
A Sparse Multi-Scale Algorithm for Dense Optimal Transport

Bernhard Schmitzer

CEREMADE, Université Paris-Dauphine
schmitzer@ceremade.dauphine.fr

April 19, 2016

Abstract

Discrete optimal transport solvers do not scale well on dense large problems since they do
not explicitly exploit the geometric structure of the cost function. In analogy to continuous
optimal transport, we provide a framework to verify global optimality of a discrete transport
plan locally. This allows the construction of an algorithm to solve large dense problems
by considering a sequence of sparse problems instead. The algorithm lends itself to being
combined with a hierarchical multi-scale scheme. Any existing discrete solver can be used as
internal black-box. We explicitly describe how to select the sparse sub-problems for several
cost functions, including the noisy squared Euclidean distance. A significant reduction of
run-time and memory requirements is observed.

Contents

1 Introduction 2
1.1 Background and Motivation . 2
1.2 Outline and Contribution . 3

2 Background on Optimal Transport 4

3 Optimal Transport and Short-Cuts 4
3.1 Intuition from the Continuous Case . 4
3.2 Short-Cuts . 5
3.3 Shielding Condition . 6

4 A Sparse Multi-Scale Algorithm 8
4.1 Basic Algorithm . 8
4.2 Multi-Scale Scheme . 9

5 Constructing Shielding Neighbourhoods 11
5.1 General Considerations . 12
5.2 Squared Euclidean Distance on Rˆn . 14
5.3 Strictly Convex Functions on Rˆn . 17
5.4 Squared Geodesic Distance on Sphere . 18
5.5 Noisy Cost Functions . 20

1

ar
X

iv
:1

51
0.

05
46

6v
2

 [
m

at
h.

O
C

]
 1

8
A

pr
 2

01
6

6 Numerical Experiments 21
6.1 Implementation Details . 21
6.2 Comparing Different Internal Solvers . 22
6.3 Sparsity and Number of Iterations . 23
6.4 Larger Problems . 24
6.5 Comparing Different Shielding Construction Methods 24
6.6 |x-y|ˆp for various p . 25
6.7 Noisy Costs . 26
6.8 Sphere . 27

7 Discussion and Conclusion 28

A Additional Proofs 30

References 32

1 Introduction

1.1 Background and Motivation

Optimal transport (OT) is a classical optimization problem dating back to the seminal work
of Monge and Kantorovich. Over the past decades it has been studied in great detail (see for
example [36] for a comprehensive monograph and some historical context and also [3, 30] for
helpful introductions to the subject). An important step was the polar factorization theorem
[11] on Rn for the cost being the squared Euclidean distance. Since then, this result has been
generalized to other convex functions on Rn [18], to the squared geodesic distance on Riemannian
manifolds [24] and more general costs on Riemannian manifolds [8].

OT is also a successfully and widely applied tool in image processing, computer vision and
statistics (e.g. [29, 28, 37, 12, 23, 17]). However, it is computationally more costly than ‘simple’
similarity measures such as Lp-distances or Bregman divergences. Consequently there is a need
for efficient solvers.

Broadly speaking there are two classes of solvers: There are discrete (combinatorial) algo-
rithms based on the finite dimensional linear programming formulation, such as the Hungarian
method [21], the auction algorithm [9] (a parallelized GPU implementation is described in [35]),
the network simplex [2] and more (e.g. [19]). They work for (almost) arbitrary cost functions,
and are typically numerically robust w.r.t. input data regularity. They do not scale well for
large, dense problems however, because the geometric structure of the cost function is not used.
Alternatively, there are continuous solvers, based on the polar factorization theorem and the
Monge-Ampère equation (e.g. [20, 14, 7]). These need not handle the full product space, but
work directly with a transport map and thus can solve large problems more efficiently. But they
only apply to a restricted family of cost functions (most prominently the squared Euclidean
distance) and they are numerically more subtle (e.g. involving the Jacobian of the transport
map), thus requiring some data regularity. The celebrated fluid-dynamics formulation [5] is
more flexible but introduces the additional cost of a time-dimension.

For the particular case where the cost is a metric, there are specialized efficient solvers (see
for example [22]). In addition, a wide range of approximate methods has been applied: wavelets
[34], cost function thresholding [27], tangent space approximation [37] and entropic smoothing
[15, 6] among others.

2

Multi-scale schemes have been proposed to accelerate exact solvers ([25, 32, 31, 26]). The
original problem is approximated by a sequence of successively coarser problems. Starting
from the coarsest resolution, the optimal coupling at a given scale will then provide a good
initialization for the subsequent finer level. However, [25] is limited to the case of the squared
Euclidean distance. The algorithm in [32] only uses the geometric structure of the cost implicitly
by keeping the problem sparse via hierarchical consistency checks, requiring low level adaptions
of the algorithm. The scheme presented in [26] is based on similar intuition as this article
and works very well in practice but does not provide a rigorous framework for verifying global
optimality (see Sect. 7 for a discussion).

So there is still a need for efficient discrete exact solvers that are more flexible than the
continuous solvers (both in terms of cost functions and measure regularity), but which are
still able to exploit the geometric structure of the cost function. Such an algorithm has been
presented in [31], of which the present article is an extension.

1.2 Outline and Contribution

An important feature of continuous solvers is that under suitable conditions optimality of the
transport plan can be verified by a local criterion: the transport map is the gradient of a convex
function. However, discrete solvers must check optimality globally (e.g. all dual constraints must
be verified). In this paper we develop a framework for the discrete setting to mimic the locality
property of the continuum. Local then means that we only need to look at a sparse sub-problem,
determined by the transport plan and the cost.

In Section 2 we establish notation and briefly recall some basic properties of discrete optimal
transport. In Section 3, after gathering some intuition from the continuous setting, we develop
a rigorous discrete framework for inferring global optimality of a coupling from local optimality
on a suitable sparse sub-problem. For this we introduce the notion of ‘shielding neighbourhoods’.
Based on these results, in Section 4, we design an algorithm that solves a dense problem via
a sequence of sparse sub-problems. Convergence of the algorithm and global optimality of the
resulting transport plan are proved. Any discrete OT solver can be used as internal sub-routine.
We propose to combine this algorithm with a hierarchical multi-scale scheme to obtain good
initializations and consequently low running-times. Section 5 is devoted to an important com-
ponent of the algorithm: the efficient construction of sparse shielding neighbourhoods, exploiting
the geometry of the underlying cost-function. We discuss several types of costs on Rn and also
provide an example for the sphere to underline the generality of the concept. A particularly
relevant case is the squared Euclidean distance over Cartesian grids which allows the highest
acceleration (Remark 5.6). It is shown that unlike standard continuous solvers, the discrete
method can tolerate certain types of noise and distortions of the cost. In Section 6 a series of
numerical experiments is presented to demonstrate the efficiency of the scheme. We observe
speed-ups of up to two orders of magnitude, depending on the problem class, and reduction in
memory requirements by up to three orders with state-of-the-art solver software as compared
to naively solving the dense problem, thus empirically verifying the efficiency of the multi-scale
scheme. The test problems involved both smooth as well as locally concentrated measures and
both ‘clean’ and noisy costs, thus indicating a wide range of practical applicability. A concluding
discussion is provided in Section 7.

Compared to [31], in this article we provide more details on the multi-scale scheme (Sect.
4.2) and explain how the algorithm can be applied to more general types of problems (Sect. 5):
point clouds beyond regular Cartesian grids and cost functions besides the squared Euclidean
distance are considered. Moreover, the numerical experiments have been extended (Sect. 6).

3

2 Background on Optimal Transport

Notation. For measure spaces A and B denote by P(A) the space of probability measures
over A. For a measurable map f : A → B and a measure µ ∈ P(A) we denote by f]µ ∈ P(B)
the push-forward of µ given by f]µ(σ) = µ(f−1(σ)) for measurable σ ⊂ B.

For a discrete finite set A we write |A| for its cardinality. For a measure µ ∈ P(A) its support

is defined by sptµ = {a ∈ A : µ(a) > 0}. For singletons we often just write µ(a)
def.
= µ({a}) for

a ∈ A. Write R = R∪{∞}. The space of R-valued functions over A is identified with R
|A|

where
we index the dimensions by elements of A. We write 2A for the power set of A.

For a convex function h : Rn → R we denote by ∂h(x) its sub-differential at x.

Discrete Optimal Transport. For two discrete finite sets X, Y and two probability measures
µ ∈ P(X), ν ∈ P(Y) the set of couplings is given by

Π(µ, ν) = {π∈ P(X×Y) : π({x}×Y) = µ(x), π(X×{y}) = ν(y) ∀x ∈ X, y ∈ Y } . (2.1)

For a cost function c : X×Y → R the optimal transport problem consists of finding the coupling
with minimal total transport cost:

min
π∈Π(µ,ν)

C(π) with C(π) =
∑

(x,y)∈X×Y

c(x, y)π(x, y) (2.2)

The problem is called feasible if its optimal value is finite. We call (2.2) the dense or full problem.
For some N ⊂ X × Y we also consider problem (2.2) subject to the additional constraint
sptπ ⊂ N , which we call the problem restricted to N . We call N a neighbourhood and say N
is feasible when the corresponding problem is feasible. The set of all possible neighbourhoods is
given by 2X×Y (not all of them being feasible). We will call π a local optimizer w.r.t. N if it
solves the corresponding restricted problem.

The dual problem to (2.2) is given by ([36, Chapter 5], see also [10, Chapters 4 and 7.8])

max
(α,β)∈(R|X|,R|Y |)

∑
x∈X

α(x)µ(x) +
∑
y∈Y

β(y) ν(y) (2.3a)

subject to α(x) + β(y) ≤ c(x, y) for all (x, y) ∈ X × Y . (2.3b)

The relation between any primal and dual optimizers π and (α, β) of the same transport
problem is

π(x, y) > 0 ⇒ α(x) + β(y) = c(x, y) . (2.4)

Restricting the primal problem toN corresponds to only enforcing the dual constraints (2.3b)
onN . Analogously we speak of local dual optimizers (α, β) w.r.tN . If (π, (α, β)) are local primal
and dual optimizers and (α, β) satisfy (2.3b) on X × Y , then one has found optimizers for the
full problem.

One goal of this paper is to find suitable small subsets N such that the local optimizers
(π, (α, β)) w.r.t. N are also optimal for the full problem.

3 Optimal Transport and Short-Cuts

3.1 Intuition from the Continuous Case

The discrete algorithm we present in this article is inspired by continuous optimal transport.
Let us therefore recall some well-known results from the continuous setting.

4

Ui ⊂ X

V
i
⊂
Y

(x, y = T (x))

(a)

xA

y B

(b)

Figure 1: (a): For absolutely continuous measures on X = Y = Rn and the squared Euclidean
distance as cost, the optimal transport plan will live on the graph of a map T : X → Y , which
is the gradient of a convex potential ϕ : X 7→ R. In the continuous case it suffices to check
whether T is optimal on each of the patches Ui × Vi. Global optimality then follows. (b): As
a discrete analogy we introduce the concept of short-cuts. The dual constraint at (xA, yB) is
implied by combining a suitable sequence (solid red line) of local constraints in N (green) and
active constraints in sptπ (blue).

Let µ, ν be Lebesgue absolutely continuous measures on Rn with compact, convex support.
Consider the continuous optimal transport problem between µ and ν w.r.t. the cost c(x, y) =
|x − y|2. Then by virtue of Brenier’s celebrated polar factorization theorem [11] we know that
the optimal coupling is induced by a map which is the gradient of a convex function. Conversely,
when a transport map is shown to be the gradient of a convex function then it is optimal.

Let now T be any transport map, T]µ = ν, with induced coupling π = (id, T)]µ (see for
example [36, Def. 1.2]). For simplicity let T be a homeomorphism. We want to verify optimality
of T . Let {Ui}i be an open covering of sptµ. Then {Vi}i with Vi = T (Ui) is an open covering
of spt ν. Let µ|Ui and ν|Vi be the restrictions of the measure µ to Ui and ν to Vi. Then T is
also a transport map between µ|Ui and ν|Vi for all i. If T is optimal for each restricted problem
on Ui × Vi then optimality for the whole problem follows: when we know that T is the gradient
of a convex function on each Ui, by convexity of sptµ it follows that T is the gradient of a
convex function on sptµ and thus is the optimal transport map. Since the patches Ui can be
made arbitrarily small, optimality of a coupling π can be verified on an arbitrary small open
environment of sptπ on (Rn)2. This is illustrated in Fig. 1a.

