tb(x)ra(y)

• bitriangular window tb(x)tb(y)

• Gaussian window gσ(x)gσ(y)

with a = b = 2σ, this choice being motivated by the fact that 95% of the area below a
Gaussian window is inside a [−2σ, 2σ] interval. Note that this parameter setting does not
lead to the same spatial resolution since we only focus here on harmonics attenuation,
which is not an issue related to spatial resolution. This latter point is discussed further
in the next section.

Figure 4 shows the evolution of the NRMSE as a function of σ, for each of the
displacement and strain maps evaluated as explained in Section 1.2. The behavior of the
NRMSE is as expected by the theory: it is approximately monotonous in the Gaussian
case, and it has a periodic behavior in the other cases. Its minima are attained when 2σ
is a multiple of the pattern pitch (triangular and triangular-rectangular cases), or of half
the pattern pitch (rectangular cases). We can see that the birectangular window performs
much worse than the other windows, as expected from the discussion of Section 2.2.5.
Triangular-rectangular and bitriangular windows give almost the same NRMSE (which is
logical since the derivatives of φx are equal to zero outside a narrow band), except when
estimating εxy, where triangular-rectangular windows give a larger NRMSE because of
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Figure 4: Normalized root-mean-square error for varying window sizes.

the cross derivatives. Gaussian windows always give smaller NRMSE, especially in the
case of a non-localized displacement and strain maps such as uy and εyy.

Even when the NRMSE is below 10 %, we can see in Figure 5 that periodic artifacts
are potentially clearly visible in the retrieved maps. While the chosen window size
corresponds to a minimum in the NRMSE of the birectangular window, artifacts can
be seen. As expected, these artifacts are visually much more pronounced with the
bitriangular window. They are not visible with the Gaussian window.

It is important to note that the goal here is not to retrieve the smallest NRMSE.
The NRMSE indeed measures the difference between the retrieved maps and the ground
truth convolved by the analysis windows. The decreasing of the NRMSE with the
window width only depicts the decreasing of the relative error made when approximated
the retrieved map by the convolution. However, the retrieved map is all the smoother
as the window width is larger. A compromise must be made between smoothing and
harmonics attenuation, that is why σ is often chosen equal to the pattern pitch.

Another important point is that the performances of the windows cannot be directly
compared. Because of their various shape, the a = b = 2σ rule used for Figure 4 is very
crude. The following section gives a comparison rule through the relative measurement
bias and the spatial resolution of the method.

2.4 Measurement bias and spatial resolution

Instead of comparing the NRMSE of the different windows depending on an awkward pa-
rameter, we prefer to fix one of the metrological properties of the method. Following [37]
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Figure 5: Close-up on some retrieved strain maps, with σ = 7.5. Up: εxx; Bottom:
εyy. From left to right: ground truth, birectangular window, bitriangular window, and
Gaussian window.

(see also [12]), we define the spatial resolution as “the lowest period of a sinusoidal de-
formation that the technique is able to reproduce before losing a certain percentage of
amplitude.”

As recalled in the preceding section, the obtained phases and phase derivatives are
approximately equal to the convolutions of the actual phase and the analysis window wσ.
As the transfer function of any linear filter is the Fourier transform of its impulse re-
sponse, a unitary sine wave sinf ′ of frequency f ′ along the x-direction is retrieved as a
sine wave of the same frequency and of amplitude ŵσ(f ′, 0). This is simply due to the
following calculation:

wσ ∗ sinf ′(u) =

∫∫
wσ(x, y)

e2iπf ′(u−x) − e−2iπf ′(u−x)

2i
dx dy (44)

=
1

2i

(
e−2iπf ′uŵσ(f ′, 0)− e2iπfuŵσ(−f ′, 0)

)
(45)

= ŵσ(f ′, 0) sin(2πf ′u) (46)

Consequently, the relative measurement bias [12], defined as the ratio between the
loss of amplitude and the amplitude of the reference sine function, writes:

λwσ(f ′) = 1−
∣∣ŵσ(f ′, 0)

∣∣ (47)

We can see from the properties of the Fourier transform ŵσ of any window that λwσ(f ′) ∈
[0, 1], λwσ(0) = 0, λwσ(f ′) locally decreases around 0, and λwσ(f ′) tends to 1 when f ′

tends to ∞. This means that the relative measurement bias is barely noticeable in
low-frequency components, and makes high-frequency components to vanish.

As an example, Figure 6 shows the retrieved phases for a synthetic grid image defined
as in (1) with φy made of a sine wave along the x-direction whose period linearly varies
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Figure 6: From left to right: retrieved strain component εyy for birectangular (a = 24),
bitriangular (b = 24), and Gaussian σ = 12 windows, together with a cross-section
at x = 250 (in blue, the ground truth is in red).

between 2 pixels at y = 1 and 80 pixels at y = 2000. Three analysis windows are tested.
As expected from the theory and the graphs of the attenuation functions, we can see
that high-frequency components vanish. In the case of the birectangular window, it is
also possible to see bands corresponding to the zeros of the cardinal sine (they are barely
visible in the case of the bitriangular window, e.g., around x = 400− 450), and the sign
changes between them. This means that the sign of the measured strain components
cannot even be trusted in the case of a rectangular window.

With the above-mentioned definition, the spatial resolution in the x-direction (as
well as in the y-direction for symmetric windows) is:

dwσ = inf
{
p′ > 0, such that 1− |ŵσ(1/p′, 0)| < λ∗

}
(48)

where λ∗ is the reference bias. We note that ŵσ(1/p′, 0) is not monotonous in the trian-
gular and rectangular cases, 1− |ŵσ(1/p′, 0)| = λ∗ having potentially several solutions p
for a large λ∗. In this paper, we set λ∗ = 0.1 which is below the local minima involved
by the cardinal sine function for the typical window sizes.

Except for the Gaussian case (in which we find d = π
√
−2/ log(1− λ∗)σ), no closed-

form expression can be found. A numerical estimation gives the following values of the
spatial resolution for λ∗ = 0.1:

• birectangular window ra(x)ra(y): d = a/0.1252;

• triangular-rectangular window ta(x)rb(y): in the x-direction d = a/0.1780 and in
the y-direction d = b/0.1252;
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Figure 7: Normalized root-mean-square for varying window sizes chosen in such a way
that the spatial resolution is, at a given σ value, fixed in the four cases.

• bitriangular window tb(x)tb(y): d = b/0.1780.

• Gaussian window gσ(x, y): d = σ/0.0731.

If the windows satisfy the relations a = 1.7137σ and b = 2.4366σ, then the spa-
tial resolutions of the birectangular, bitriangular, and Gaussian windows are identical.
We overcome the difficulty with the non-symmetric triangular-rectangular window by
imposing a = b and ab = 1.7137σ × 2.4366σ, i.e., a = b = 2.0434σ.

