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Abstract We propose a variational aggregation method for
optical flow estimation. It consists of a two-step framework,
first estimating a collection of parametric motion models to
generate motion candidates, and then reconstructing a global
dense motion field. The aggregation step is designed as a
motion reconstruction problem from spatially varying sets
of motion candidates given by parametric motion models.
Our method is designed to capture large displacements in
a variational framework without requiring any coarse-to-
fine strategy. We handle occlusion with a motion inpainting
approach in the candidates computation step. By performing
parametric motion estimation, we combine the robustness to
noise of local parametric methods with the accuracy yielded
by global regularization.We demonstrate the performance of
our aggregation approach by comparing it to standard vari-
ational methods and a discrete aggregation approach on the
Middlebury and MPI Sintel datasets.
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1 Introduction

1.1 General Positioning

Optical flow estimation is based on the conservation assump-
tion of image features such as image intensity, image gradient
or texture descriptor. The so-called brightness constancy
assumption is themost used one. It provides a single equation
and is consequently insufficient to recover the two compo-
nents of the motion vector. A usual way to overcome this
under-determination is to impose a spatial coherency con-
straint for the flow field. Existing methods can be classified
into two main categories:

– Local spatial coherency is exploited when considering
a parametric motion model, e.g., local translation [54],
affinemodel or quadraticmodel [63], in a given neighbor-
hood or an appropriate local region. The neighborhoods
must be sufficiently textured or contain interest points to
supply reliable velocity vectors.

– Global coherency [44] imposes a regularization con-
straint to the motion field on the whole spatial domain.
The flow field is generally assumed to be piecewise
smooth and the strategy is to minimize a global energy
of the form

E(w) =
∫

Ω
ρ(x, u, v,w)+ λ φ(∇w(x)) dx, (1)

that explicitly combines a potential ρ(·), which penalizes
deviations from the brightness constancy equation, with a
regularization potential φ(·)which penalizes high values
of the norm of the gradient ∇w of the velocity field w :
Ω → R2,whereΩ ⊂ R2 denotes the image domain. The
two consecutive images are denoted by u, v : Ω → R,
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x ∈ Ω denotes one pixel of the gridΩ , and λ is a balance
parameter.

The best state-of-the-art results are obtained with the
global approach. Nevertheless, several open issues remain
unsolved. One of the main limitations comes from the unde-
sirable effects due to the coarse-to-fine strategy used to
handle large displacements [33]. Themotion of small objects
is discarded at coarse scales, and the error is propagated in
the incremental updates at finer scales when the displace-
ment is larger than the object size. As a result, motion details
are not correctly recovered in the final estimated flow field
[86]. Large displacements are also associated to large occlu-
sions, which are another major source of errors. Occlusion
handling is often treated as a post-processing task. It is
then very sensitive to errors in the initial motion estimation.
Finally, noise sensitivity is usually ignored in standard opti-
cal flow evaluation benchmarks. However, if pixel-wise data
potentials provide best results in the absence of noise, they
are not adapted when noise is present in input images. To
limit the impact of these failure cases, the solution of the
global approach is often to increase regularization, produc-
ing oversmoothed results, loosingmotion details and blurring
discontinuities.

Existing purely local methods [11,49,54,70] are far from
being able to compete with global methods in terms of
accuracy in optical flow benchmarks. The main issue is to
be able to select appropriate local regions. The most basic
approaches considering square patches centered on each
pixel [54] are unable to retrieve motion discontinuites. They
are also prone to the same large displacement and occlusion
problems as the global methods. Nevertheless, joint global
motion estimation and segmentation approaches [56,77,80]
have demonstrated that piecewise parametric representation
of flow fields can yield excellent results when local regions
are appropriately chosen. However, the required alternate
optimization scheme is computationally demanding and sen-
sitive to the initialization. On the other hand, local methods
are also known to be less sensitive to noise than global
approaches [20]. These observations suggest that the poten-
tial of local methods may still be under-exploited.