The Monge property [13] is a simple discrete analogy in one dimension: one only needs to
check whether two neighbours in X can save costs by swapping mass. If there are no such
neighbours then the coupling is optimal. In this paper we strive to find a discrete equivalent
for higher-dimensional problems. We will return to this discussion for a brief comparison in
Sect. 5.2, Remark 5.7.

3.2 Short-Cuts

Now we introduce the concept of short-cuts, a tool to temporarily remove constraints from the
dual problem: dual constraints for which a short-cut exists need no longer be checked (see Fig. 1b

5

for an illustration).

Definition 3.1 (Short-Cut). For a neighbourhood N ⊂ X × Y and a coupling π with sptπ ⊂
N let ((x2, y2), . . . , (xn−1, yn−1)) be an ordered tuple of pairs in sptπ. We say ((x2, y2), . . . ,
(xn−1, yn−1)) is a short-cut for (x1, yn) ∈ X × Y if (xi, yi+1) ∈ N for i = 1, . . . , n− 1 and

c(x1, yn) ≥ c(x1, y2) +

n−1∑
i=2

[c(xi, yi+1)− c(xi, yi)] . (3.1)

Proposition 3.2. For a set N ⊂ X × Y let (π, (α, β)) be a pair of local primal and dual
optimizers. Assume for a pair (x1, yn) /∈ N there exists a short-cut within N . Then the dual
constraint (2.3b) corresponding to (x1, yn) is satisfied.

Proof. Let ((x2, y2), . . . , (xn−1, yn−1)) be a short-cut. From (2.3b) restricted to N and (2.4) we
find

β(yi+1) ≤ c(xi, yi+1)− α(xi) for i = 1, . . . , n− 1 ,

−β(yi) = −c(xi, yi) + α(xi) for i = 2, . . . , n− 1

and by summing these up one gets

α(x1) + β(yn) ≤ c(x1, y2) +
n−1∑
i=2

[c(xi, yi+1)− c(xi, yi)] .

Validity of the dual constraint corresponding to (x1, yn) follows from (3.1).

So is there a clever way to choose a small set N such that there is a short-cut for every
(x, y) /∈ N ? But explicitly checking existence of short-cuts for each pair is far too expensive. In
the next section introduce a simple sufficient condition for the existence of short-cuts.

3.3 Shielding Condition

The shielding condition is a local criterion to ensure existence of short-cuts. This eventually
allows the verification of global optimality via local optimality. The shielding condition is illus-
trated in Fig. 2.

Definition 3.3 (Shielding Condition). Let xA ∈ X, (x, y) ∈ X×Y and yB ∈ Y . We say (xs, ys)
shields xA from yB when

c(xA, yB)− c(xs, yB) > c(xA, ys)− c(xs, ys) . (3.2)

The shielding condition states that {(xA, ys), (xs, yB)} is (‘strictly’) c-cyclically monotone
[36, Chap. 5]. It implies that suitable n-tuples in sptπ are in fact short-cuts.

Proposition 3.4. For a given coupling π let (x1, yn) ∈ X × Y and ((x2, y2), . . . , (xn−1, yn−1))
be an ordered tuple in sptπ. If (xi, yi+1) ∈ N for i = 1, . . . , n − 1 and (xi+1, yi+1) shields xi
from yn for i = 1, . . . , n− 2 then the tuple is a short-cut for (x1, yn).

Proof. We need to show that (3.1) holds. For i = 1, . . . , n− 2 we have from (3.2)

c(xi, yn)− c(xi+1, yn) > c(xi, yi+1)− c(xi+1, yi+1) .

Summing up yields c(x1, yn) >
∑n−2

i=1 [c(xi, yi+1)− c(xi+1, yi+1)] + c(xn−1, yn).

6

xA
y B

xs
y s

+

+ −

+

Figure 2: Discrete transport problem: sptπ (dark blue) and local neighbourhood N (green).
When (xA, yB) is shielded by (xs, ys) (indicated by red and blue circles) then the constraint
(xA, yB) is implied by the constraints (xA, ys), (xs, ys) and (xs, yB). Thus the problem of finding
a short-cut for (xA, yB) is reduced to the problem of finding a short-cut for (xs, yB). If this can
be repeated for all xs, eventually the constraint (xA, yB) is implied by constraints in N alone.

We now introduce a sufficient condition for a set N such that short-cuts exist for all (x, y) /∈
N .

Definition 3.5 (Shielding Neighbourhood). For a given coupling π we say that a neighbourhood
N ⊂ X×Y , N ⊃ sptπ is shielding if for every pair (xA, yB) ∈ X×Y at least one of the following
is true:

(i) (xA, yB) ∈ N .

(ii) There exists some (xs, ys) ∈ sptπ with (xA, ys) ∈ N such that (xs, ys) shields xA from yB.

Proposition 3.6 (Existence of Short-Cuts). For a given coupling π let N be a shielding neigh-
bourhood. Then there exists a short-cut for every (xA, yB) ∈ (X × Y) \ N .

For the proof we use the following auxiliary algorithm.

Algorithm 3.7. Input: (N , π) as specified in Proposition 3.6, (xA, yB) ∈ (X×Y)\N . Output:
short-cut for (xA, yB).

n← 1; x1 ← xA
while (xn, yB) /∈ N:

find (xn+1, yn+1) ∈ sptπ with (xn, yn+1) ∈ N such that \
(xn+1, yn+1) shields xn from yB

n← n+ 1
return ((x2, y2), . . . , (xn, yn))

Remark 3.8 (Pseudo-Code Syntax). The pseudo-code syntax used in this article is based on
Python, combined with mathematical expressions e.g. for set construction. x← y denotes value
assignment to variables.

Proof of Proposition 3.6. We show that Algorithm 3.7 always terminates and returns a valid
short-cut for any pair (xA, yB) /∈ N .

By virtue of Definition 3.5 in each iteration either the while-loop terminates or there exists
a suitable pair (xn+1, yn+1) ∈ sptπ shielding xn from yB. Since the number of elements in sptπ

7

is finite, either the loop eventually terminates or a cycle occurs. Assume we had found a cycle,
i.e. (xi, yi) = (xk, yk) for some i > 1, k ≥ i + 1. By adding up the shielding condition (3.2)
around the cycle we find:

k−1∑
j=i

[c(xj , yj+1)− c(xj+1, yj+1)] <
k−1∑
j=i

[c(xj , yB)− c(xj+1, yB)]

= c(xi, yB)− c(xk, yB) = 0

Let (α, β) be any pair of corresponding local dual optimizers. The dual constraints (2.3b) on N
and the primal-dual relation (2.4) imply:

0 =

k−1∑
j=i

[α(xj)− α(xj+1)] ≤
k−1∑
j=i

[(
c(xj , yj+1)− β(yj+1)

)
−
(
c(xj+1, yj+1)− β(yj+1)

)]
=

k−1∑
j=i

[c(xj , yj+1)− c(xj+1, yj+1)]

This contradiction implies that no cycles occur and the algorithm eventually terminates.
Once the iteration is terminated, Proposition 3.4 provides that ((x2, y2), . . . , (xn−1, yn−1)) is

a short-cut for (xA, yB).

Remark 3.9. Note that the strict inequality in (3.2) is merely required to guarantee termination
of Algorithm 3.7. Proposition 3.4 already follows from ≥ in (3.2).

We emphasize that Algorithm 3.7 is not intended to be run to find short-cuts. This would
be immensely more expensive than directly checking the corresponding dual constraint. It is
merely a tool for the proof. We now summarize:

Corollary 3.10 (Global Optimality from Local Optimality). Let π be a local primal optimizer
for a given feasible neighbourhood N and let N be shielding for π. Then π is globally optimal.

Proof. Let (α, β) be any local dual optimizers w.r.t. N . From Proposition 3.6 follows existence
of short-cuts for all dual constraints not covered by N and by Proposition 3.2 follows that (α, β)
are globally dual feasible. Due to strong duality of linear programs, π and (α, β) have vanishing
duality gap, therefore (π, (α, β)) are global primal and dual optimizers.

4 A Sparse Multi-Scale Algorithm

4.1 Basic Algorithm

Corollary 3.10 can be used to construct an efficient sparse algorithm for large OT problems.
The main ingredients of the algorithm are two maps:

(i) solveLocal : 2X×Y → Π(µ, ν) such that for N ∈ 2X×Y the coupling solveLocal(N) is
locally primal optimal w.r.t. N . When N is sparse, any discrete OT solver can quickly
provide an answer.

(ii) shield : Π(µ, ν) → 2X×Y such that for π ∈ Π(µ, ν) the neighbourhood shield(π) is
shielding for π. It is important for efficiency that shield(π) is sparse. To design such a
map one must use the geometric structure of the cost function. In Sect. 5 we discuss how
to implement shield for several costs.

8

Corollary 3.10 entails a ‘chicken and egg’-problem: For a given N1 let π2 = solveLocal(N1).
But if π2 is not globally optimal, then N1 cannot be shielding w.r.t. π2. Conversely, for some π2

let N2 = shield(π2), but π2 will only be locally optimal w.r.t. N2 if it is globally optimal. To
find a configuration (N , π) such that both criteria are satisfied simultaneously, one can iterate
both maps.

Algorithm 4.1 (solveSparse). Input: initial feasible neighbourhood N1. Output: global opti-
mizer π, neighbourhood N which is shielding for π.

k ← 1
do:

πk+1 ← solveLocal(Nk); Nk+1 ← shield(πk+1); k ← k + 1
until (k > 2) and (C(πk) = C(πk−1))
return (πk,Nk)

Proposition 4.2. For a feasible initial neighbourhood N1 Algorithm 4.1 terminates after a finite
number of iterations and returns a global primal optimizer.

Proof. For k > 1 have Nk = shield(πk) and πk+1 = solveLocal(Nk). So sptπk ⊂ Nk and
therefore πk is a feasible coupling when computing the optimal πk+1, with support restricted to
Nk. It follows C(πk+1) ≤ C(πk). Since the problem is finite-dimensional one must eventually
find C(πk+1) = C(πk) and the algorithm terminates. Then πk is locally optimal w.r.t. Nk and
by construction Nk is shielding for πk. Consequently πk and πk+1 are globally optimal.

We have rigorously established that Algorithm 4.1 does terminate and return a global opti-
mizer. In Sect. 6 we will demonstrate numerically that under two conditions it is in fact very
efficient:

(i) As mentioned earlier, when Nk is sparse, calling the solver to compute the next coupling
πk+1 ← solveLocal(Nk) will be fast. In Sect. 5 we will show how to implement shield

for several costs.

(ii) When the initial guess N1 is good, only few iterations will be required. In Sect. 4.2 we
present a heuristic multi-scale scheme that works well in practice.

4.2 Multi-Scale Scheme

The purpose of Algorithm 4.1 is to accelerate the solving of large problems by starting from a
smart initial guess for the sparse neighbourhood and then quickly solving a sequence of sparse
problems until convergence instead of trying to solve the dense problem directly. As in [25, 32, 26]
we approximate the original problem by multiple levels of successively coarser problems and
then solve the original problem from coarse to fine. At each resolution we use the support of
the optimal coupling as initialization N1 at the subsequent finer scale.

It is verified empirically that this heuristic scheme works well in practice (see [25, 32, 26]
and Section 6). Note however that we do not make any rigorous claims on the computational
efficiency of it. See Sect. 7 for a discussion of the computational complexity.

We now describe the multi-scale scheme in some more detail.

Definition 4.3 (Hierarchical Partition and Multi-Scale Measure Approximation [32]). For a
discrete set X a hierarchical partition is an ordered tuple (X0, . . . ,XK) of partitions of X where
X0 = {{x} : x ∈ X} is the trivial partition of X into singletons and each subsequent level is

9

generated by merging cells from the previous level, i.e. for k ∈ {1, . . . ,K} and any x ∈ Xk there
exists some X̂ ⊂ Xk−1 such that x =

⋃
x̂∈X̂ x̂. For simplicity we assume that the coarsest level

is the trivial partition into one set: XK = {X}. We call K > 0 the depth of X .
This implies a directed tree graph with vertex set

⋃K
k′=0Xk′ and for k ∈ {1, . . . ,K} we say

x′ ∈ Xj , j < k, is a descendant of x ∈ Xk when x′ ⊂ x. We call x′ a child of x for j = k − 1,
and a leaf for j = 0.