With such a normalization, it is possible to compare the NRMSE curves at a fixed
spatial resolution. The parameter of the Gaussian varies, and the a and b parameters
are governed by the preceding relations. Since they have to be integer, we actually keep
the nearest integer to the real value. This is illustrated in Figure 7. We can see that the
best compromise between spatial resolution and NRMSE is definitively attained by the
Gaussian window.

As a last remark, we can note that the spatial resolution is, in general, not isotropic
and actually depends on the direction of the considered sine wave. Equation (48) indeed
extends to

dwσ(θ) = inf
{
p′ > 0 such that 1− |ŵσ(cos(θ)/p′, sin(θ))/p′| < λ∗

}
(49)

with θ ∈ [0, π/2] (which is sufficient because of the symmetry of ŵσ) and a given λ∗, or
equivalently, dwσ(θ) = 1/f ′wσ

(θ) where

f ′wσ
(θ) = sup

{
f ′ > 0 such that 1− |ŵσ(f ′ cos(θ), f ′ sin(θ))| < λ∗

}
(50)
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Figure 8: Map of 1 − ŵσ(f ′x, f
′
y), and contour lines. From left to right and from top

to bottom: birectangular window ra(x)ra(y), triangular-rectangular window ta(x)rb(y),
bitriangular window tb(x)tb(y), and Gaussian window gσ(x, y), with a = b = 10 and σ =
5.

Among the considered windows, the Gaussian window is the only one which gives an
isotropic spatial resolution.

As an illustration, Figure 8 shows the values taken by 1 − |ŵσ(f ′x, f
′
y)| at (f ′x, f

′
y),

for ra(x)ra(y), ta(x)rb(y), tb(x)tb(y), and gσ(x, y), with a = b = 10 and σ = 5. Some
contour lines are also shown. We can verify that the contour line λ∗ = 0.1 crosses the x
and y axes in accordance with the previous numerical estimation: at f ′x = f ′y = 0.1252/a
for the birectangular windows, at f ′x = 0.1252/a and f ′y = 0.1780/b for the triangular-
rectangular window, at f ′x = f ′y = 0.1780/b for the bitriangular window, and at f ′x =
f ′y = 0.0731/σ for the Gaussian window.
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3 Noise on the phases and on the phase derivatives

This section deals with the propagation of the noise from the imaged grid to the phases
and phase derivatives, and ultimately to the displacement and strain maps. The aim
is to obtain closed-form expressions for the measurement resolution. We define here
the measurement resolution as the standard deviation of the noise in the corresponding
measurement map (phase, phase derivative, displacement or strain), as suggested in [6].
This quantity corresponds to the smallest change not likely to be caused by measurement
noise, this noise being considered as due to camera sensor noise which propagates to the
final maps. Raw images are actually affected by heteroscedastic, signal-dependent noise,
and are usually modeled as a Poisson-Gaussian random field (see, e.g., [15]). Neverthe-
less, the generalized Anscombe transform [25] permits to transform these images into
images impaired by a Gaussian white noise. While the effect of this transform on the re-
trieved displacement and strain maps still needs to be quantitatively assessed (numerical
simulations seems to indicate that it is low), we have shown in [11] that this transform
permits to experimentally assess measurement resolution expressions established under
white noise assumption in the case of Gaussian windows in [32].

As a consequence, we assume that grid images are impaired by a white noise of
variance v, even if it means that a variance stabilization transform has to be applied
beforehand. The aim is to extend the results of [32] about noise propagation to other
windows than Gaussian ones, in a framework that permits to make sound comparisons.
As we shall see, displacement and strain maps are affected by a spatially correlated
noise, whose covariance is calculated in this section. Note that, in the context of fringe
analysis in optical interferometry, an analogous calculation of the variance is available
in [35, 36], using a different approach and simplifying hypotheses.

3.1 Effect of image noise on the windowed Fourier transform

Since windowed Fourier transform is linear, a white noise n (of variance v) affecting the
grid image propagates to a complex noise n̂ on the windowed Fourier transform at (f, 0),
whose expression is:

n̂(ξ, η) =
∑
i,j

n(xi, yj)wσ(xi − ξ, yj − η)e−2iπfxi∆x∆y (51)

where (∆x,∆y) is the grid pitch in the image s (here ∆x = ∆y = 1 pixel). This means
that, in (6), the discrete formulation of Ψ is now impaired by the additive noise n̂.

Proposition 3.1 in [32] (proved by a calculation valid for Gaussian windows only)
generalizes to the following proposition:

Proposition 1 The autocovariance functions of the real and imaginary parts of n̂ are
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given by

Cov(Re(n̂(ξ, η)),Re(n̂(ξ′, η′))) ' v∆x∆y

2

·

(
wxσx ∗ w

x
σx(ξ − ξ′) +

1

2
Wwxσx

(
(ξ − ξ′)/2, 2πf

)
cos(2πf(ξ + ξ′))

)
· wyσy ∗ w

y
σy(η − η

′) (52)

Cov(Im(n̂(ξ, η)), Im(n̂(ξ′, η′))) ' v∆x∆y

2

·

(
wxσx ∗ w

x
σx(ξ − ξ′)− 1

2
Wwxσx

(
(ξ − ξ′)/2, 2πf

)
cos(2πf(ξ + ξ′))

)
· wyσy ∗ w

y
σy(η − η

′) (53)

Cov(Re(n̂(ξ, η)), Im(n̂(ξ′, η′))) ' v∆x∆y

4
· Wwxσx((ξ − ξ′)/2, 2πf) sin(2πf(ξ + ξ′)) · wyσy ∗ w

y
σy(η − η

′) (54)

where Wwσ is the Wigner-Ville transform1 of any 1D window wσ.

In this proposition, the approximations come from replacing discrete Riemann sums
with the corresponding integrals. The proof can be found in Appendix A.

The autocovariance functions are separable, but are not translation invariant because
of the trigonometric terms depending on ξ + ξ′. In addition, the autocovariance of the
real and imaginary parts of n̂ does not vanish. Rigorously speaking, these components
are thus neither stationary, nor independent. However, the Wigner-Ville transform Wtσ
is concentrated in space around the peak of wσ, and in frequency around the peak of ŵσ,
that is, around (0, 0). As a consequence, the term Wwσ((ξ − ξ′)/2, 2πf) is expected to
be negligible as soon as 2πf is “large.” How large 2πf should be depends on the analysis
window wσ.

The next section gives an estimation of the noise in the phase maps, and argue that
the Wigner-Ville term can be actually neglected for the considered windows.