The goal of this paper is to design a new way to com-
bine parametric models with a global variational approach
through aggregation procedure, in order to both overcome the
above mentioned limitations of global methods and exploit
the potential of parametric estimation.

1.2 Our Contributions

We propose a novel aggregation approach for optical flow
estimation based on motion reconstruction from spatially
varying candidates computed with parametric models.

Our method is composed of a first step estimating a col-
lection of parametric motion models generating local motion
candidates, followed by an aggregation step combining the
candidates to create a global dense motion field. The main
contribution of the present work is in the aggregation step.
We formulate the problem as a motion reconstruction step
selecting the best candidate while ensuring global smooth-
ness of the motion field. This approach differs from other
motion estimation techniques, since it decouplesmotion esti-
mation and motion reconstruction. The main interest is that
the reconstructed motion field is not involved in a bright-
ness conservation constraint, and is thus not affected by its
limitations. In particular, our method is able to handle large
displacements without coarse-to-fine schemes; it provides a
valid data constraint in occluded regions, and it ismore robust
to noise in input images than standard variational approaches.

To achieve this, we provide motion candidates in the first
step of our method that also handle large displacements,
occlusions and noise in input images, by following the idea
of our previous work [38]. We rely on the computation of
parametric motion models over a set of overlapping size-
variable square patches, that allows us to deal with various
configurations of piecewise affine motions. An exemplar-
based candidates extension strategy finds relevant motion
candidates in occluded regions.

We provide an extensive experimental evaluation of our
aggregation framework insisting on the versatility of its per-
formance. We demonstrate that it outperforms the standard
variational approach in case of large displacements, large
occlusions and noise in input images, but also in more
common situations as they can be found in the classical
Middlebury benchmark. We also compare our variational
aggregation with the aggregation based on discrete opti-
mization we described in [38], removing any other specific
features of [38] for fair comparison.We show that themethod
presented in this paper is faster andmore robust to suboptimal
candidate sets, while being competitive in terms of quantita-
tive error. A first shorter version of this work was described
in [37]. Compared to [37], we have integrated an occlusion
handling module in the candidates estimation stage, we have
modified the aggregation model to enforce the selection of a
single candidate; we have improved the optimization step of
our method, and we have extended the experimental valida-
tion of the method.

1.3 Related Work

In this Section, we offer a brief overview of the main open
issues in optical flow estimation. A recent comprehensive
survey is available in [36].

Numerous modifications of the Horn & Schunck model
[44], startingwith [13,43,61], havebeenproposedover years,
specifically to cope with large displacements and preser-
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vation of motion discontinuities [18,56,76,82,86,89]. The
most common response to face these two issues has been
to design a multi-resolution and incremental coarse-to-fine
framework alongwith piecewise smoothing or robust estima-
tion. As for the data term of the global energy function, other
image features havebeen introduced like imagegradient [18],
texture component [82]. Besides, invariance properties have
been sought to overcome limitations of the classical intensity
constancy assumption by using normalized cross correla-
tion (NCC) [84], Census transform [41], or local directional
pattern (LDP) descriptor [58]. However, optimization com-
plexity increases with the sophistication of the modeling.

Local and global methods may involve parametric motion
models [12,29,30,39,45,53,54,56,63,77,87]. The most fre-
quently adopted ones are polynomial motion models such
as translation, affine, quadratic, but other models can be
investigated as well [45]. When attached to local opti-
mization, the parametric motion models are estimated on
local regions usually defined as square patches centered
on each pixel [12,54], possibly with an adaptation of the
patch size [55,70], or its position [49]. This local optimiza-
tion setting is easy to implement with a low computational
cost, but it is clearly outperformed by sophisticated exten-
sions of [44] in recent optical flow benchmarks [5,23]. The
motion candidates produced by our method are composed
of affine motion vectors estimated in square patches with-
out any motion segmentation. Our method implicitly selects
the best patch size and position when selecting motion
candidates to recover the global flow field in the second
step.