For some µ ∈ P(X) its multi-scale measure approximation is the tuple (µ0, . . . , µK) of prob-
ability measures µk ∈ P(Xk) defined by µk(X̂) = µ(

⋃
x∈X̂ x) for all subsets X̂ ⊂ Xk and

k = 0, . . .K.
For convenience we often identify X with the finest partition level X0, the set of singletons,

and µ with µ0.

In the examples discussed in this article X and Y are point clouds in Rn and the cost c is
originally defined on the full continuous space Rn×Rn. We use hierarchical 2n-trees as partitions
(some minor adaptions are necessary for the sphere discussed in Sect. 5.4).

Definition 4.4 (Hierarchical 2n-trees and Hierarchical Costs). For a given finite point cloud
X ⊂ Rn and a desired depth K > 0 we first choose an axis-aligned hypercube QK ⊂ Rn that
contains X. Correspondingly we set the coarsest partition layer to XK = {X}. Then we divide
QK into 2n equal-sized smaller cubes {QK−1,i}i parallel to the axes and set the corresponding
partition layer to XK−1 = {X ∩ QK−1,i}i. Empty cubes may be ignored. We repeat this
recursively until level 1 is reached. Then we add the layer of singletons X0 = {{x} : x ∈ X}.
Clearly this produces a valid hierarchical partition (X0, . . . ,XK) of X.

Moreover, for each cube Qk,i and the corresponding cell xi ∈ Xk at some partition level
k > 0 we define the representative rep(xi) as the center of Qk,i and the radius rad(xi) as half of
the diameter of Qk,i such that

for all x ∈ Qk,i have |rep(xi)− x| ≤ rad(xi) . (4.1)

For k = 0 we define for each x ∈ X, i.e. {x} ∈ X0, rep({x}) = x and rad({x}) = 0.
We can now use the representatives to define a hierarchical cost function: for a cost function

c : Rn × Rn → R and two hierarchical 2n- trees (X0, . . . ,XK) and (Y0, . . . ,YK) let

ck : Xk × Yk → R, ck(x,y) = c(rep(x), rep(y)) . (4.2)

The radius will be useful for efficient construction of shielding neighbourhoods in Sect. 5.

Now the necessary ingredients are prepared to formally define the multi-scale variant of a
discrete optimal transport problem.

Definition 4.5 (Multi-Scale Representation of Optimal Transport Problem). Let X, Y be finite
sets and µ ∈ P(X), ν ∈ P(Y). Let (X0, . . . ,XK) and (Y0, . . . ,YK) be hierarchical partitions
of X and Y with equal depth K, let (µ0, . . . , µK) and (ν0, . . . , νK) be multi-scale measure
approximations of µ and ν over the hierarchical partitions and let (c0, . . . , cK) be a tuple of cost
functions ck : Xk × Yk → R, k = 0, . . . ,K.

Then for k = 0, . . . ,K we refer to the optimization problems (2.2) and (2.3) for the sets Xk,
Yk, the marginals µk, νk and the cost ck as the approximate problems at scale k.

Note that the problem at scale k = 0 is identical to the original problem.

Finally, we describe how the sparse iterative Algorithm 4.1 is combined with the multi-scale
scheme.

10

Algorithm 4.6 (solveMultiScale). Input: multi-scale OT problem. Output: global optimizer
of original problem. Notes: solveDense(k) refers to solving the dense problem at scale k,
solveSparse(k,N1) refers to calling Algorithm 4.1 at scale k with initial neighbourhood N1.
(We are only interested in the optimal coupling π and neglect the final shielding neighbourhood,
which is also returned by solveSparse.)

k ← K
π ← solveDense(k)
while k > 0:

k ← k − 1
N1 ← {}
for (x, y) ∈ sptπ:
N1 ← N1 ∪ (children(x)× children(y))

π ← solveSparse(k,N1)
return π

Remark 4.7 (Validity of Algorithm 4.6). For finite costs c <∞ it is easy to see that the initial
N1 constructed by Algorithm 4.6 are feasible and global optimality of the final coupling π is
inherited from Algorithm 4.1.

If the cost can be infinite, there is no trivial relation between feasibility on different scales,
as it depends on how mass will be distributed within the refined cells. In practice, potential
infeasibility can be detected by adding ‘overflow’ bins with a sufficiently high finite cost.

Remark 4.8 (Choice of Hierarchical Cost Function). The choice how to define the hierarchical
cost at coarser scales depends on the used algorithm. In [32] the cost of a cell was defined
recursively by taking the minimum over the cost of its children. In this way, dual feasibility on
the coarse scale implied dual feasibility on the refined scale, enabling the efficient localization of
violated constraints.

Here we follow a different approach: In Definition 4.4 we assigned a representative to each
partition cell and defined the hierarchical cost by evaluating an underlying continuous cost at the
representatives. This is important for solving the problems at coarser levels in Algorithm 4.6.
As will be discussed in Sect. 5, the geometry of the problem is a key ingredient to constructing
shielding neighbourhoods. Hence, we must make sure that the coarser problems still look like
transport problems on the same underlying continuous space. With the given setup, when
solving the problem at scale k > 0, we can just forget about all levels 0 ≤ i < k and pretend the
finest level is given by the point clouds {rep(x) : x ∈ Xk} and {rep(y) : y ∈ Yk}.

Hence, from now on we can always assume to solve the finest layer.

5 Constructing Shielding Neighbourhoods

The concepts of Section 3 have been formulated for general cost functions. For the execution
of solveSparse, Algorithm 4.1, we need a function shield that efficiently generates a sparse
shielding neighbourhood for a given coupling. This is where the particular geometric structure
of the cost function must be exploited.

In this Section we discuss how shield can be designed for different types of ground costs.
We start by describing the general outline in Sect. 5.1. The particularly important case of the
squared Euclidean distance on Rn is treated in Sect. 5.2 and the concept of short-cuts is applied
to the continuous setting. In Sect. 5.3 we consider more general strictly convex functions on Rn

and provide explicit formulas for the p-th power of the Euclidean distance. To demonstrate the

11

generality of the concept, in Sect. 5.4, we look at the squared geodesic distance on the sphere.
The extension to noisy and distorted variants of the above costs is discussed in Sect. 5.5.

For the squared Euclidean distance we give a rigorous bound on the cardinality of the con-
structed neighbourhood N (Proposition 5.3), showing that it will indeed be sparse. For the
other cases we provide analogous intuitive arguments.

Different cost functions require different approximation techniques. Hence, this Section
cannot be exhaustive and cover all possible costs. Instead we cover several important cases. By
describing the underlying ideas and strategy we hope to enable the reader to transfer the results
to other suitable cost functions.

5.1 General Considerations

The Basic Algorithm. We now describe the general strategy for constructing shielding neigh-
bourhoods for a given coupling π. Let us first give an informal description. We start by setting
N = sptπ (which is assumed to be sparse) and then try to add a small set of entries to make N
shielding for π. The idea is to find for each xA ∈ X a suitably chosen small set of ‘shielding can-
didates’ {(xs,i, ys,i)}i ⊂ sptπ such that ‘almost all’ yB ∈ Y will be shielded from xA by one of the
candidates. Then, per xA, we only need to add a few elements to N and N will remain sparse.
From the brief review of the continuous setting in Sect. 3.1 we conjecture that it is reasonable
that the X-part of the shielding candidates should form a small geometric neighbourhood of xA
in X to mimic the sets Ui. So for each xA ∈ X we fix a ‘shielding candidate set’ S(xA) ⊂ X
which contains a small ‘discrete neighbourhood’ around xA. We will briefly comment on this
choice for each cost in the subsequent sections.

Moreover, for any xs ∈ S(xA) we need to find an element ys ∈ Y such that (xs, ys) ∈ sptπ. To
achieve this, from a given coupling π we will extract a map t : X → Y such that (x, t(x)) ∈ sptπ
for all x ∈ X. Of course, in a discrete setting such a map t need neither be injective nor
surjective. However, this is not required for the functionality of the algorithm. Note that the
extraction of the map can be performed efficiently, even for large problems, when π is stored in
a suitable sparse data structure.

After having established the sets S(xA) and the map t the algorithm can be stated more
formally:

Algorithm 5.1 (shield). Input: a coupling π. Output: a shielding neighbourhood N .
N ← sptπ
from π extract map t : X → Y such that (x, t(x)) ∈ sptπ for all x ∈ X (step-i)
for xA ∈ X:

N ← N ∪ {(xA, t(xs)) : xs ∈ S(xA)} (step-ii)
Ŷ ← {yB ∈ Y : yB is not shielded from xA by \

(xs, t(xs)) for any xs ∈ S(xA)} (step-iii)
N ← N ∪ {(xA, yB) : yB ∈ Ŷ }

return N

It is easy to verify that for a given coupling π this algorithm does indeed produce a valid
shielding neighbourhood N .

Determining Ŷ . Since (step-iii) is within the loop over xA ∈ X it would be inefficient to
naively iterate over all yB ∈ Y and having to check the shielding condition explicitly for each
pair (xA, yB) ∈ X × Y and shielding candidate (xs, t(xs)). Instead we will determine the set

12

Ŷ in a hierarchical way, making use of the hierarchical structure introduced in Sect. 4.2. Let
(xA, xs, ys) ∈ X ×X × Y be a triplet with xs ∈ S(X), (xs, ys) ∈ sptπ. Introduce the family of
functions

ψ(x1,x2)(y) = c(x1, y)− c(x2, y) . (5.1)

Then xA is shielded from yB by (xs, ys) precisely if (see (3.2))

ψ(xA,xs)(yB) > ψ(xA,xs)(ys) . (5.2)

Let now (Y0, . . . ,YK) be a hierarchical partition over Y . Assume we are given a hierarchical
lower bound ψ̂(xA,xs) of ψ(xA,xs) on

⋃K
k=0 Yk as follows:

ψ̂(xA,xs)({y}) def.
= ψ(xA,xs)(y) for y ∈ Y, i.e. {y} ∈ Y0 , (5.3a)

ψ̂(xA,xs)(y) ≤ ψ(xA,xs)(y) for y ∈ Yk, k > 0, y ∈ y . (5.3b)

So when

ψ̂(xA,xs)(y) > ψ(xA,xs)(ys) (5.4)

then all leaves of y are shielded from xA by (xs, ys). Consequently one can determine Ŷ by doing
a coarse-to-fine check of (5.4) over the hierarchical partition of Y . We start at the coarse nodes
and if the check fails recursively perform the test at finer levels until eventually the test succeeds
or some leaves must be added to Ŷ . This is more formally described by the next algorithm:

Algorithm 5.2 (searchTree). Input: xA ∈ X, set of shielding candidates {(xs,i, ys,i)}i, current
level k ∈ {0, . . . ,K}, current root cell y ∈ Yk. Output: set of missed elements Ŷ that are leaves
of y. Notes: searchTree(xA, {(xs,i, ys,i)}i, k,y) refers to recursively calling this algorithm again
with different parameters.

Ŷ ← {}
if (ψ̂(xA,xs)(y) ≤ ψ(xA,xs)(ys) for all (xs, ys) ∈ {(xs,i, ys,i)}i):

if k = 0:
Ŷ ← Ŷ ∪ y

if k > 0:
for y′ ∈ children(y):

Ŷ ← Ŷ ∪ searchTree(xA, {(xs,i, ys,i)}i, k − 1,y′)
return Ŷ

Calling this algorithm with the initial parameters (xA, {(xs, t(xs)) : xs ∈ S(xA)},K, Y) then
returns the set Ŷ as desired (recall that we defined YK = {Y }, Definition 4.3). We will numeri-
cally verify that this hierarchical search requires significantly less calls than a naive dense search
(see Fig. 10b).