3.2 Noise in the phase maps

The measured phase φ̃x(ξ) ∈ [0, 2π) writes, from (51) and (7):

φ̃x(ξ) = arctan

(
Im(Ψ(ξ, 0)) + Im(n̂(ξ))

Re(Ψ(ξ, 0)) + Re(n̂(ξ))

)
(55)

1For any real-valued function f , the Wigner-Ville transform [7, 16, 22] of f is given by Wf(x, λ) =∫
f(x+ τ/2)f(x− τ/2)e−iτλ dτ . It is a real-valued function.
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Assuming that the noise variance is low with respect to |Ψ(ξ, 0)|2, it is possible to

neglect the effect of phase jumps due to noise and to obtain an approximation of φ̃x via
a Taylor expansion of arctan. Indeed, since

arctan
(y
x

)
= arctan

(
y0

x0

)
− y0

x2
0 + y2

0

(x− x0)

+
x0

x2
0 + y2

0

(y − y0) + o (||(x− x0, y − y0)||2) (56)

and with x0 = Re(Ψ(ξ, 0)), y0 = Im(Ψ(ξ, 0)), x = Re(Ψ̃(ξ, 0)), and y = Im(Ψ̃(ξ, 0)), a

first-order approximation of φ̃x is:

φ̃x(ξ) ' angle(Ψ(ξ, 0))− Im(Ψ(ξ, 0))

|Ψ(ξ, 0)|2
Re(n̂)(ξ) +

Re(Ψ(ξ, 0))

|Ψ(ξ, 0)|2
Im(n̂)(ξ) (57)

Let us define R(ξ) = Re(Ψ(ξ, 0)), I(ξ) = Im(Ψ(ξ, 0)), A(ξ) = |Ψ(ξ, 0)|, Rn̂(ξ) =
Re(n̂(ξ)), and In̂(ξ) = Im(n̂(ξ)). With (57), the phase becomes

φ̃x(ξ) ' angle(Ψ(ξ, 0)) + ñ(ξ) (58)

where ñ(ξ) is a Gaussian random variable with mean 0 and autocovariance function :

Cov(ñ(ξ), ñ(ξ′)) =
I(ξ)I(ξ′)

A(ξ)2A(ξ′)2
Cov(Rn̂(ξ),Rn̂(ξ′))+

R(ξ)R(ξ′)

A(ξ)2A(ξ′)2
Cov(In̂(ξ), In̂(ξ′))

−
(
I(ξ)R(ξ′)

A(ξ)2A(ξ′)2
+
R(ξ)I(ξ′)

A(ξ)2A(ξ′)2

)
Cov(Rn̂(ξ), In̂(ξ′)) (59)

Let ψ(ξ) be an argument of Ψ(ξ). Since

sin(ψ(ξ, η)) sin(ψ(ξ′, η′)) cos(2πf(ξ + ξ′))− cos(ψ(ξ, η)) cos(ψ(ξ′, η′)) cos(2πf(ξ + ξ′))

− (sin(ψ(ξ, η)) cos(ψ(ξ′, η′) + cos(ψ(ξ, η)) sin(ψ(ξ′, η′)) sin(2πf(ξ + ξ′))

= − cos(2πf(ξ + ξ′)− (ψ(ξ, η) + ψ(ξ′, η′))) (60)

and:

sin(ψ(ξ, η)) sin(ψ(ξ′, η′)) + cos(ψ(ξ, η)) cos(ψ(ξ′, η′)) = cos(ψ(ξ, η)− ψ(ξ′, η′)) (61)

we obtain from Proposition 1:

Cov(ñ(ξ), ñ(ξ′)) =
v∆x∆y

2A(ξ)2A(ξ′)2

·

(
cos(ψ(ξ)− ψ(ξ′)) wx

σx ∗ w
x
σx(ξ − ξ′)

− 1

2
Wwx

σx((ξ − ξ′)/2, 2πf)· cos
(
2πf(ξ + ξ′)− (ψ(ξ) + ψ(ξ′))

))
· wy

σy ∗ w
y
σy(η − η

′) (62)
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Since the phase variations are locally limited, we can simplify cos(ψ(ξ, η)−ψ(ξ′, η′))
to 1. Moreover, it is proved in [32] that A(ξ) = |Ψ(ξ, η, 0)| is practically constant,
equal to K = |d1|γA/2. (Note that this also justifies the Taylor expansion of arctan to
obtain (56), since practically v << K2.)

The covariance of the noise thus simplifies into

Cov(ñ(ξ), ñ(ξ′)) =
v∆x∆y

2K2

(
wx
σx ∗ w

x
σx(ξ − ξ′)

− 1

2
Wwx

σx((ξ − ξ′)/2, 2πf)· cos
(
2πf(ξ + ξ′)− (ψ(ξ, η) + ψ(ξ′, η′))

))
· wy

σy ∗ w
y
σy(η − η

′) (63)

We can see that the covariance of ñ is not invariant to translations, because of the
cosine term. In other terms, the noise ñ on the phase map is not stationary. However, it
turns out that the term depending on the Wigner-Ville transform cancels out in practice.
The Wigner-Ville transform of the considered windows can be found in Table 2. Let us

write α = |ξ−ξ′|
2 . Figure 9 shows, for the considered window functions, the plots of the

ratio Wwσ(α, 2πf)/Wwσ(0, 0) as a function of αf , for several values of σf (satisfying
the conditions on the window size established in Section 2.2 for the rectangular and
triangular windows). We can see that this quantity is always smaller than a few percent
for the triangular window, and for the rectangular window as soon as af ≥ 2. It is
always numerically negligible for the Gaussian window. Since wσ ∗ wσ(0) = ||wσ||22 =
1
2Wwσ(0, 0), this means that the correlation function of ñ can be practically written as

Corr(ñ(ξ), ñ(ξ′)) =
v∆x∆y

2K2||wx
σx ||

2
2||w

y
σy ||22

· wx
σx ∗ w

x
σx(ξ − ξ′) · wy

σy ∗ w
y
σy(η − η

′) (64)

or the covariance as

Cov(ñ(ξ), ñ(ξ′)) =
v∆x∆y

2K2
wx
σx ∗ w

x
σx(ξ − ξ′)wy

σy ∗ w
y
σy(η − η

′) (65)

In particular, the variance of the noise on the phase is:

Var(ñ) =
v∆x∆y

2K2
||wx

σx ||
2
2||wy

σy ||
2
2 (66)

In these equations, the convolution of the window by itself can be obtained via the
Wigner-Ville transform with the following relation:

wσ ∗ wσ(t) =
1

2
Wwσ(t/2, 0) (67)
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Window Wigner-Ville transform

Rectangular

ra(x) = 1
2a
1[−a,a](x)

Wra(x, λ) = 1
2λa2

sin (2(a− |x|)λ)1[−a,a](x)

Wra(x, 0) = a−|x|
a2

1[−a,a](x)

Triangular

tb(x) = b−|x|
b2

1[−b,b](x)

Wtb(x, λ) =
2

b4λ2

[(
−(b− |x|) cos(2λ(b− |x|)) +

1

2λ
sin(2λ(b− |x|))

)
1[−b,b](x)

+ 2 cos(λb)

(
(b− 2|x|) cos(λ(b− 2|x|))− 1

λ
sin(λ(b− 2|x|))

)
1[−b/2,b/2](x)

]
Wtb(x, 0) = 8(b−|x|)3

3b4
1[−b,b](x)− 4(b−2|x|)3

3b4
1[−b/2,b/2](x)

Gaussian

gσ(x) = 1√
2πσ

e−x
2/(2σ2)

Wgσ(x, λ) = 1√
πσ
e−x

2/σ2−σ2λ2

Table 2: Wigner-Ville transforms of the rectangular, triangular, and Gaussian windows.
See Appendix B.