When dealing with large displacements, using discrete
optimization is a way to avoid resorting to coarse-to-
fine schemes [38,57,87]. Another common approach is
to somehow integrate feature correspondences in dense
motion estimation. A first category of variational meth-
ods [17,19,83] includes an additional term in the global
energy. This term makes the estimated flow be close to
pre-computed correspondences. However, this approachmay
be sensitive to matching errors by giving a fixed weight
to the correspondence fitting. To overcome this prob-
lem, recent works [17,79,83] have deliberately focused on
improving the matching step. Another class of methods
use correspondences to provide a coarse initialization for
subsequent refinement [4,6,27,60,86]. In that vein, recov-
ering a dense flow from initial sparse correspondences
is also currently investigated [68,79]. In [74], the vari-
ational refinement process is iterative and interpreted as
the minimization of the orginal nonlinearized energy. The
main motivation to incorporate feature matching in global
optical flow methods is to alleviate the drawbacks of the
coarse-to-fine scheme imposed by the classical variational
optimization, in particular the loss of large displacements
of small objects. Our patch correspondence substep is

only involved in the motion candidates generation process
and it does not drive the global optimization subsequent
step.

Occlusion is a key issue in motion estimation [73],
especially in case of large displacements, since no motion
measurements are available in occluded areas. By defini-
tion, a point of the current image which is occluded in the
consecutive image has no corresponding point. One has to
distinguish between occlusion detection, and occlusion fill-
ing with motion vectors. The two tasks can be addressed
jointly within an alternate optimization strategy [3,38,47,64,
75,78]. Filling occluded regions with velocity vectors given
the occlusion map (or in other words, motion inpainting in
occluded regions) can be related to the image inpainting prob-
lem. Image inpainting methods can be coarsely divided into
diffusion-based methods [10,25] and exemplar-based meth-
ods [31,50]. Exemplar-based image inpainting fills missing
parts by copying pixels of the observed image. In motion
estimation, occlusion filling is usually solved by diffusion-
based (or geometry-oriented) schemes, propagating motion
from non-occluded regions to occluded regions using partial
derivative equation (PDE) resolution [3,9,47,51,64,86]. In
contrast, we adopt an exemplar-based strategy for candidates
computation in occluded regions.

Ourmethod share similaritieswith dictionary-basedmeth-
ods, looking for sparse combination of candidate motion
vectors. Sparse representations ofmotion fields have recently
been exploited for the design of regularization terms [28,32,
48,71], replacing classical spatial regularization by a prox-
imity constraint to a sparse combination of learned patch
flow fields. These strategies only act on the regularization
term and are thus affected by all the above mentioned issues
of global methods. Estimating directly the motion field as a
linear combination of learned motion models in patches has
been investigated in [14,35,62] with PCA decomposition on
various types of training sets.However, this approach tends to
produce blurry results, and has been combined with a layered
approach in [85] to yield sharper results.One limitation is that
the coefficients are estimated with a standard data term based
on brightness constancy assumption. Finally, in [1], a pixel-
wise dictionary is learned online with phase correlation and
a constraint on the entropy of the weights is imposed. How-
ever, the estimation only provides pixelic accuracy, without
global regularization of the motion field, which causes large
errors.

Robustness to noise in input images has only received
little attention in the optical flow literature. In the local para-
metric estimation framework, explicit modeling of noise has
led to dedicatedmethods [34,72]. Experimental comparisons
between local and global approaches [8,40] have demon-
strated the highest sensitivity to noise of global approaches.
Improving robustness to noise of global variational methods
has been achieved in [20] by integrating the local paramet-
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ric assumption in the data term. However, this improvement
comes at the cost of a loss of accuracy in the absence of noise.

Finally, we mention that a similar combination of candi-
dates has been explored in the domains of image colorization
[22,65] and image completion [2].

1.4 Paper Organization

The rest of the paper is organized as follows. In Sect. 2, we
present the parametric estimation of motion candidates. In
Sect. 3, we propose an aggregation method in a variational
setting. In Sect. 4, we demonstrate the performance of our
estimation algorithms on sequences of the Middlebury and
MPI Sintel datasets and other real images. Section 5 contains
concluding remarks and future work.