We are now prepared to discuss various types of cost functions in more detail. We elaborate
on how to choose S(·) such that we expect sparse sets Ŷ and give explicit formulas for the bound
ψ̂(·,·). In the following Sections we assume that X and Y are discrete point clouds in Rn, and
there is a cost defined on the full continuous space c : Rn × Rn → R. As specified in Definition
4.4 (X0, . . . ,XK) and (Y0, . . . ,YK) are hierarchical 2n-trees over X and Y with representatives,
radii and a corresponding hierarchical cost function. For Sect. 5.4 we need to make some minor
adaptions to the Riemannian setting.

13

xA
x1

x2

x3

x4

t(x1)

t(x2)

t(x3)

t(x4)

Figure 3: Illustrating the shielding condition for the squared Euclidean distance. Left: A point
xA ∈ X with four points {x1, x2, x3, x4} = S(xA). Right: Point cloud Y (black dots), the
faces of the polytope P (blue line) go through the points t(xi) with outward normals xi − xA,
i = 1, . . . , 4 (red arrows). xA is shielded from all points outside of P (green area) by some
(xi, t(xi)), xi ∈ S(xA).

5.2 Squared Euclidean Distance on Rn

The squared Euclidean distance is perhaps the most prominent cost for optimal transport. It
also allows a particularly simple geometric interpretation of the shielding condition.

In this section let c(x, y) = |x− y|2. Then the shielding condition (3.2), see also (5.2), for a
triplet xA, (xs, ys) and yB is equivalent to

ψ(xA,xs)(yB)− ψ(xA,xs)(ys) > 0 ⇔ 〈xs − xA, yB − ys〉 > 0 . (5.5)

Consider the hyperplane through ys, normal to xs − xA. Then (xs, ys) shields xA from all yB
that lie on the side facing in direction xs − xA. For a given xA ∈ X the set of points y ∈ Rn for
which (5.5) is false for all {(xs, ys = t(xs)) : xs ∈ S(xA)} is given by the polytope P with faces
through ys and outward normals xs − xA. Then Ŷ = P ∩ Y (for the map t and the set Ŷ see
Algorithm 5.1, step-i and step-iii). An illustration of this is given in Fig. 3.

The next proposition formalizes that under ‘plausible’ regularity assumptions on X, Y and
the current coupling candidate π the cardinality of Ŷ is O(1) w.r.t. the cardinality of Y and thus
the cardinality of the generated shielding neighbourhood will be O(|X|) (as long as |S(xA)| =
O(1)).

Proposition 5.3 (Bound on Cardinality of Ŷ). Let X and Y ⊂ Rn be finite sets, π a coupling
on P(X × Y) and S : X → 2X be an assignment of shielding candidate sets that satisfy:

(i) There is a constant q ∈ (0, 1] such that for every xA ∈ X and any v ∈ Rn there is some
xs ∈ S(xA) such that

〈v, xs − xA〉 ≥ |v| · |xs − xA| · q . (5.6)

q can be interpreted as the cosine of the half of the maximal angle between any two x1−xA
and x2 − xA for x1, x2 ∈ S(xA).

(ii) There is a bound 0 < D < ∞ such that for any xA ∈ X and any xs ∈ S(xA) we have
|xA − xs| < D.

14

(iii) There is a constant 0 < ρ < ∞ such that for any ball BR ⊂ Rn of radius R > 0 we have
|Y ∩BR| ≤ ρ · voln(BR). Where voln(BR) gives the n-dimensional volume of the ball. The
constant ρ can be interpreted as an approximate upper bound on the point density in Y .

(iv) The coupling π is spatially regular in the sense that one can extract a map t from π
(cf. Algorithm 5.1, step-i) such that there is a constant 0 < L <∞ with |t(x1)− t(x2)| ≤
L · |x1 − x2| for all x1, x2 ∈ X.

Then there is a constant 0 < C <∞ such that Ŷ < C for all xA ∈ X.

Proof. Let t be a map extracted from π with Lipschitz constant L < ∞. For a given xA and
any yB ∈ Rn there is some xs ∈ S(xA) such that

〈yB − t(xs), xs − xA〉 = 〈yB − t(xA) + t(xA)− t(xs), xs − xA〉
(i),(iv)

≥ |yB − t(xA)| · |xs − xA| · q − L |xs − xA|2
(ii)

≥ (|yB − t(xA)| · q − L ·D) · |xs − xA|

So for |yB− t(xA)| > L ·D/q this is necessarily positive and thus the polytope P of yP for which
no shield exists must be contained in the closed ball B(L ·D/q, t(xA)) of radius L ·D/q around
t(xA). Consequently, by (iii), |Ŷ | ≤ ρ · voln(B(L ·D/q, t(xA))) which does not depend on |Y | or
|X|.

Remark 5.4 (Interpretation of Proposition 5.3). Assumptions (i) to (iii) depend only on X and
Y and are rather ‘realistic’. They are met by all examples in this article (with some exceptions
for xA at the ‘boundary’ of X, see also Remark 5.6). Moreover assumptions (i) and (ii) provide
useful guidance on how to choose S(·).

For a given π one can determine a suitable constant L for (iv) and thus in principle bound
the size of N and consequently the complexity of the subsequent sparse problem. However, to
estimate the full complexity of Algorithm 4.1 one would need to fix L in advance, hence an a
priori estimate on the regularity of π is required. This is considerably more difficult and therefore
in this article we refrain from attempting to give a complete rigorous complexity analysis of the
full multi-scale scheme involving Algorithms 4.1 and 4.6. See also Sect. 7 for a discussion of the
complexity.

Independent of Proposition 5.3 one can use the following function for the hierarchical search
of Ŷ outlined in the previous section (Algorithm 5.2).

Proposition 5.5. For a partition cell y ∈ Yk, k = 1, . . . ,K a hierarchical lower bound for
ψ(xA,xs) is given by

ψ̂(xA,xs)(y) = ψ(xA,xs)(rep(y))− 2 |xs − xA| rad(y) . (5.7)

Proof. For some y ∈ y check:

ψ(xA,xs)(y) = |xA − y|2 − |xs − y|2 = |xA|2 − |xs|2 − 2 〈y, xA − xs〉
= |xA|2 − |xs|2 − 2 〈rep(y), xA − xs〉 − 2 〈y − rep(y), xA − xs〉
= ψ(xA,xs)(rep(y))− 2 〈y − rep(y), xA − xs〉
≥ ψ(xA,xs)(rep(y))− 2 |y − rep(y)| · |xA − xs| ≥ ψ̂(xA,xs)(y)

Therefore condition (5.3b) is satisfied.

15

Intuitively, for the representative rep(y) one has to take into account an additional margin
proportional to rad(y) to make sure all potential leaves of y are on the right side of the hyperplane
defined by (5.5).

Remark 5.6 (Particular Case: Cartesian Grids). In many applications the discrete sets X and
Y are not just random point clouds but lie on a Cartesian grid. Then Ŷ can be determined
directly via the grid structure without a hierarchical search.

For simplicity assume for now n = 2, higher dimensions work analogously. Assume X,
Y ⊂ Z2 ⊂ R2 are regular orthogonal grids:

X = {0, . . . , NX,1} × {0, . . . , NX,2} , Y = {0, . . . , NY,1} × {0, . . . , NY,2}
for some positive integers NZ,i, Z = X,Y , i = 1, 2. For every xA ∈ X let S(xA) be the 4-
neighbourhood of xA on the grid X (potentially incomplete at boundaries and corners). Then
for any xA with a complete neighbourhood one has

{xs − xA : xs ∈ S(xA)} =

{(
1
0

)
,

(
0
1

)
,

(
−1
0

)
,

(
0
−1

)}
and consequently the polytope P for which condition (5.5) is false for all {(xs, ys = t(xs)) :
xs ∈ S(xA)} is a grid-aligned rectangle with sides going through the points ys. This set can be
accessed directly without a search by using the grid structure.

Up to the points at the ‘boundary’ of X that do not have a full 4-neighbourhood, this set-up
clearly satisfies assumptions (i) to (iii) of Proposition 5.3. Note further that the subset of X
with incomplete 4-neighbourhoods is small compared to X for large grids. Therefore the effect
of the boundaries on the size of N is bounded. In practice, for a well-chosen initial coupling
π one usually has that mass from the boundary of X is transported to the proximity of the
corresponding boundary on Y , hence the unbounded side of P does not have much overlap with
Y .

Remark 5.7 (Application to the Continuous Problem). We now return to the discussion in
Sect. 3.1 and apply the concept of short-cuts to the continuous problem in Rn. Given a transport
map T , locally optimal on all patches Ui × Vi, let the tuple of points (y1 = yA, . . . , yn = yB),
yi ∈ spt ν be taken from a straight line between yA and yB in monotone order and sampled
sufficiently fine such that every two successive points yi, yi+1 lie in the same patch Vi. Pick xi
such that T (xi) = yi.

Since T is locally optimal on all Ui × Vi one has for i = 1, . . . , n− 2

c(xi, yi) + c(xi+1, yi+1) ≤ c(xi, yi+1) + c(xi+1, yi)

⇔ 〈xi+1 − xi, yi+1 − yi〉 ≥ 0

⇔ 〈xi+1 − xi, yn − yi+1〉 ≥ 0 (since yn − yi+1 and yi+1 − yi are co-linear)

⇔ c(xi, yi+1) + c(xi+1, yn) ≤ c(xi, yn) + c(xi+1, yi+1) .

It then follows that (xi+1, yi+1) is shielding xi from yn for i = 1, . . . , n− 2 (see (3.2), (5.5) and
Remark 3.9) and consequently the tuple ((x2, y2), . . . , (xn−1, yn−1)) is a short-cut for (x1, yn).
Therefore the transport map T is optimal.

We see that for the squared Euclidean distance the shielding condition follows from local opti-
mality along straight lines, which explains why local optimality is still sufficient in 1-dimensional
discrete problems. In higher dimensions we cannot always jump along straight lines between grid
points and even small deviations may break the shielding condition. This is why we must ex-
plicitly keep track of π throughout Sections 3 and 5 and carefully choose the discrete equivalent
of Ui and Vi.

16

5.3 Strictly Convex Functions on Rn

As discussed in Sect. 1.1, Brenier’s polar factorization theorem has been generalized to a large
class of other convex costs. We now sketch how to construct shielding neighbourhood for strictly
convex functions, discuss why we expect Ŷ to be small and give an explicit formula for the
hierarchical bound ψ̂(xA,xs) (see (5.3b) and Algorithm 5.2) for the p-th power of the Euclidean
distance, p ∈ (1,∞).

Throughout this section let c(x, y) = h(x − y) for a strictly convex function h : Rn → R.
Then ψ(xA,xs), cf. (5.1), is given by:

ψ(xA,xs)(y) = h(xA − y)− h(xs − y) (5.8)

This difference will not always have a simple closed form as for c(x, y) = |x − y|2. Hence, we
find a simpler approximate expression by means of the (strict) sub-gradient inequality:

ψ(xA,xs)(y) > 〈ξ, xA − xs〉 with ξ ∈ ∂h(xs − y) (5.9a)

ψ(xA,xs)(y) < 〈ξ, xA − xs〉 with ξ ∈ ∂h(xA − y) (5.9b)

A sufficient condition for (xs, ys) shielding xA from yB is therefore:

〈ξ1 − ξ2, xA − xs〉 ≥ 0 with ξ1 ∈ ∂h(xs − yB), ξ2 ∈ ∂h(xA − ys) (5.10)

Remark 5.8 (Sparsity of Ŷ). We now give an informal analogue to Proposition 5.3. For every
xA ∈ X let S(xA) be such that for any v ∈ Rn we can decompose

v = |v|
∑

xs∈S(xA)

λ(xs) · (xA − xs) (5.11)

for non-negative coefficients λ(xs). For fixed xA and yB by monotonicity of the sub-differential
we have

〈ξ1 − ξ2, t(xA)− yB〉 ≥ 0 with ξ1 ∈ ∂h(xA − yB), ξ2 ∈ ∂h(xA − t(xA)). (5.12)

Decomposing t(xA)− yB with (5.11) we obtain

〈ξ1 − ξ2, xA − xs〉 ≥ 0 (5.13)

for some xs ∈ S(xA). One could now assume some form of uniform convexity of h (see for
example [4]) and a lower bound on the maximal coefficient λ(·) to obtain a finite lower bound in
inequality (5.13), depending on |t(xA)− yB| and conversely assume some local regularity of the
sub-differential to bound the error inflicted by choosing ξ1 ∈ ∂h(xs−yB) and ξ2 ∈ ∂h(xA−t(xs))
to get from (5.12,5.13) to (5.10). However, in view of Remark 5.4 this would have little further
consequences. Therefore we content ourselves here with the intuitive argument that in practice Ŷ
will be small when h is ‘reasonably regular and convex’, which will later be confirmed numerically
in Sect. 6.6. Additional insight can be gained from Fig. 4.