3.3 Noise in the phase derivative maps

Characterizing the noise in the derivative maps in addition to the noise in the phase
maps themselves is of prime importance in the current context. The reason is that the
mechanical response of the materials or structures, which are expected to be studied with
such contactless measuring systems, directly depends on the strain components through
the constitutive equations, and not on the displacement directly. Strains being derived
from the displacement by differentiation (see (5)), and displacement being proportional
to phase changes between reference and current images of the regularly marked deformed
surface (see 4), noise in the phase derivative maps must also be carefully studied.

Let ∂ñ
∂ξ and ∂ñ

∂η be the noise on the phase derivatives. Since these derivatives are
obtained with finite difference schemes, we identify these random fields with the mean-
square partial derivatives of the stationary random field ñ [1]. The covariance of these
random fields is the opposite of the second derivative of the covariance of ñ, as soon as
these second derivatives exist and are finite (see Corollary 2.4.1 in [1]). In this case,

Cov

(
∂ñ

∂ξ
(ξ),

∂ñ

∂ξ
(ξ′)

)
= −v∆x∆y

2K2
·
(
wx
σx ∗ w

x
σx

)′′
(ξ − ξ′)wy

σy ∗ w
y
σy(η − η

′) (68)

and:

Cov

(
∂ñ

∂ξ
(ξ),

∂ñ

∂ξ
(ξ′)

)
= −v∆x∆y

2K2
· wx

σx ∗ w
x
σx(ξ − ξ′)

(
wy
σy ∗ w

y
σy

)′′
(η − η′) (69)

where f ′′ denotes the second derivatives of any real-valued function f .
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Figure 9: Plot of Wwσ(α, 2πf)/Wwσ(0, 0) as a function of αf , for several values of σf .
From left to right: rectangular window (wσ = ra), triangular window (wσ = tb), Gaussian
window (wσ = gσ, logarithmic scale on the ordinate).

In particular, the variance on the phase derivatives writes:

Var

(
∂ñ

∂ξ
(ξ, η)

)
= −v∆x∆y

2K2
||wy

σy ||
2
2

(
wx
σx ∗ w

x
σx

)′′
(0) (70)

Var

(
∂ñ

∂η
(ξ, η)

)
= −v∆x∆y

2K2
||wx

σx ||
2
2

(
wy
σy ∗ w

y
σy

)′′
(0) (71)

3.4 Noise variance and covariance for the rectangular, triangular, and
Gaussian windows

With (wσ ∗ wσ)′′ = 1
2Wwσ( ·2 , 0)′′ and the results gathered in Table 2, we obtain the

following expressions:

• For the rectangular window,Wwσ is only differentiable in the sense of distributions,
yielding

(ra ∗ ra)′′(u) =
1

4a2
(δ−2a(u)− 2δ0(u) + δ2a(u)) (72)

This does not satisfy the hypothesis of the theorem on the differentiability of
random fields. It is thus not possible to use the continuous approach. Instead,
we have to consider the finite difference scheme which is used. The calculation is
detailed in Appendix C.

• For the triangular window:

(tb ∗ tb)′′(u) =
2

b4
(
(b− |u|/2)1[−2b,2b](u)−2(b− |u|)1[−b,b](u)

)
(73)

• For the Gaussian window:

(gσ ∗ gσ)′′(u) = − 1

4
√
πσ3

(
1− u2

2σ2

)
e−u

2/(4σ2) (74)
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Plugging these results (and the result of Appendix C for the rectangular profile)
in (65), (68), and (69), we obtain the expressions for each of the windows of interest.

In the following, we use

δ̃α(t) =

(
1− |t− α|

2∆x

)
1[α−2∆x,α+2∆x](t) (75)

and the covariance function of the stationary random variables:
C(s, t) = Cov(ñ(ξ), ñ(ξ′))

Cξ(s, t) = Cov
(
∂ñ
∂ξ (ξ), ∂ñ∂ξ (ξ′)

)
Cη(s, t) = Cov

(
∂ñ
∂η (ξ), ∂ñ∂η (ξ′)

) (76)

with (s, t) = (ξ − ξ′, η − η′).

3.4.1 Birectangular window

C(s, t) =
v∆x∆y

8K2a2
(1− |s|/(2a))(1− |t|/(2a))1[−2a,2a]×[−2a,2a](s, t) (77)

Cξ(s, t) =
v∆x∆y

32K2a3∆x
(1− |t|/(2a))(−δ̃−2a + 2δ̃0 − δ̃2a)(s)1[−2a,2a](t) (78)

Cη(s, t) =
v∆x∆y

32K2a3∆x
(1− |s|/(2a))(−δ̃−2a + 2δ̃0 − δ̃2a)(t)1[−2a,2a](s) (79)

The variance of the noise on the phase is:

Var(ñ(ξ)) =
v∆x∆y

8K2a2
(80)

The variance of the noise on the phase derivative is:

Var

(
∂ñ

∂ξ
(ξ)

)
= Var

(
∂ñ

∂η
(ξ)

)
=

v∆x∆y

16K2a3∆x
(81)

3.4.2 Triangular-rectangular window

C(s, t) =
v∆x∆y

6K2ab
(1− |t|/(2a))1[−2a,2a](t)(

2(1− |s|/(2b))3
1[−2b,2b](s)− (1− |s|/b)3

1[−b,b](s)
)

(82)

Cξ(s, t) =
v∆x∆y

2K2ab3
(1− |t|/(2a))1[−2a,2a](t)(

2(1− |s|/b)1[−b,b](s)− (1− |s|/(2b))1[−2b,2b](s)
)

(83)
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Cη(s, t) =
v∆x∆y

24K2a2b∆x
(−δ̃−2a + 2δ̃0 − δ̃2a)(t)(

2(1− |ξ − ξ′|/(2b))3
1[−2b,2b](s)− (1− |s|/b)3

1[−b,b](s)
)

(84)

The variance of the noise on the phase is:

Var(ñ(ξ)) =
v∆x∆y

6K2ab
(85)

The variance of the noise on the phase derivative is:

Var

(
∂ñ

∂ξ
(ξ)

)
=
v∆x∆y

2K2ab3
(86)

Var

(
∂ñ

∂η
(ξ)

)
=

v∆x∆y

12K2a2b∆x
(87)