1.4.1 Notations

TheEuclideannorm (ℓ2 norm)of a vector z = (z1, . . . , zd)T ∈
Rd is given by ∥z∥2 = (

∑d
i=1 z

2
i )

1/2 and the ℓ1 norm
of z by ∥z∥1 = ∑d

i=1 |zi |. The supremum norm of z is
∥z∥∞ = sup1≤i≤d |zi |.

We denote two consecutive 2D image frames as u, v :
Ω → R, with Ω ∈ R2 denoting the image domain. We
denote x, x′ or y one pixel of the image grid Ω and card(Ω)

is the number of pixels.
We denote pu(x p, h) :=

(
u(x p + τ ), τ ∈ { h−1

2 , . . . ,
h+1
2 }2

)
a patch of u centered at location x p ∈ Ω . The

square window1 U p(x p, h) =
{
x ∈ Ω : ∥x − x p∥∞ ≤ h

}

is the patch support centered at pixel x p and the number
of pixels falling in U p(x p, h) ⊂ Ω is h × h. We define
Pu := { pu(x p, h) : x p ∈ Ω, h ∈ H} as the set of all over-
lapping patches and H = {h1, . . . , hM } is a finite set of M
prescribed patch sizes hm ∈ Z+.

We denote w(x) = (v1(x), v2(x))⊤ the motion vector at
pixel x of the motion field w.

The occlusion map o : Ω → {0, 1} is defined such that
o(x) = 1[x is occluded]where 1[·] is the indicator function.
The set of occluded pixels is denoted O = {x ∈ Ω : o(x) =
1}.

Additional notations will be introduced in the text.

2 Local Motion Candidates and Occlusion Cues

We describe in this section the first step of our aggregation
method. It follows the approach of [38] but its presentation
is partly revisited. It exploits local information to supply
motion candidates at each pixel. A set of motion vector can-
didates is generated at every pixel by a combination of patch

1 Without loss of generality, isotropic circular patches could be consid-
ered as well.

correspondences and local parametric motion model estima-
tions. A specific treatment is applied to occluded regions
by exemplar-based extension of the motion candidates set.
Our approach can be viewed as a new way to address the
problem of choosing the local neighborhood for parametric
estimation.

2.1 Local Parametric Motion Candidates

The local supports for motion candidates computation are
overlapping square patches of different sizes. To capture dif-
ferent motion scales, the patch sizes must cover a range of
values. Due to the overlap and the number of patch sizes, one
given pixel x ∈ Ω belongs to several patches. The candidate
motion vectors at each pixel x are computed independently
in each patch in two sub-steps described below: patch corre-
spondences and affine motion refinement.

2.1.1 Patch Correspondences for Large Displacements

We assign to each patch pu(x p, h) in u the set { pv( y1, h),
. . . , pv( yK , h)} of the K patches pv(·, h) in vmost similar to
pu(x p, h). Hence, for each established pair of corresponding
patches, we get the translation vector tk(x p, h) ∈ Z2, shift-
ing pu(x p, h) onto pv(x p + tk(x p, h) , h), k ∈ {1, . . . , K }.
Let us put forward that we do not aim at keeping at this stage
the best correspondence only but at selecting K relevant cor-
respondences to subsequently constitute motion candidates
(K is assumed to be constant for all patches). The match-
ing step is generic and could be achieved with any arbitrary
feature matching algorithm (e.g.,PatchMatch algorithm [7]).