To actually construct shielding neighbourhoods one now needs to find a lower bound for
(5.9a) on the hypercubes of the hierarchical 2n-tree. We give an explicit formula for p-th powers
of the Euclidean distance, p ∈ (1,∞), but in principle this can be extended to other cost
functions covered in [18].

17

xA
x1

x2

x3

x4

p = 1.1
p = 1.5

p = 2.0
p = 2.5

Figure 4: Illustration of the shielding condition for c(x, y) = |x − y|p for various p
for a simple geometric set-up. For xA = (0, 0) and (x1, x2, x3, x4) = (y1, y2, y3, y4) =
((1, 0), (0, 1), (−1, 0), (0,−1)) the coloured lines show for which yB the pair (xA, yB) is shielded by
one of the (xi, yi), i = 1, . . . , 4. For p = 2 the boundaries are given by straight lines (cf. Sect. 5.2),
for p > 2 the curves are bent ‘inwards’, for p < 2 ‘outwards’. As p ↘ 1 the area of shielded
elements becomes smaller. This could be remedied by adding additional shielding candidates at
intermediate angles. For more general geometric set-ups the situation is more complicated, but
the general behaviour remains.

Proposition 5.9. Let h(x− y) = |x− y|p, p ∈ (1,∞). For a partition cell y ∈ Yk, k = 1, . . . ,K
a hierarchical lower bound for ψ(xA,xs) is given by

ψ̂(xA,xs)(y) = pRp−1 · |xA − xs| · cos(ϕ) (5.14)

where

ϕ = min{π,](xA − xs, xs − rep(y)) + θ} (5.15)

θ =

{
arcsin(rad(y)/|xs − rep(y)|) for rad(y) < |xs − rep(y)|
π else

(5.16)

R =

{
max{0, |xs − rep(y)| − rad(y)} for cos(ϕ) ≥ 0

|xs − rep(y)|+ rad(y) else.
(5.17)

Here](a, b) = arccos(〈a, b〉 /(|a| · |b|)) denotes the (unsigned) angle between the two vectors
a, b ∈ Rn. This formula is not very handy for further analytic manipulation but it can readily
be implemented for usage in Algorithm 5.2. A proof of Proposition 5.9 is given in Appendix A.

5.4 Squared Geodesic Distance on Sphere

There is also an extension of the polar factorization to compact Riemannian manifolds (see
Sect. 1.1). To demonstrate the flexibility of our framework, we now describe how to construct
shielding neighbourhoods on the 2-dimensional unit sphere for the squared geodesic distance as
cost.

Let S2 be the 2-sphere in R3, denote by d : S2 ×S2 → R+ the Riemannian geodesic distance
on S2 and let X, Y ⊂ S2 be finite subsets of the sphere.

We need to slightly adapt the 2n-tree scheme for Rn as introduced in Def. 4.4. Start by
generating a hierarchical 23-tree (octree) (X0, . . . ,XK) over X ⊂ S2 ⊂ R3 with representatives
at the cube-centers as before. Then for each partition cell x its representative rep(x) ∈ R3 is

18

projected onto S2 by normalizing its length rep(x)← rep(x)/|rep(x)|. Moreover, assign to each
representative a metric radius rad(x) such that d(rep(x), x) ≤ rad(x) for all x ∈ x. Likewise,
construct a hierarchical partition (Y0, . . . ,YK) with projected representatives and metric radii
over Y .

Then as before define

ck : Xk × Yk → R , ck(x,y) = d(rep(x), rep(y)))2 . (5.18)

Remark 5.10 (Sparsity of Ŷ). Let us again make an informal argument for why we expect
that there exists a sparse shielding neighbourhood. For fixed xA ∈ X and yB ∈ Y consider the
following function:

F : X × Y → R, (xs, ys) 7→ [c(xA, yB)− c(xs, yB)]− [c(xA, ys)− c(xs, ys)] (5.19)

The pair (xs, ys) shields xA from yB iff F (xs, ys) > 0 (see (3.2)). Note that F (xA, t(xA)) = 0.
Now try to find some (xs, t(xs)) with F (xs, t(xs)) > 0. We assume that xs is close to xA and
by regularity of t that t(xs) is close to t(xA). Consequently we do a first order expansion of F
in the tangent spaces of xA and t(xA). Note that ∇ysF (xA, ys)|ys=t(xA) = 0 so the first order
variation w.r.t. ys vanishes at ys = t(xA). For the gradient in the first argument we find:

∇xsF (xs, t(xA))|xs=xA = 2
[
logxA(yB)− logxA(t(xA))

]
(5.20)

where logxA denotes the logarithmic map on S2 that assigns to a point y ∈ S2 the vector in the
tangent space at xA that induces the geodesic which reaches y at time 1. Ignoring issues like
the cut locus we find that if S(xA) approximates the tangent space at xA sufficiently such that
we can choose some xs lying in the direction given by logxA(yB)− logxA(t(xA)), we have found
a shielding pair (xs, t(xs)).

After this intuitive argument we turn to the construction of a hierarchical bound for Algo-
rithm 5.2. We approximate ψ(·,·) again via the sub-gradient inequality (cf. (5.1) and (5.9)):

ψ(xA,xs)(y) = d(xA, y)2 − d(xs, y)2 (5.21)

ψ(xA,xs)(yB) ≥ ξ · (d(xA, yB)− d(xs, yB)) for ξ = 2 d(xs, yB) . (5.22)

We then find:

Proposition 5.11. For a partition cell y ∈ Yk, k = 1, . . . ,K and two points xA, xs ∈ X choose
a coordinate system in R3 such that

xA =

0
0
1

 , xs =

sin θs
0

cos θs

 , rep(y) =

sin θB · cosϕB
sin θB · sinϕB

cos θB

for suitable θs, θB ∈ [0, π], ϕB ∈ (−π, π]. Then a hierarchical lower bound for ψ(xA,xs) is given
by

ψ̂(xA,xs)(y) = ξ ·∆dmin (5.23)

19

with

∆dmin = θB,min − arccos(sin θs · sin θB,min · cosϕB,max + cos θs · cos θB,min) (5.24)

ϕB,max = min{π, |ϕB|+ ∆ϕ} (5.25)

∆ϕ =

{
arccos

√
cos2 rad(y)−cos2 θB

1−cos2 θB
if cos2 rad(y) > cos2 θB

π else
(5.26)

θB,min = max{0, θB − rad(y)} (5.27)

ξ = 2 d∗ (5.28)

d∗ =

{
max{0, θB − rad(y)} if ∆dmin > 0

min{π, θB + rad(y)} else
(5.29)

As in the previous Section, this function is not particularly suitable for further analytic
manipulation but it can readily be implemented numerically. A proof is given in Appendix A.

5.5 Noisy Cost Functions

As discussed in Sect. 1.1 OT solvers based on the Monge-Ampère equation require a particular
form of the ground cost and even small perturbations can make a PDE based solver inapplicable.
This can be particularly frustrating when the perturbation is only local and thus will most likely
not affect the global structure of the optimal coupling. Such ‘noisy’ costs arise for example in
imaging, when geometric information is complemented by local image properties (e.g. [33]).

Since the shielding condition is an inequality and because the internal solver in Algorithm
4.1 can be combinatorial and thus does not rely on the cost function structure, the framework
presented in this article can to some extent be adapted to the presence of noise.

Throughout this section let

c(x, y) = cgeo(x, y) + η cn(x, y) + λ cL(x, y) (5.30)

where cgeo is any of the geometric cost functions discussed in Sections 5.2 to 5.4, cn : X ×
Y → [0, 1] is bounded but otherwise arbitrary and cL is 1-Lipschitz in the first argument,
|cL(x1, y)− cL(x2, y)| ≤ d(x1, x2) for the appropriate metric d. Random local noise is modelled
by cn, cL describes other cost contributions that may have long-range structure. The positive
constants η and λ determine the relative strength of the components.

The shielding condition for this cost is

[c(xA, yB)− c(xs, yB)]− [c(xA, ys)− c(xs, ys)] > 0 (5.31)

⇔ ∆cgeo + η ·∆cn + λ ·∆cL > 0 (5.32)

with

∆cχ = [cχ(xA, yB)− cχ(xs, yB)]− [cχ(xA, ys)− cχ(xs, ys)] (5.33)

for χ = geo,n,L. Using the assumptions on cn and cL we find

|∆cn| ≤ 2, |∆cL| ≤ 2 d(xA, xs) . (5.34)

So a sufficient condition for shielding is

∆cgeo > 2 η + 2λ d(xA, xs) (5.35)

20

which is the original shielding condition of cgeo with an additional but constant offset (if, as
discussed above, we can bound d(xA, xs)). In the case of the squared Euclidean distance this
means that the shielding hyperplanes are shifted outwards by an additional margin of η + λ ·
|xA − xs|. Proposition 5.3 can then be adapted appropriately and one can still bound the size
of Ŷ . Moreover, it is straight-forward to add this margin to the hierarchical bound ψ̂(xA,xs),
Proposition 5.5 and the Cartesian case, Remark 5.6.

Recalling the informal discussions in Sections 5.3 and 5.4 this margin can in principle also
be added to the bounds ψ̂(xA,xs) for those costs, but for the remainder of this article we will only
consider noisy variants of the squared Euclidean distance.

6 Numerical Experiments

We now present a series of numerical experiments to demonstrate compatibility of the pre-
sented algorithm with current professional discrete solver software, efficiency of the multi-scale
scheme and applicability of the scheme to practical problems. The code used for the numerical
experiments is available from the author’s website.1

6.1 Implementation Details

We use three different algorithms as internal solvers solveLocal in Algorithm 4.1: the network
simplex [2] implementation of CPLEX [1], and the network simplex and cost scaling [19] im-
plementations of the LEMON library [16]. In the following we refer to these algorithms by the
short-hands CPLEX, LEMON-NS and LEMON-CS.

We measure and compare run-time, number of problem variables and other characteristics
of solving test problems in different ways:

• dense: naive direct solving of the full dense problem,

and with Algorithms 4.1 and 4.6 combined with the various methods for shield to construct
shielding neighbourhoods developed in Sect. 5:

• grid: directly using the grid structure, Remark 5.6,

• tree-2: hierarchical search for squared Euclidean distance, Proposition 5.5,

• tree-p: hierarchical search for p-th power of Euclidean distance, Proposition 5.9,

• tree-sphere: hierarchical search for geodesic distance on sphere, Proposition 5.11,

• tree-noise: hierarchical search for noisy squared Euclidean distance with noise slack,
Sect. 5.5.

Remark 6.1 (Adaptive Re-Initialization). In principle we can use the algorithms mentioned
above as mere black boxes, solving each problem πk+1 ← solveLocal(Nk) in Algorithm 4.1
from scratch.

However, when πk is close to optimality we expect Nk to only change slightly between suc-
cessive problems. Hence, we try to preserve solver information between iterations to accelerate
subsequent solving of similar problems. For the CPLEX network optimizer this can be achieved

1https://www.ceremade.dauphine.fr/~schmitzer/

21

https://www.ceremade.dauphine.fr/~schmitzer/

by using the functions CPXNETgetbase() and CPXNETcopybase() which extract and set a net-
work basis for a given problem.

The user interface of the LEMON library does not provide similar functions. Instead we
try a simple trick: let (αk, βk) be the local dual optimizers w.r.t. Nk−1 (which are provided
by the LEMON Algorithms). Then we create a dual feasible pair (αk+1,init, βk+1,init) by first
setting (αk+1,init, βk+1,init) ← (αk, βk) and then reducing αk+1,init(x) appropriately whenever a
dual constraint for some (x, y) ∈ Nk is found to be violated. Then we call the algorithm with
the modified cost ĉ(x, y) = c(x, y)−αk+1,init(x)− βk+1,init(y). ĉ has the same primal optimizers
as c and the dual optimizers are related by adding / subtracting the initial dual variables.