3.4.3 Bitriangular window

C(s, t) =
2v∆x∆y

9K2b2

·
(
2(1− |s|/(2b))3

1[−2b,2b](s)− (1− |s|/b)3
1[−b,b](s)

)
·
(
2(1− |t|/(2b))3

1[−2b,2b](t)− (1− |t|/b)3
1[−b,b](t)

)
(88)

Cξ(s, t) =
2v∆x∆y

3K2b4

·
(
2(1− |s|/b)1[−b,b](s)− (1− |s|/(2b))1[−2b,2b](s)

)
·
(
2(1− |t|/(2b))3

1[−2b,2b](t)− (1− |t|/b)3
1[−b,b](t)

)
(89)

Cη(s, t) =
2v∆x∆y

3K2b4

·
(
2(1− |t|/b)1[−b,b](t)− (1− |t|/(2b))1[−2b,2b](t)

)
·
(
2(1− |s|/(2b))3

1[−2b,2b](s)− (1− |s|/b)3
1[−b,b](s)

)
(90)

The variance of the noise on the phase is:

Var(ñ(ξ)) =
2v∆x∆y

9K2b2
(91)

The variance of the noise on the phase derivative is:

Var

(
∂ñ

∂ξ
(ξ)

)
= Var

(
∂ñ

∂η
(ξ)

)
=

2v∆x∆y

3K2b4
(92)
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3.4.4 Gaussian window

C(s, t) =
v∆x∆y

8K2πσ2
e−s

2/(4σ2)−t2/(4σ2) (93)

Cξ(s, t) =
v∆x∆y

16πK2σ4

(
1− s2

2σ2

)
e−s

2/(2σ2)−t2/(2σ2) (94)

Cη(s, t) =
v∆x∆y

16πK2σ4

(
1− t2

2σ2

)
e−s

2/(4σ2)−t2/(4σ2) (95)

The variance of the noise on the phase is:

Var(ñ(ξ)) =
v∆x∆y

8K2πσ2
(96)

The variance of the noise on the phase derivative is:

Var

(
∂ñ

∂ξ
(ξ)

)
= Var

(
∂ñ

∂η
(ξ)

)
=

v∆x∆y

16πK2σ4
(97)

In this particular case, we obtain the same values as the ones obtained in [32] (Sec-
tions 3.2.1 and 3.2.2) by another method.

3.5 Comparison for the same spatial resolution

Since the measurement resolution can be expressed as the standard deviation of the
noise term, we are interested in comparing the noise in the measurement maps obtained
with these windows. As explained earlier in the paper, it is not obvious to compare
the results obtained for different windows because the measurement resolution and the
spatial resolution are linked. In order to compare the noise level in phase and phase
derivative maps, we adopt the same approach as in Section 2.4, that is, we compute the
noise variance for the same spatial resolution.

As in Section 2.4, this means that we express the parameters of the birectangular,
triangular-rectangular, and bitriangular windows proportionally to the parameter σ of
the Gaussian window. More explicitly, we set a = 1.7137σ for the birectangular win-
dow, a = b = 2.0434σ for the triangular-rectangular window, and b = 2.4366σ for the
bitriangular window.

Let vr, vtr, vt, and vg be the noise variance of the phase maps obtained with the
birectangular, triangular-rectangular, bitriangular, and Gaussian windows, correspond-
ing to (80), (85), (91), and (96), respectively.

A simple calculation gives:

• vr/vg = πσ2/a2, thus, vr = 1.070vg;

• vtr/vg = 4πσ2/(3ab), thus, vtr = 1.003vg;

• vt/vg = 16πσ2/(9b2), thus, vt = 0.9407vg.
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Quite surprisingly, for a given spatial resolution (but still depending on an arbi-
trary λ∗ value), the measurement resolution is nearly the same for all the windows
considered here.

Concerning the phase derivatives, (vr,ξ, vr,η), (vtr,ξ, vtr,η), (vt,ξ, vt,η), and (vg,ξ, vg,η)
denote the noise variance of the phase derivative maps obtained with the birectangular,
triangular-rectangular, bitriangular, and Gaussian windows, corresponding to (81), (86-
87), (92), and (97), respectively.

We obtain:

• vr,ξ/vg,ξ = vr,η/vg,η = πσ4/(a3∆x), thus, vr,ξ = vr,η = 0.624σ/∆xvg,η.

• vtr,ξ/vg,ξ = 8πσ4/(ab3) and
vtr,η/vg,η = 2πσ4/(3a2b∆x), thus vtr,ξ = 1.442vg,ξ and vtr,η = 0.245(σ/∆x)vg,η.

• vt,ξ/vg,ξ = vt,η/vg,η = 32πσ4/(3b4), thus, vt,ξ = 0.951vg,ξ.

Since σ = 5 pixels is a typical value, we can see that the noise variance (thus, the
squared measurement resolution) on the phase derivative is much higher for the birectan-
gular and triangular-rectangular windows, the bitriangular and Gaussian windows giving
similar values.

3.6 Numerical assessment

The goal of this section is to verify that, in spite of the necessary simplifying assumptions,
the covariance functions given in Section 3.4 are correct.

We generate synthetic grid images within the same framework as in Section 2.3, to
which we add a Gaussian white noise of standard deviation 30 gray levels, the gray-level
depth being 12 bits (such a value proved to be a realistic noise level for a real 12-bit
camera such as the Sensicam QE camera used in the experiment discussed below). We
compute the empirical covariance function for the noise on the phase and on its deriva-
tives from 5,000 noisy images independently generated in this way, for the birectangular,
triangular-rectangular, and bitriangular windows. Here, a = b = 12 and σ = 6.

Figure 10 shows the results for the birectangular window. In the covariance matrix
we can see a residual periodic oscillation in the empirical covariance which comes from
the cosine term described in Section 3.2. Although the corresponding Wigner-Ville term
is small enough to neglect its effect in the phase (the empirical covariance function does
not show any periodic fluctuation), it is not small enough to discard the effect of its
derivatives in the phase derivative maps.

Figure 11 concerns the triangular-rectangular window. Oscillatory patterns can also
be seen, once again because of the rectangular profile.

This phenomenon is no more noticeable in Figure 12 for the bitriangular window.
The covariances for the Gaussian windows are shown in Figure 13. They have been
already numerically assessed in [32]. We can conclude that in any cases, the empirical
covariance functions are in good agreement with the theoretical formula.