2.1.2 Affine Motion Refinement

The displacements estimated by patch correspondences are
integer-pixel translational approximations. To attain subpixel
accuracy and to allow for more complex motion, we refine
the first sub-step with the estimation of a local affine motion
model in every pre-registered patch pair.DenotingU p(x p, h)
the pixel support of pu(x p, h), we estimate the affine motion
model between two corresponding patches pu(x p, h) and
pv(x p + t(x p, h), h) at pixel x = (x, y)T ∈ U p(x p, h)
defined as:

δw p(x, θ p(x p, h)) =
(

θ1 + θ2x + θ3y
θ4 + θ5x + θ6y

)
. (2)

Assuming brightness constancy, an estimation of the para-
meter vector θ p(x p, h) = (θ1, . . . , θ6)

T is the minimizer of

∫

U p(x p,h)
ϕ(v(x + δw p(x, θ p(x p, h))+ t(x p, h))

− u(x))dx (3)
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where the penalty function ϕ(·) is a robust function of the
family of M-estimators (e.g., Tukey’s function).

2.1.3 Final Set of Motion Vector Candidates

The abovedescribed two-step estimation is repeated for every
patch pu(x p, h) and generates a set of candidate motion vec-
tors C(x) at each pixel x ∈ Ω . In this paper, we consider sets
of regularly spaced patches, defined by a set of sizes H and
an overlap ratio r ∈ [0, 1] defining the proportion of area
shared by two neighbor patches of the same size. Denoting
Ωp ⊂ Ω the set of center pixels of the previously defined
patches, the candidates are defined as follows:

C(x) =
{
tk(x p, h)+ δw p(x, θ p(x p, h)) : h ∈ H,

x p ∈ Ω p : ∥x p − x∥∞ ≤ h, k ∈ {1, . . . , K }
}
. (4)

The interest of the local set of motion candidates is first
that the correspondence sub-step efficiently copes with large
displacements. Specifically, it allows us to correctly deal
with small structures undergoing large displacements. Sec-
ond, by considering a variety of patches, we override the
predefined choice of the local neighborhood. The implicit
selection of the proper patch via its corresponding motion
candidate is transferred to the aggregation stage. Third, intro-
ducing patches of several sizes enables to tackle motion of
different scales.

2.2 Exemplar-Based Candidates Extension in Occluded
Regions

The computation of motion candidates described in Sect. 2.1
does not distinguish occluded andnon-occludedpixels.How-
ever, in large occluded regions where the patches contain
mostly occlusions, there is no chance to estimate relevant
candidates with this local approach. Therefore, the occluded
pixels require a dedicated process to compute additional
motions candidates. This computation could nevertheless
be considered as optional for small displacements. Indeed,
considering large patch sizes enables to cope with small
occlusion areas and to generate relevant candidates at motion
discontinuities or at occluded positions.

When the occluded regions are known or given by an
occlusion detector [43,46,86], occlusion filling with motion
vectors is conceptually closely related to image inpainting,
since it recovers motion in regions where motion is by defi-
nition not observable. In order to deal with large occlusions
produced by large displacements, we follow the inpainting
analogy. In the first step of our aggregation method, the
motion candidates set is thus augmented by “copy-paste”
operations as described below. We rely on the assumption
that the motion at an occluded pixel xo ∈ O is similar to

2emarF1emarF

Fig. 1 Illustration of the exemplar-based inpainting of motion candi-
dates. The foreground is shifting to the right over a static background.
The candidate set of occluded pixel xo ∈ O (in red) is extended by
adding the candidates of its matched non-occluded pixel x∗ ∈ ∂O (in
yellow) (Color figure online)

the motion at a close non-occluded pixel in Ω\O belonging
to the same object or the same background part. The idea is
to assign the set C(x) of the most similar pixel x∗ ∈ Ω\O
to the occluded pixel xo. We limit the search for x∗ in a
band ∂O along the occlusion boundaries. Figure 1 illustrates
the matching process and the definition of O and ∂O in a
simple synthetic example. Searching for the most similar
pixel denoted x∗ ∈ Ω\O to xo is actually easier for motion
inpainting than for image inpainting. Indeed, the information
supplied by image u is available even in O . Thus, as xo is
expected to belong to the same object as x∗, we use patch
similarity to find the best match in u.