We refer to the variants with and without adaptive re-initialization by init and noinit.

Remark 6.2 (Truncation). Note that the algorithms LEMON-NS and LEMON-CS internally only
operate on integer data. So for application of these algorithms all problem data had to be
truncated to a discrete grid of values. We set the resolution of this grid to 10−9 (i.e. a measure
of unit mass was approximated by 109 mass atoms) which implies a high practical resolution.

Test Data. Most experiments were performed on regular grids in R2 with full support to
ensure existence of the full 4-neighbourhood which was chosen for the shielding candidates S(·),
see also Remark 5.6. Assuming full support is also common for continuous solvers (e.g. [20, 7]).
This can be ensured by adding a small constant measure. We observed that the solvers could
handle very small constants and that thus the distortion of the problems was negligible. We
considered grid sizes between 50 × 50 and 512 × 512, so the cardinalities of X and Y ranged
between 2.5 · 103 and 2.6 · 105 and the dimensions of the full coupling spaces between 6.3 · 106

and 6.9 · 1010. We considered transports between grids of equal size, i.e. |X| = |Y |. The tested
measures were generated by adding random Gaussians with eigenvalues of the covariance matrix
ranging between 1.8 and ≈ 100. Some densities were then multiplied with discontinuous masks.
So the test problems contain both smooth parts as well as strong Dirac-like local concentrations
of mass and sharp discontinuities. We consider these to be challenging problems (see Fig. 7),
representing a wide range of practical applications. All reported numbers are averaged over a
collection of test problems (10 to 50 problems, depending on size).

6.2 Comparing Different Internal Solvers

We compare the run-times of the naive dense algorithms (dense) with using them as internal
solvers solveLocal(·) in Algorithm 4.1 combined with 4.6. For simplicity, for shield(·) we
choose the grid-based method (grid). For the multi-scale timing we sum the time it takes to
solve all levels, from coarse to fine. The observed run-times and speed-ups (with (init) and
without (noinit) adaptive re-initialization, Remark 6.1) are illustrated in Fig. 5. All reported
run-times were obtained on a single core of an Intel Xeon E5-2697 processor at 2.7 GHz.

The solving times per iteration in Algorithm 4.1 are plotted in Fig. 6a. For noinit the
observed acceleration roughly ranges between 10 and 20 (as reported in [31]). For init the trick
described in Remark 6.1 for the LEMON-* algorithms does not seem to have any significant effect
on the run-time of LEMON-CS whereas with its help LEMON-NS can be accelerated by up to almost
two orders of magnitude. For CPLEX the dedicated re-initialization method allows a speed-up of
well over 102. As the dense CPLEX solver is particularly slow for problem sizes of 104, the average
time ratio even exceeds 103 for this problem size (CPLEX internally operates on double data, so
a potential explanation for this divergence may be given by Remark 6.2). In particular for the

22

25 36 49 64 81 100

Problem size |X|/100

0.3

1

3

10

30

100

300

103

S
o
lv
in
g
ti
m
e/
s

25 36 49 64 81 100

Problem size |X|/100

10

20

50

100

200

S
p
ee
d
-u
p

Sub-solver:

CPLEX

LEMON-NS

LEMON-CS

Method:

dense

grid-noinit

grid-init

Figure 5: Left: Overall run-times of dense and sparse methods (grid-init and grid-noinit)
for different internal sub-solvers. Right: Speed-up ratio of sparse solvers w.r.t. dense solver.
Clearly the sparse multi-scale methods outperform the naive dense solvers. For LEMON-CS init

does not accelerate solving relative to noinit. For LEMON-NS and in particular for CPLEX init

leads to significantly further reduced run-times, resulting in speed-ups of around two orders of
magnitude and more.

re-initialized variants of CPLEX and LEMON-NS the reported speed-up consistently increases with
problem size.

For simplicity and due to the availability of a dedicated re-initialization method, we focus on
CPLEX in the following experiments, keeping in mind that similar solving times may be obtained
with LEMON-NS while LEMON-CS performs less well.

6.3 Sparsity and Number of Iterations

The demonstrated speed-up relies on the sparsity of Nk which also reduces the memory require-
ment of the algorithm. Our numerical findings are presented in Fig. 6b. The ratio |Nk|/|X ×Y |
is consistently decreasing with increasing problem size and we observe |Nk| = O(|X|) as dis-
cussed in Sect. 5 (see in particular Proposition 5.3). The assumption that πk is spatially regular
therefore seems appropriate. Even the sum

∑
k |Nk| over all iterations of Algorithm 4.1 does

scale as O(|X|). On the test data the median number of iterations was 5, the 95% quantile was
8 iterations, thus numerically confirming the efficiency of the multi-scale scheme for obtaining
good initializations (cf. Sect. 4.2).

Figure 7 gives an impression of the structure of Nk during execution of Algorithm 4.1. We see
that Nk locally adapts to the regularity of the assignment: in regular areas only few elements in
Nk are needed per element x ∈ X. In irregular regions the size of the neighbourhood increases,
but this is only a local effect. The regular regions are not affected by this. This indicates that
the global regularity assumption on π in Proposition 5.3 could be relaxed to a local variant in
a potential complexity analysis of the method.

23

25 36 49 64 81 100
Problem size |X|/100

0.05

0.1

0.2

0.5

1

2

5

S
o
lv
in
g
ti
m
e
p
er

it
er
a
ti
o
n
/
s

Method:
noinit

init

Sub-solver:
CPLEX

LEMON-NS

LEMON-CS

(a)

25 36 49 64 81 100
Problem size |X|/100

0.001

0.002

0.005

0.01

0.02

S
p
a
rs
it
y

(
∑

kNk)/|X|2
50/|X|

(maxkNk)/|X|2
11/|X|

(b)

Figure 6: Left: Solving time for a single iteration in Algorithm 4.1 at the finest scale level.
As discussed in Fig. 5, init is efficient for LEMON-NS and CPLEX. Right: Sparsity of shielding
neighbourhoods for CPLEX (plots for LEMON-* look very similar). Maximum (maxk |Nk|/|X×Y |)
and cumulative (

∑
k |Nk|/|X × Y |) number of variables, divided by total number of variables

(recall we chose |X| = |Y |) in the shielding neighbourhoods of the iterations in Algorithm 4.1
at finest scale. The fraction of relevant variables reduces with increasing problem size. The
black lines give O(1/|X|) for comparison, indicating that the number of variables in Nk per
x ∈ X is roughly constant. This illustrates that the shielding mechanism works as sketched in
Proposition 5.3.

6.4 Larger Problems

The maximal problem size in the experiments presented in Sect. 6.2 is determined by the lim-
itations of the dense solvers: above |X| = |Y | = 100 × 100 memory demand soon exceeds the
capabilities of standard workstations and run-times become too large even for testing purposes.
In this section we study the limits of the sparse solvers. We test two-dimensional data on grids
up to size 512 × 512 and three-dimensional cubes up to size 64 × 64 × 64, using the squared
Euclidean distance as cost. The results are summarized in Fig. 8.

The observed sparsity for two dimensions is consistent with Fig. 6b. As expected from
Sect. 5.2, in three dimensions the scaling is similar but with more coupling variables per x ∈ X.
With the presented algorithm 2d-problems up to about 256 × 256 can be solved conveniently.
For three dimensions the performance is weaker, due to the increased number of sparse variables.

While memory is no longer a practical limitation, the run-time scales super-linearly with the
marginal size |X|, thus eventually also becoming impractical. A direction of further research
might be the consistent splitting of one large problem into smaller parts, avoiding the super-
linear scaling and using multiple CPUs in parallel.

6.5 Comparing Different Shielding Construction Methods

For the squared Euclidean distance on regular grids we have presented three methods to construct
shielding neighbourhoods: the direct method via exploiting the grid structure (grid, Remark
5.6), the hierarchical bound tree-2 (Proposition 5.5) and as a special case of the hierarchical
bound tree-p (Proposition 5.9). We will now compare the efficiency of these methods. Note that

24

(|Nx|/|Y |) · 102

0 20 40 60 80 100
0

20

40

60

80

100
trel(x)

0 20 40 60 80 100
0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

≥ 1

0 ≥ 20

|trel|

0

π/2

π

3π/2

2π

O
ri
en
ta
ti
o
n
ϕ

Figure 7: Analysis of shielding neighbourhood for a test problem with |X| = |Y | = 1002. Left:
For x ∈ X let Nx = Nk ∩ ({x}×Y), the x-row of the shielding neighbourhood Nk. Heat-map of
|Nx|/|Y | over X after one iteration of Algorithm 4.1 (k = 2). Color range from 0 to 1%. Right:
Average relative displacement map trel(x) =

∑
y(y − x)πk(x, y)/µ(x) in polar coordinates over

X.
The map trel contains long displacements (> 20 pixels), sharp discontinuities and strong com-
pression / expansion (the Jacobian determinant of trel ranges from 10−2 to 102), indicating a
challenging test problem. We see that the sparsity adapts locally to the spatial regularity of the
assignment. In regions where trel is regular only few neighbours per element are necessary. |Nx|
rises at the discontinuities of trel, but this effect is local. Note that there is no rise in |Nx| at
the boundaries of the image (cf. Remark 5.6).

all three will eventually produce the same neighbourhoods. So the solving part of Algorithm
4.1 is not affected. The total run-times and resulting speed-ups are displayed in Fig. 9. As
expected, grid performs best, tree-2 is only a little slower. The bound tree-p, containing
more approximations, is less tight and therefore less efficient but still provides a significant
speed-up over the dense method.

Additional insight can be gained from Fig. 10a which displays the average time to construct
a shielding neighbourhood and Fig. 10b which displays the number of evaluations of the hierar-
chical bound ψ̂(·,·), (5.4), during the hierarchical search of Ŷ by Algorithm 5.2, over the whole
construction of a shielding neighbourhood (i.e. not just for one x ∈ X). It roughly scales as
O(|X|), i.e. the hierarchical search is in fact more efficient than a naive dense iteration over Y .

6.6 |x− y|p for various p.

Let us now compare tree-p for different exponents p. In Fig. 11 results for various values of
p in [1.01, 2.5] are displayed. As expected, the dense solving time does not depend significantly
on the exponent.

For p ↘ 1 the sparse solver becomes increasingly slower, in the extreme case p = 1.01 even
exceeding the run-time of the dense solver. This can be understood by looking at Fig. 4. As
p↘ 1, the area covered by one shielding candidate decreases, leading to an increase in the calls
to the hierarchical bound ψ̂(·,·) as well as larger shielding neighbourhoods Nk. As p moves away
from 1, the number of calls and variables quickly becomes almost constant, leading to similar
run-times.

An exception is the case p = 2. A detailed study of the underlying code revealed that the

25

41 164 655 2621

Problem size |X|/100

0.1

1

10

100

103

104

S
o
lv
in
g
ti
m
e/
s

dense-2d
sparse-2d

sparse-3d

Sub-solver:
CPLEX

LEMON-NS

O(|X|2)

41 164 655 2621
Problem size |X|/100

3 · 10−5

10−4

3 · 10−4

10−3

3 · 10−3

10−2

S
p
a
rs
it
y

Nk/|X|2: 2d
Nk/|X|2: 3d
10/|X|
25/|X|

Figure 8: Left: Run-times of the sparse solver (grid-init) for 2d-data up to image size 512×512
(|X| = |Y | ≈ 2.6 · 105) and 3d-data up to cube size 64× 64× 64. The dense 2d run-times (from
Fig. 5) are given for comparison (the dense 3d run-times can be assumed to be similar). The
green line marks run-time scaling of order O(|X|2), indicating that the performance of the sparse
solver is super-linear (approximately quadratic) in the marginal size. Therefore, also the sparse
solver eventually becomes impractically slow. Left: Sparsity of the shielding neighbourhoods
for LemonNS, analogous to Fig. 6b. On 3d-data a similar behaviour is observed, with a higher
number of variables per x ∈ X, owing to the higher dimension of the base space.

difference in run-time stems largely from the c++ function pow(), which is only required for
p 6= 2 (cf. (5.14)), thus the case p = 2 takes somewhat less time, which accumulates over the
number of all queries. This sensitivity to small performance differences in the code highlights the
potential of further research on bounds like Proposition 5.9 to obtain simple and yet sufficiently
accurate expressions, as well as computationally streamlined implementation thereof.