Figure 14 shows the retrieved strain components in an experiment involving an open-
hole specimen subjected to a tensile test. Strain map estimations with each one of the
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Figure 10: Birectangular window. From top to bottom: covariance function of the noise
on φx, covariance function of the noise on ∂φx/∂ξ, and covariance function of the noise
on ∂φx/∂η. Left: empirical covariance. Right: theoretical covariance, cf. (77-79).
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Figure 11: Triangular-rectangular window. From top to bottom: covariance function of
the noise on φx, covariance function of the noise on ∂φx/∂ξ, and covariance function of
the noise on ∂φx/∂η. Left: empirical covariance. Right: theoretical covariance, cf. (82-
84).
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Figure 12: Bitriangular window. From top to bottom: covariance function of the noise
on φx, covariance function of the noise on ∂φx/∂ξ, and covariance function of the noise
on ∂φx/∂η. Left: empirical covariance. Right: theoretical covariance, cf. (88-90).
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Figure 13: Gaussian window. From top to bottom: covariance function of the noise
on φx, covariance function of the noise on ∂φx/∂ξ, and covariance function of the noise
on ∂φx/∂η. Left: empirical covariance. Right: theoretical covariance, cf. (93-95).
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windows studied in the present article are presented. Note that the circular pattern
in the middle of the figures corresponds to the hole drilled through the specimen, the
strain values have no meaning in this region. Noise manifests itself as spurious “blobs”
in the strain maps. The shape of the blobs seen in the maps is directly governed by the
covariance (or correlation) functions established above. The smooth covariance function
given by the Gaussian window presents the advantage to give smooth blobs, instead of
sharp patterns in the other cases.

EPSXX, birectangular window

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

#10 -3

-1.5

-1

-0.5

0

0.5

1

1.5
EPSYY, birectangular window

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

#10 -3

-1.5

-1

-0.5

0

0.5

1

1.5
EPSXY, birectangular window

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

#10 -3

-1.5

-1

-0.5

0

0.5

1

1.5
EPSXX, birectangular window

200 250 300 350 400

200

220

240

260

280

300

320

340

360

380

400

#10 -3

-2

-1.5

-1

-0.5

0

0.5

1

EPSXX, triangular-rectangular window

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

#10 -3

-1.5

-1

-0.5

0

0.5

1

1.5
EPSYY, triangular-rectangular window

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

#10 -3

-1.5

-1

-0.5

0

0.5

1

1.5
EPSXY, triangular-rectangular window

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

#10 -3

-1.5

-1

-0.5

0

0.5

1

1.5
EPSXX, rectangular-triangular window

200 250 300 350 400

200

220

240

260

280

300

320

340

360

380

400

#10 -3

-2

-1.5

-1

-0.5

0

0.5

1

EPSXX, bitriangular window

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

#10 -3

-1.5

-1

-0.5

0

0.5

1

1.5
EPSYY, bitriangular window

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

#10 -3

-1.5

-1

-0.5

0

0.5

1

1.5
EPSXY, bitriangular window

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

#10 -3

-1.5

-1

-0.5

0

0.5

1

1.5
EPSXX, bitriangular window

200 250 300 350 400

200

220

240

260

280

300

320

340

360

380

400

#10 -3

-2

-1.5

-1

-0.5

0

0.5

1

EPSXX, Gaussian window

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

#10 -3

-1.5

-1

-0.5

0

0.5

1

1.5
EPSYY, Gaussian window

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

#10 -3

-1.5

-1

-0.5

0

0.5

1

1.5
EPSXY, Gaussian window

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

#10 -3

-1.5

-1

-0.5

0

0.5

1

1.5
EPSXX, Gaussian window

200 250 300 350 400

200

220

240

260

280

300

320

340

360

380

400

#10 -3

-2

-1.5

-1

-0.5

0

0.5

1

Figure 14: From left to right: strain components εxx, εyy, εxy, and close-up on εxx. From
top to bottom: birectangular (a = 10), triangular-rectangular (a = b = 10), bitriangular
(b = 10), and Gaussian window (σ = 5).
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Analysis

window

harmonics

attenuation

minimum

half-width
direction

measurement

bias

spatial

resolution

measurement

resolution

Sec. 2.4 Sec. 2.4 Sec. 3.4

Birectangular Sec. 2.2.1 a = p/2 x or y λ(f ′) = 1− |sinc(2af ′)| d = a/0.1252

√
v∆x∆y

2
√

2Ka
/

√
v∆x∆y

4Ka3/2
√

∆x

ra(x)ra(y)

Triangular-

rectangular
Sec. 2.2.2 b = p x λ(f ′) = 1− sinc2(bf ′) d = a/0.1780

√
v∆x∆y

K
√

6ab
/

√
v∆x∆y

K
√

2ab3

tb(x)ra(y) a = p/2 y λ(f ′) = 1− |sinc(2af ′)| d = b/0.1780

√
v∆x∆y

K
√

6ab
/

√
v∆x∆y

2K
√

3a2b∆x

Bitriangular Sec. 2.2.3 b = p x or y λ(f ′) = 1− sinc2(bf ′) d = b/0.1780

√
2v∆x∆y

3Kb
/

√
2v∆x∆y√

3Kb2

tb(x)tb(y)

Gaussian Sec. 2.2.4 σ = p any λ(f ′) = 1− e−2π2σ2f ′2 d = σ/0.0731

√
v∆x∆y

2
√

2πKσ
/

√
v∆x∆y

4
√
πKσ2

gσ(x)gσ(y)

Table 3: Reading guide and summary of the main results. From left to right: window,
results on the grid harmonics attenuation, minimum possible half-width (as a function
of the pattern pitch p = 1/f ; note that the support of the Gaussian function is actually
larger than 2σ), and metrological quantities (measurement bias, spatial resolution, and
measurement resolution) along x− or y−direction. Measurement resolution is given first
for the phase map, then for the phase derivative map along the considered direction.

4 Conclusion

This paper discussed the influence of the analysis window in the grid method to measure
displacement and strain fields in experimental mechanics. Four windows used in prac-
tice were assessed, namely the birectangular, triangular-rectangular, bitriangular, and
Gaussian windows. Our study dealt with several aspects of the method, in the light of
its metrological performances.

The main results and a reading guide are gathered in Table 3. First, we have seen that
harmonics of the line profile have to be canceled out. We have established a ranking of
the windows with respect to the canceling performance, from the birectangular window
to the Gaussian window which performs numerically several orders of magnitude better
than the other windows. In addition, the size of the Gaussian window does not require a
careful setting since it can take any real value greater than or equal to the grid pitch. We
have also proposed an estimation of the measurement bias and of the spatial resolution
for each of the windows. Second, we have characterized the propagation of the noise from
the imaged grid to the retrieved phases and phase derivatives. Under the simplifying
assumption, motivated by the study of the Wigner-Ville transform, that the noise on the
phase and its derivatives is stationary, we have found that, at a given spatial resolution,
the noise standard deviation, and thus the measurement resolution, was at a comparable
level for any of the windows in the phase, and that the Gaussian and bitriangular windows
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gave a similar measurement resolution concerning the phase derivatives, much lower than
those in the birectangular and triangular-rectangular cases. However, the stationarity
assumption is probably too optimistic concerning the rectangular profile because of the
slow decay of its Wigner-Ville transform. On the contrary, the fast decay of the Wigner-
Ville transform enforces this assumption in the Gaussian case. The shape of the noise
patterns is also smoother in the case of the Gaussian window. This is an important
feature for interpreting the strain maps because most details barely emerge from the
ground floor, except if a noise reduction procedure is applied beforehand [33]. In our
opinion, this discussion advocates for the use of Gaussian windows in the grid method
except in situations when very localized phenomena are to be characterized and the
noise level is low. Indeed, the Gaussian window has a minimum size which is greater
than the bi-triangular one. Therefore, the latter should probably be used in such cases.
Windows based on rectangular profiles should not be used, not only because of the slow
Wigner-Ville decay and the poor performance of the grid harmonics removal. Indeed, the
behavior of their Fourier transforms causes unwanted effects as the one shown in Figure 6.
Moreover, contrary to the other studied windows, the Gaussian window is isotropic,
which involves an isotropic measurement resolution. This is a desirable feature as we
have recently remarked that a rotation of the imaged grid with respect to the pixel grid
dramatically reduces aliasing artifacts in some cases [31]. This does not change anything
in the analysis presented here, except for the value of θ in (6) which should be adjusted
accordingly. A rotation-invariant window such as the Gaussian one is thus all the more
convenient in this case.