6.7 Noisy Costs

An important aspect of the presented discrete framework is the robustness towards noisy costs
(Sect. 5.5). Here we consider the following set-up: cgeo = | · − · |2, cn is randomly sampled from
[0, 1] (in the hierarchical cost functions ck, k > 0 this contribution can be ignored). For the
Lipschitz part we chose:

cL(x, y) =
kmag

2π
· sin

(
2π

kmag
· 〈k(y), x〉

)
with

k(y) = (cosϕ(y), sinϕ(y))>, ϕ(y) =
〈

(1, 1)>, y
〉
, kmag = 20 .

So cL(x, y) is a sine in x for each fixed y, its orientation given by ϕ which is simply chosen to
provide some ‘random’ angles for each y ∈ R2.

The corresponding weights η and λ where set to all combinations in (η, λ) ∈ {0, 5, 10, 15}2.
For |xA − xs| = 1, as on the finest level of our Cartesian grid, this corresponds to additional
slacks ranging from 0 to 30. This means that, compared to the clean squared Euclidean distance,

26

25 36 49 64 81 100
Problem size |X|/100

0.1

0.3

1

3

10

30

100

300

S
o
lv
in
g
ti
m
e/
s

grid

tree-2
tree-p

dense

25 36 49 64 81 100
Problem size |X|/100

20

50

100

200

S
p
ee
d
-u
p

grid

tree-2
tree-p

Figure 9: Left: Comparing run-time of dense approach and sparse algorithm for different
shielding methods. Right: Implied speed-up relative to the dense solver.
As expected, grid is the most efficient variant, however tree-2 takes only slightly more time.
The less precise bound used in tree-p is somewhat slower but still achieves a speed-up of about
50 for |X| = |Y | = 8100, consistently increasing with problem size.

a particular assignment could be distorted by as much as 30 pixels, which is a considerable
fraction of the underlying image size. The corresponding numerical findings for |X| = |Y | = 902

are presented in Fig. 12. The overall solving-time increases with η and λ, but even for the
noisiest case that we considered, there remained a speed-up of almost one order of magnitude.
The corresponding neighbourhood sizes increase with η. The value of λ seems to have little
impact. The neighbourhood sizes still scale as O(|X|).

It is no surprise that the sparse method becomes less efficient with increasing noise. However,
this decrease comes gradually. Unlike continuous solvers, there is no immediate breakdown when
noise is added. The method remains applicable and useful.

6.8 Sphere

We sample points from the sphere S2 and create test densities similar to Rn but instead of
Gaussians we add radial ‘pseudo-Gaussians’ of the form f(x) = A · exp(−d(x0, x)2/(2σ)).

Numerical results using the hierarchical bound tree-sphere, Proposition 5.11, are summa-
rized in Fig. 13. Again, we observe a speed-up, increasing with problem size, well exceeding
one order of magnitude for the largest test problems. In this setting the time to construct
shielding neighbourhoods exceeds the time required to solve the sub-problems. This is mostly
due to the use of several trigonometric functions in Proposition 5.11. As we have learned in the
|x− y|p-experiments, even little computational effort per call adds up over the whole execution
of the algorithm. Note however, that the sparsity ratios are comparable to that in Rn (Fig. 6b)
and that also the relative number of calls of ψ̂(·,·) is decreasing, indicating the usefulness of the
concept of shielding neighbourhoods even in this more general setting.

From this follows that further significant reduction of the run-time may be obtained by
computationally streamlining the hierarchical bounds, without needing to change the solver.

27

25 36 49 64 81 100
Problem size |X|/100

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

S
h
ie
ld
in
g
ti
m
e/
s

grid

tree-2
tree-p

solving

(a)

25 36 49 64 81 100
Problem size |X|/100

0.02

0.03

0.05

0.07

0.1

#
C
a
ll
s
o
f
ψ̂

(·
,·)
/
|X

|2

tree-2
tree-p

230/|X|

(b)

Figure 10: Left: Time for construction of shielding neighbourhood for grid, tree-2 and tree-p.
Time for subsequent sparse solving is given for comparison. Right: Number of evaluations of
the bound ψ̂(·,·) during construction of a shielding neighbourhood, divided by |X × Y |. The
relative number of these calls decreases with problem size. The black line represents a scaling
like O(|X|). This means that the number of calls per element x ∈ X is roughly constant and
thus the hierarchical search is more efficient than the naive full iteration over all pairs. The kink
between 4900 and 6400 is due to a new layer being added in the hierarchical partition.

7 Discussion and Conclusion

Symmetry. The concept of short-cuts and the shielding condition are symmetric in X and Y .
Symmetry is broken in Proposition 3.4. A more general, symmetric version of Proposition 3.4
can be established, providing a larger class of short-cuts. Consequently one could weaken the
assumptions on shielding neighbourhoods in Def. 3.5. The advantage of the non-symmetric
version chosen in this article becomes apparent in Algorithm 5.1 where the main loop is only
over X. To exploit the increased flexibility of the symmetric formulation one would in general
have to iterate over X × Y , thus increasing the complexity of the construction. Moreover, as
we have discussed for example in Proposition 5.3 and as demonstrated numerically, we already
have |Nk| = O(|X|), which will not be improved upon by a symmetric variant.

Comparison with [26]. The approach presented in [26] is similar to solveSparse combined
with solveMultiScale (Algorithms 4.1 and 4.6), in particular to the preliminary version pre-
sented in [31]. Discrete optimal transport problems are solved hierarchically from coarse to fine,
while only looking at sparse sub-problems. The sparse region of interest on the finer scale is
generated by taking the support of the coarse solution and adding neighbouring elements (in the
product space). The intuition behind this is similar to the discussion presented in Section 3.1.
This procedure is justified informally by arguing that the discrete optimal solution does converge
weakly to the underlying optimal continuous coupling, which is known to live on a graph and
by a sensitivity analysis of linear programming. However, no rigorous proof for the global opti-
mality of the obtained solutions is given. The main focus of [26] lies in providing a fast practical
method, which is demonstrated on a large set of numerical examples, involving the approximate
reconstruction of the continuous Monge map, computation of free boundaries in optimal par-

28

1 1.5 2 2.5

Exponent p

3

10

30

100

300

1000

S
o
lv
in
g
ti
m
e/
s

dense
tree-p•

(a)

1 1.5 2 2.5

Exponent p

0.0003

0.001

0.003

0.01

0.03

0.1

0.3

1

#
{c
a
ll
s,

va
ri
a
b
le
s}
/
|X

|2

calls of ψ̂(·,·)/|X|2
Nk/|X|2

(b)

Figure 11: Left: Solving times for cost c(x, y) = |x− y|p for different p for dense, and tree-p

for p ∈ [1.01, 2.5]. Right: Number of evaluations of the bound ψ̂(·,·) during construction of a
shielding neighbourhood and cardinality of N , divided by |X| × |Y | = |X|2. See also Fig. 10.
For p ↘ 1 the sparse method becomes slower, caused by an increasing number of bound eval-
uations and neighbourhood variables. For p � 1 the situation stabilizes, resulting in almost
constant number of calls, variables and run-time. However, for p = 2 the computation time of
such a query is slightly lower (see text), thus resulting in an overall lower run-time.

tial transportation and Wasserstein barycenters. The reported run-times are comparable to our
results.

Adding the neighbours of the support in the product space can be seen as a symmetrized
version of (step-ii) in Algorithm 5.1 (cf. the above discussion on symmetry). However, there
is no equivalent to (step-iii). For the squared Euclidean distance over a Cartesian grid and for
smooth marginal densities we found that this works well in practice: after several iterations
with the intuitive approach the solver would typically converge to the globally optimal solution,
very similar to the full shielding method. This can be understood by looking at the geometric
interpretation of the shielding condition in that case (Fig. 3): when the marginals are smooth,
the assignment is usually spatially regular and therefore the interior of the polytope, which is
not shielded, is very small (and thus step (step-iii) would not add many elements). However,
for inhomogeneous densities, for p 6= 2 and for point clouds that do not lie on regular Cartesian
grids, we observed that the intuitive method was prone to getting stuck in slightly sub-optimal
couplings. While this is probably sufficient for many practical applications, it should be noted
that at least for the standard scenario of squared Euclidean distance over Cartesian grids, the
implementation of (step-iii) is very simple (see Remark 5.6) and thus global optimality can be
ensured with little additional effort.

Complexity. Determining the overall complexity of Algorithm 4.6 is an important open ques-
tion. It depends on various factors, including complexity characteristics of the internal solver,
the sizes of the neighbourhoods {Nk}k and the number of outer iterations at each level in Algo-
rithm 4.1. As pointed out in Remark 5.4, using statements like Proposition 5.3 to control the
maximum size of the sparse neighbourhoods would require sufficiently strong a priori bounds on

29

the regularity of the optimal couplings {πk}k in Algorithm 4.1 over multiple iterations. To our
knowledge such estimates are currently not available and thus a complete complexity analysis
cannot be given here. We have however provided numerical evidence that the neighbourhood
sizes scale as predicted by Proposition 5.3 and that the overall run-time is reduced significantly.
Note further that this uncertainty only affects the efficiency of the scheme. Global optimality
of the final result is rigorously established and is guaranteed even in cases where the method is
very slow.

Conclusion. Dense optimal transport problems appear in many applications. Often it is
known that the optimal coupling will have sparse support, but existing discrete solvers are
not able to take advantage of this sparsity and thus scale poorly on large problems. Our paper
provides a way of verifying global optimality of a coupling by only looking at a suitable shielding
subset of the full product space. This can be interpreted as discrete equivalent for well-known
continuum results. Based thereon we proposed an algorithm that provably solves dense problems
globally via a sequence of sparse problems. This algorithm can be combined with coarse-to-fine
multi-scale methods. A part of this algorithm is the efficient construction of sparse shielding sets,
which must be adapted to the cost function. We explicitly discuss this construction for several
costs on Rn (including the squared Euclidean distance), the sphere and noisy variants thereof
and gave some indications on why one can expect these sets to be sparse. The efficiency of the
scheme in terms of run-time and sparsity was demonstrated numerically. Our algorithm thus
allows the application of discrete solvers to larger problems, where continuum solvers may not
be applicable either due to noisy costs or irregular marginals with strongly fluctuating densities.

Future work will comprise a more detailed study of other cost functions and more efficient im-
plementations for hierarchical bounds needed for the construction of shielding neighbourhoods.

Acknowledgements. The author gratefully acknowledges support by a public grant over-
seen by the French National Research Agency (ANR) as part of the ‘Investissements d’avenir’,
program-reference ANR-10-LABX-0098 and the European Research Council (project SIGMA-
Vision).

A Additional Proofs

Proof of Proposition 5.9. For y ∈ y write y = rep(y) + δ with |δ| ≤ rad(y). h(z) = |z|p is
differentiable on Rn with

∂h(z) = {∇h(z)} = {p |z|p−1 n(z)}

where n(z) denotes normalizing the vector z to unit length. The ambiguity of n(z) at z = 0 is
irrelevant as |z|p−1 = 0 in that case. So for convenience we define n(0) to be some arbitrary
vector of unit length. From (5.9a) one finds:

ψ(xA,xs)(y) > p |xs − rep(y)− δ|p−1 〈n(xs − rep(y)− δ), xA − xs〉

We now separately bound the inner product and the absolute value term. One has:

〈n(xs − rep(y)− δ), xA − xs〉 = |xA − xs| · cos(](xA − xs, xs − rep(y)− δ))

30

We need to find an upper bound for the angle (using the triangle inequality on the 2-sphere):

](xA − xs, xs − rep(y)− δ) ≤](xA − xs, xs − rep(y)) +](xs − rep(y), xs − rep(y)− δ)

](xs − rep(y), xs − rep(y)− δ) ≤
{

arcsin(|δ|/|xs − rep(y)|) for |δ| < |xs − rep(y)|
π else

≤ θ

Since the maximal (unsigned) angle is π, we eventually find:

](xA − xs, xs − rep(y)− δ) ≤ min{π,](xA − xs, xs − rep(y)) + θ} = ϕ

Depending on the sign of cos(ϕ) we bound |xs − rep(y) − δ| from above or below which yields
the expression for R.

Proof of Proposition 5.11. Let S1 be the unit circle which we identify with the interval
(−π, π] ‘with its ends connected’. Denote by F : [0, π] × S1 → S2 the map from spherical
coordinates onto S2:

F (θ, ϕ) =

sin θ · cosϕ
sin θ · sinϕ

cos θ

 (A.1)

For some y ∈ y with d(y, rep(y)) ≤ rad(y) clearly have:

d(xA, y)− d(xs, y) ≥ inf{d(xA, y
′)− d(xs, y

′) : y′ ∈ S2, d(y′, rep(y)) ≤ rad(y)}

Now find a relaxation of the feasible set on the r.h.s. to obtain a tractable lower bound. It can
be shown that the metric ball around rep(y) is contained in a sufficiently large ‘rectangle’ in
spherical coordinates. More precisely:

{y′ ∈ S2, d(y′, rep(y)) ≤ rad(y)} ⊂ F (D)

with

D = Dθ ×Dϕ
Dθ = [max{0, θB − rad(y)}, θB + rad(y)]

Dϕ =

{
[ϕB − ϕ̂, ϕB + ϕ̂] if cos2 rad(y) > cos2 θB

S1 else

ϕ̂ = arccos

√
cos2 rad(y)− cos2 θB

1− cos2 θB

where in [ϕB − ϕ̂, ϕB + ϕ̂] we have to take into account the ‘wrapping around’ at −π. The
angle ϕ̂ can be obtained by computing the distance between the point rep(y) and a ‘meridian’
F ([0, π]× {ϕ′}) and demanding that this distance may not be smaller than rad(y). This yields
ϕ̂ as a minimal difference in longitude.

Let y′ = F (θ′, ϕ′). Recall that d(x, y) = arccos 〈x, y〉 where 〈·, ·〉 denotes the usual Euclidean
inner product in R3. Then

d(xA, y
′)− d(xs, y

′) = θ′ − arccos(sin θs · sin θ′ · cosϕ′ + cos θs · cos θ′) .

31

Minimize this over F (D). For every θ′ ∈ Dθ the minimizing ϕ′ is as close to −π (in the S1-sense)
as possible. For any ϕ′ ∈ Dϕ the minimizing θ′ is as close to 0 as possible. This yields θB,min

and ϕB,max. Then, depending on the sign of ∆dmin pick ξ from the sub-differential at either the
minimal or maximal end of possible distances.

References

[1] CPLEX. http://www.ilog.com.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Inc., 1993.

[3] L. Ambrosio and N. Gigli. A user’s guide to optimal transport. In Modelling and Opti-
misation of Flows on Networks, volume 2062 of Lect. Not. Math., pages 1–155. Springer,
2013.

[4] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in
Hilbert Spaces. CMS Books in Mathematics. Springer, 1st edition, 2011.

[5] J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge-
Kantorovich mass transfer problem. Numerische Mathematik, 84(3):375–393, 2000.

[6] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré. Iterative Bregman
projections for regularized transportation problems. https://hal.archives-ouvertes.fr/hal-
01096124, 2014.

[7] J.-D. Benamou, B. D. Froese, and A. M. Oberman. Numerical solution of the optimal trans-
portation problem using the Monge–Ampère equation. Journal of Computational Physics,
260(1):107–126, 2014.

[8] P. Bernard and B. Buffoni. Optimal mass transportation and Mather theory. Journal of
the European Mathematical Society, 9(1):85–121, 2007.

[9] D. P. Bertsekas. A distributed algorithm for the assignment problem. Technical report,
Lab. for Information and Decision Systems Report, MIT, May 1979.

[10] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific,
1997.

[11] Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions.
Comm. Pure Appl. Math., 44(4):375–417, 1991.

[12] M. Burger, M. Franek, and C.-B. Schönlieb. Regularised regression and density estimation
based on optimal transport. Applied Mathematics Research eXpress, 3 2012.

[13] R. E. Burkhard, B. Klinz, and R. Rudolf. Perspectives of Monge properties in optimization.
Discr. Appl. Math., 70(2):95–161, 1996.

[14] G. Carlier, A. Galichon, and F. Santambrogio. From Knothe’s transport to Brenier’s map
and a continuation method for optimal transport. SIAM J. Math. Anal., 41:2554–2576,
2010.

32

http://www.ilog.com

[15] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transportation dis-
tances. In Advances in Neural Information Processing Systems 26 (NIPS 2013), pages
2292–2300, 2013. http://arxiv.org/abs/1306.0895.

[16] B. Dezsőa, A. Jüttnerb, and P. Kovácsa. LEMON – an open source C++ graph template
library. In Proceedings of the Second Workshop on Generative Technologies (WGT) 2010,
volume 264 of Electronic Notes in Theoretical Computer Science, pages 23–45, 2011.

[17] J. H. Fitschen, F. Laus, and G. Steidl. Transport between RGB images motivated by
dynamic optimal transport. http://arxiv.org/abs/1509.06142, 2015.

[18] W. Gangbo and R. J. McCann. The geometry of optimal transportation. Acta Math.,
177(2):113–161, 1996.

[19] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by successive approx-
imation. Math. Oper. Res., 15(3):430–466, 1990.

[20] S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent. Optimal mass transport for registration
and warping. Int. J. Comp. Vision, 60:225–240, December 2004.

[21] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics,
2:83–97, 1955.

[22] H. Ling and K. Okada. An efficient earth mover’s distance algorithm for robust histogram
comparison. IEEE Trans. Patt. Anal. Mach. Intell., 29(5):840–853, 2007.

[23] J. Maas, M. Rumpf, C. Schönlieb, and S. Simon. A generalized model for optimal transport
of images including dissipation and density modulation. submitted, 2014.

[24] R. J. McCann. Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal.,
11(3):589–608, 2001.

[25] Q. Mérigot. A multiscale approach to optimal transport. Computer Graphics Forum,
30(5):1583–1592, 2011.

[26] A. M. Oberman and Y. Ruan. An efficient linear programming method for optimal trans-
portation. http://arxiv.org/abs/1509.03668.

[27] O. Pele and W. Werman. Fast and robust Earth Mover’s Distances. In International
Conference on Computer Vision (ICCV 2009), 2009.

[28] J. Rabin, G. Peyré, and L. D. Cohen. Geodesic shape retrieval via optimal mass transport.
In European Conference on Computer Vision (ECCV 2010), pages 771–784, 2010.

[29] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric for image
retrieval. Int. J. Comp. Vision, 40(2):99–121, 2000.

[30] F. Santambrogio. Optimal Transport for Applied Mathematicians, volume 87 of Progress in
Nonlinear Differential Equations and Their Applications. Birkhäuser Boston, 2015.

[31] B. Schmitzer. A sparse algorithm for dense optimal transport. In Scale Space and Varia-
tional Methods (SSVM 2015), pages 629–641, 2015.

33

[32] B. Schmitzer and C. Schnörr. A hierarchical approach to optimal transport. In Scale Space
and Variational Methods (SSVM 2013), pages 452–464, 2013.

[33] B. Schmitzer and C. Schnörr. Globally optimal joint image segmentation and shape match-
ing based on Wasserstein modes. Journal of Mathematical Imaging and Vision, 52(3):436–
458, 2015.

[34] S. Shirdhonkar and D. W. Jacobs. Approximate earth mover’s distance in linear time. In
Computer Vision and Pattern Recognition (CVPR 2008), 2008.

[35] C. N. Vasconcelos and B. Rosenhahn. Bipartite graph matching computation on GPU. In
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR
2009), pages 42–55, 2009.

[36] C. Villani. Optimal Transport: Old and New, volume 338 of Grundlehren der mathematis-
chen Wissenschaften. Springer, 2009.

[37] W. Wang, D. Slepčev, S. Basu, J. A. Ozolek, and G. K. Rohde. A linear optimal transporta-
tion framework for quantifying and visualizing variations in sets of images. Int. J. Comp. Vi-
sion, 101:254–269, 2012.

34

0 5 10 15
Noise level η

1

2

5

10

20

50

100

200

500

S
o
lv
in
g
ti
m
e/
s

dense

tree-noise

0 5 10 15
Noise level η

5

10

20

50

100

S
p
ee
d
-u
p

tree-noise

0 5 10 15
Noise level η

1

2

5

10

S
p
a
rs
it
y
·1

0
3

(maxkNk)/|X|2

0 5 10 15
Noise level η

0.1

0.3

1

3

10

30

S
o
lv
in
g
ti
m
e/
s

solving
shielding

Color coding: Lipschitz constant λ. • λ = 0, • λ = 5, • λ = 10, • λ = 15.

Figure 12: Noisy costs on |X| = |Y | = 902. Top left: Total solving time on noisy costs for
dense and sparse algorithms. As expected, the sparse solving time increases with both types
of noise (random and Lipschitz), while the dense solving time is hardly affected. Top right:
Implied speed-up relative to dense solver. It decreases with increasing noise levels. But the
method remains applicable and effective: even for η + λ · |xA − xs| = 30 (which implies that
local assignments can be distorted by as much as 30 pixels relative to the squared Euclidean
distance) the speed-up is almost one order of magnitude. Bottom left: Sparsity of shielding
neighbourhoods Nk. The Lipschitz distortion has less impact on the variable count than the
random noise. (Not shown: the scaling of |Nk| for different problem sizes is still O(|X|).)
Bottom right: Time required for solving and constructing shielding neighbourhoods on finest
scale level (sum over all iterations). With increasing noise levels the additional slack in the
bound ψ̂(·,·) (cf. Sect. 5.5) requires more queries and thus increases the shielding time.

35

30 45 65 90 120
Problem size |X|/100

5

10

20

50

100

200

500

S
o
lv

in
g

ti
m

e/
s

dense
tree-sphere

30 45 65 90 120
Problem size |X|/100

1

2

5

10

It
er

a
ti

o
n

T
im

e/
s

shielding
solving

30 45 65 90 120
Problem size |X|/100

1

2

3

5

S
p
a
rs

it
y
·1

0
3

(maxkNk)/|X|2
18/|X|

30 45 65 90 120
Problem size |X|/100

0.07

0.1

0.15

0.2

#
C

a
ll
s

o
f

Ψ̂
(·
,·)
/
|X
|2 tree-sphere

700/|X|

Figure 13: Sparse solving on the sphere. Top left: Average absolute solving time of dense
and sparse solver. While the speed-up is not as strong as on Rn, it still increases consistently
with problem size and is well above one order of magnitude for the largest problem considered.
Top right: Time for construction of shielding neighbourhood and subsequent sparse solving.
Bottom left: Sparsity of shielding neighbourhood. Black line gives scaling of O(|X|). Bottom
right: Number of evaluations of the bound ψ̂(·,·) during construction of a shielding neighbour-
hood, divided by |X × Y |. See also Fig. 10.
In this setting the shielding time exceeds the solving time (see text for explanation). However,
the low solving time and the plots on the bottom row show that the basic concept of shielding
neighbourhoods is useful in this more general setting.

36

	1 Introduction
	1.1 Background and Motivation
	1.2 Outline and Contribution

	2 Background on Optimal Transport
	3 Optimal Transport and Short-Cuts
	3.1 Intuition from the Continuous Case
	3.2 Short-Cuts
	3.3 Shielding Condition

	4 A Sparse Multi-Scale Algorithm
	4.1 Basic Algorithm
	4.2 Multi-Scale Scheme

	5 Constructing Shielding Neighbourhoods
	5.1 General Considerations
	5.2 Squared Euclidean Distance on R^n
	5.3 Strictly Convex Functions on R^n
	5.4 Squared Geodesic Distance on Sphere
	5.5 Noisy Cost Functions

	6 Numerical Experiments
	6.1 Implementation Details
	6.2 Comparing Different Internal Solvers
	6.3 Sparsity and Number of Iterations
	6.4 Larger Problems
	6.5 Comparing Different Shielding Construction Methods
	6.6 |x-y|^p for various p
	6.7 Noisy Costs
	6.8 Sphere

	7 Discussion and Conclusion
	A Additional Proofs
	References