Acknowledgement. This work is partially funded by GdR CNRS ISIS (Timex project).

A Proof of Proposition 1

Proof. Let E be the expectation of any random variable. Since n is a white noise of
variance v, we have E(n(xi, yj)n(xk, yl)) = 0 if xi 6= xk or yj 6= yl, and = v otherwise.

By expanding the real and imaginary parts of n̂ and replacing the discrete Riemann
sums by integrals:

Cov(Re(n̂(ξ, η)),Re(n̂(ξ′, η′)))

= v
∑
i,j

wσ(xi − ξ, yj − η)wσ(xi − ξ′, yj − η′) · cos2(2πfxi)(∆x∆y)
2

' v∆x∆y

∫∫
wσ(x− ξ, y − η)wσ(x− ξ′, y − η′) cos2(2πfx) dx dy (98)

Let us define:

I(ξ, η, ξ′, η′) =

∫∫
wσ(x− ξ, y − η)wσ(x− ξ′, y − η′) cos2(2πfx) dx dy (99)
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We obtain:

I(ξ, η, ξ′, η′) =
1

2

(∫
wx
σx(x− ξ)wx

σx(x− ξ′)(1 + cos(4πfx)) dx

)
·
(∫

wy
σy(y − η)wy

σy(y − η
′) dy

)
=

1

2

(
wx
σx ∗ w

x
σx(ξ − ξ′) + Re

(
e−2iπf(ξ+ξ′)

∫
wx
σx(x− α)wx

σx(x+ α)e−4iπfx dx

))
· wy

σy ∗ w
y
σy(η − η

′) (100)

where α = (ξ − ξ′)/2.
Since the analysis window is symmetric, we have wx

σx(x − α) = wx
σx(α − x). In

addition note that∫
wx
σx(x− α)wx

σx(x+ α)e−4iπfx dx =
1

2
Wwx

σx(α, 2πf) (101)

where Wtσ is the Wigner-Ville transform of the 1D window wx
σx . Equation (52) follows.

Concerning the imaginary part of the noise:

Cov(Im(n̂(ξ, η)), Im(n̂(ξ′, η′))

' v∆x∆y

∫∫
wσ(x− ξ, y − η)wσ(x− ξ′, y − η′) sin2(2πfx) dx dy (102)

Thus, the same route as the preceding one gives (53).

Moreover,

Cov(Re(n̂(ξ, η)), Im(n̂(ξ′, η′))

' v∆x∆y

∫∫
wσ(x− ξ, y − η)wσ(x− ξ′, y − η′) sin(2πfx) cos(2πfx) dx dy

' 1

2
v∆x∆y

∫∫
wσ(x− ξ, y − η)wσ(x− ξ′, y − η′) · sin(4πfx) dx dy (103)

which gives, in a similar fashion, (54).
�

B Wigner-Ville transform of some windows

The Wigner-Ville transform of the rectangular and Gaussian windows can be found in the
literature [7, 22]. However, they sometimes contain typos. For the sake of completeness,
we give here the calculation of these transforms. We also give the calculation of the
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Wigner-Ville transform of the triangular windows, which we have not been able to find
in the available literature.

A numerical assessment is provided at the following URL:
http://www.loria.fr/~sur/software/VerifWV/

By definition, Wf(x, λ) =
∫
f(x+ τ/2)f(x− τ/2)e−iτλ dτ . Since f is symmetric,

Wf(x, λ) = 2

∫
f(τ + x)f(τ − x)e−2iτλ dτ (104)

Since Wf(−x, λ) =Wf(x, λ), we assume, without loss of generality, that x ≥ 0.

B.1 Rectangular window

Here, f = ra in Table 1. For any u ∈ [−a, a],

Wf(x, λ) =
1

2a2

∫ a−x

x−a
e−2iτλ dτ (105)

=
1

2a2λ
sin(2ξ(a− x)) (106)

Thus, for any x ∈ R,

Wf(x, λ) =
1

2a2λ
sin(2ξ(a− |x|))1[−a,a](x) (107)

The value for λ = 0 is given by a Taylor expansion, that is,

Wf(x, 0) =
a− |x|
a2

1[−a,a](x) (108)

B.2 Triangular window

Here, f = tb in Table 1:

tb(x) =
b− |x|
b2

1[−b,b](x) (109)

Moreover, if x ≥ b, Wf(x, λ) = 0.

First case. b/2 ≤ x ≤ b. We calculate successively

Wf(x, λ) = 2

∫ b−x

x−b

b− x− τ
b2

b− x+ τ

b2
e−2iτλ dτ (110)

=
2

b4

∫ b−x

x−b

(
(b− x)2 − τ2

)
e−2iτλ dτ (111)

=
2(b− x)2

b4

∫ b−x

x−b
e−2iτλ dτ − 2

b4

∫ b−x

x−b
τ2e−2iτλ dτ (112)
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On the one hand, ∫ b−x

x−b
e−2iτλ dτ = sin(2ξ(b− x))/λ (113)

On the other hand,∫ b−x

x−b
τ2e−2iτλ dτ =

(b− x)2

λ
sin(2λ(b− x)) +

1

iξ

∫ b−x

x−b
τe−2iτλ dτ (114)

=
(b− x)2

λ
sin(2λ(b− x))

+
1

iλ

(
x− b
iλ

cos(2λ(b− x)) +
1

2iλ2
sin(2λ(b− x))

)
(115)

=
(b− x)2

λ
sin(2ξ(b− x))

+
b− x
λ2

cos(2λ(b− x))− 1

2λ3
sin(2λ(b− x)) (116)

Thus,

Wf(x, λ) =
2

b4λ2

(
−(b − x) cos(2λ(b − x)) +

1

2λ
sin(2λ(b − x))

)
(117)

Second case. 0 ≤ x ≤ b/2. We calculate successively

Wf(x, λ) = 2

∫ −x
x−b

b+ x+ τ

b2
b− x+ τ

b2
e−2iτλ dτ + 2

∫ x

−x

b− x− τ
b2

b− x+ τ

b2
e−2iτλ dτ

+2

∫ b−x

x

b− x− τ
b2

b+ x− τ
b2

e−2iτλ dτ (118)

=
2

b4

∫ x

−x

(
(b− x)2 − τ2

)
e−2iτλ dτ

+
4

b4

∫ b−x

x

(
(b− τ)2 − x2

)
cos(2τλ) dτ (119)

=
2(b− x)2

b4

∫ x

−x
e−2iτλ dτ − 2

b4

∫ x

−x
τ2e−2iτλ dτ

+
4

b4

∫ b−x

x
(b− τ)2 cos(2τλ) dτ − 4x2

b4

∫ b−x

x
cos(2τλ) dτ (120)

Now, ∫ x

−x
e−2iτλ dτ = sin(2λx)/λ (121)∫ x

−x
τ2e−2iτλ dτ =

x2

λ
sin(2λx) +

x

λ2
cos(2λx)− 1

2λ3
sin(2λx) (122)

40



∫ b−x

x
cos(2τλ) dτ =

1

2λ
(sin(2λ(b− x))− sin(2λx)) (123)

∫ b−x

x
(b−τ)2 cos(2τλ) dτ =

x2

2λ
sin(2(b−x)λ)−(b− x)2

2λ
sin(2λx)+

1

λ

∫ b−x

x
(b−τ) sin(2τλ) dτ

=
x2

2λ
sin(2(b− x)λ)− (b− x)2

2λ
sin(2λx)

− x

2λ2
cos(2λ(b− x)) +

(b− x)

2λ2
cos(2λx)− 1

2λ2

∫ b−x

x
cos(2τλ) dτ

=
x2

2λ
sin(2(b− x)λ)− (b− x)2

2λ
sin(2λx)− x

2λ2
cos(2λ(b− x))

+
(b− x)

2λ2
cos(2λx)− 1

4λ3
(sin(2λ(b− x))− sin(2λx)) (124)

Consequently,

Wf(x, λ) =
2

b4λ2

(
(b− 2x) cos(2λx)− x cos(2λ(b− x))

− 1

2λ
sin(2λ(b− x)) +

1

λ
sin(2λx)

)
(125)

Conclusion. For any x ∈ R, the Wigner-Ville transform of the triangle function writes

Wf(x, λ) =
2

b4λ2

[(
− (b− |x|) cos(2λ(b− |x|))+ 1

2λ
sin(2λ(b− |x|))

)
1[−b,b](x)

+ 2 cos(λb)

(
(b− 2|x|) cos(λ(b− 2|x|))− 1

λ
sin(λ(b− 2|x|))

)
1[−b/2,b/2](x)

]
(126)

The value for λ = 0 is given by a Taylor expansion:

Wf(x, 0) =
8(b− |x|)3

3b4
1[−b,b](x)− 4(b− 2|x|)3

3b4
1[−b/2,b/2](x) (127)

B.3 Gaussian window

Note that generalized Gaussian functions give positive Wigner-Ville transform, and only
them [10]. The Wigner-Ville transform of a Gaussian function writes as follows:

Wf(x, λ) =
1

πσ2

∫
e−((τ+x)2−(τ−x)2)/(2σ2)e−2iτλ dτ (128)

=
e−x

2/σ2

πσ2

∫
e−τ

2/σ2
e−2iτλ dτ (129)

=
1√
πσ

e−x
2/σ2−λ2σ2

(130)

since the Fourier transform of e−x
2/σ2

is
√
πσe−f

2σ2/4.
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C Noise derivative with a birectangular or triangular -
rectangular window

Let X(t) be a stationary random process of covariance function C(u). For any ε > 0,

the covariance of X(t+ε)−X(t)
ε writes as follows.

Cov

(
X(t+ ε)−X(t)

ε
,
X(t′ + ε)−X(t′)

ε

)
=

1

ε2

(
Cov(X(t+ ε), X(t′ + ε)) + Cov(X(t), X(t′))− Cov(X(t+ ε), X(t′))

−Cov(X(t), X(t′ − ε))
)

=
1

ε2
(C(u)− C(u+ ε)− C(u− ε))) (131)

with u = t− t′.
When the second derivative of the covariance function C exists, this latest term

converges to −C ′′(u) as ε tends to 0. This makes it possible to define the mean-square
derivative X ′(t) of the random process X at t as soon as the second derivative exists;
the covariance function of X(t) being −C ′′(t).

This obviously generalizes to stationary random fields (see, e.g., [1]). In the case of
rectangular windows, the second derivatives do not exist. However, actual computations
do not depend on the mean-square derivatives, but instead on a finite difference scheme.

If a central difference scheme of step ∆x = 1 pixel is used to estimate the derivatives,

Cov

(
X(t+ ∆x)−X(t−∆x)

2∆x
,
X(t′ + ∆x)−X(t′ −∆x)

2∆x

)
=

1

4∆2
x

(C(u+ 2∆x)− 2C(u) + C(u+ 2∆x)) (132)

which is the opposite of the second derivative of C (in the sense of the central difference
scheme), denoted here by −∆2C. The problem is to compute the noise covariance
in the case of birectangular and triangular-rectangular windows, thus to compute the
−∆2ra ∗ ra(u) = −1

2∆2Wra(u/2, 0).
A straightforward calculation gives

−∆2ra ∗ ra(u) =
−1

8a2∆2
x

(
(∆x − |2a+ t|/2)1[−2a−2∆x,−2a+2∆x](t)

−2(∆x − |t|/2)1[−2∆x,2∆x](t) + (∆x − |2a− t|/2)1[2a−2∆x,2a+2∆x](t)
)

(133)
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and F. Hild, editors, Full-field Measurements and Identification in Solid Mechanics,
pages 61–89. Wiley, 2012.

[24] R. Moulart, R. Rotinat, F. Pierron, and G. Lerondel. On the realization of micro-
scopic grids for local strain measurement by direct interferometric photolithography.
Optics and Lasers in Engineering, 45(12):1131–1147, 2007.

[25] F. Murthagh, J.L. Starck, and A. Bijaoui. Image restoration with noise suppression
using a multiresolution support. Astronomy and astrophysics, 112:179–189, 1995.

[26] A. W. Peevers. A real time 3D signal analysis/synthesis tool based on the short
time Fourier transform. Technical report, Department of Electrical Engineering,
University of California, Berkeley, USA, 2004.

[27] F. Pierron, H. Zhu, and C. Siviour. Beyond Hopkinson’s bar. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
372(2023):20130195, 2014.

44



[28] R. Moutou Pitti, C. Badulescu, and M. Grédiac. Characterization of a cracked
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