An extended candidate set C+(xo) is created for occluded
pixels xo by adding to the initial set C(xo) the motion can-
didates of their matched pixel x∗:

CF (xo) = C(xo) ∪ C(x∗), ∀xo ∈ O. (5)

By convention, ∀x ∈ Ω\O,CF (x) := C(x).
A particular class of occluded (or disappearing) regions

occurs at image borders in the case of large camera motion.
We cope with this issue by estimating the dominant image
motion due to camera motion using the Motion2D software
applied to the whole image [63], which provides additional
motion candidates.

2.3 Best Candidate Flow

To validate our method for computing motion candidates, we
have exploited sequences from MPI Sintel and Middlebury
datasets [5,23] provided with ground truth. We introduce
the so-called best candidate flow (BCF) by selecting at each
pixel x the candidate motion vector of CF (x) closest to the
ground truth vector at x. We distinguish between the BCF
determined with the candidates extension described in the
preceding section (or full BCF) and the BCF without it (or
BCF w/o extension).
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Table 1 EPE-all scores ofmotion fields on sequenceswith ground truth
from MPI Sintel and Middlebury datasets

MPI Sintel Middlebury

Full BCF 0.792 0.0710

BCF w/o extension 1.851 0.0833

DeepFlow [83] 4.691 0.386

MDP-Flow2 [86] 4.006 0.223

Bold font indicates the best result among all the compared methods

In Table 1, we report the objective evaluation given by the
Endpoint Error (EPE) scores for the full BCF and BCF with-
out candidate extensions, on the training sequences of the
datasets MPI Sintel and Middlebury. Overall, the full BCF
is very close to the ground truth motion field demonstrating
the performance of the local parametric motion computation.
Wealso compare these resultswith those ofmotionfields sup-
plied by [83,86], as obtained with publicly available code.
Clearly, full BCF outperforms these state-of-the-art methods
in the two benchmarks.Accuracy is especially improvedwith
full BCF for the MPI Sintel sequences where large displace-
ments andwide occluded regions are present. It demonstrates
that the combination of local affine estimations in square
patches with patch correspondences as described in Sect. 2.1,
is quite relevant to recover very accurate motion vectors.

3 Variational Motion Reconstruction Framework

We have now to recover the global dense motion field by
aggregating motion candidates available at each pixel. We
define an aggregation strategy in a variational setting, which
consists in minimizing an energy of the form

E(w) =
∫

Ω
ρ(w(x),CF (x))+ λ1φ(∇w(x))dx, (6)

where ρ(w(x),CF (x)) is a fidelity term and the second term
imposes smoothness of w, balanced by the parameter λ1. In
the following, we consider a total variation (TV) regulariza-
tion: φ(∇w(x)) = ∥∇w(x)∥1. Unlike usual approaches for
optical flow, the image intensities are not used as input of
the data potential ρ(w(x),CF (x)), but are replaced by the
motion candidate set CF (x). We detail in this section the
modeling and optimization issues related to this reconstruc-
tion term, and the solution we adopted.

3.1 Preliminary Observations

3.1.1 Candidates Distribution

As a first investigation, we explore the information carried
by the distribution of the candidates of each pixel. This

analysis is motivated by the analogy with practices in other
domains like image denoising or completion, where dis-
tribution of candidate image patches is exploited [42,69].
We provide in Fig. 2 six representative examples of the
main forms of candidate distributions that occur in prac-
tice, and their relations with the ground truth motion vectors
and the original image data. The motion vector candidates
are represented by blue circles, the ground truth is the red
rectangle, and the estimated motion vector is the green tri-
angle (the full estimated motion field is given in Fig. 7).
In the background of the distributions, we display the value
of the displaced frame difference (DFD) penalized by the
ℓ1 norm, which can be seen as a data fitting term: for the
distribution at a given pixel xi (one of the six pixels in
Fig. 2), the value displayed in background at coordinates
w = (v1, v2) is |v(xi +w)− u(xi )|. The question is then to
identify characteristic patterns that can allow us to identify
the ground truth, given the candidates and the DFD val-
ues.

Firstly, we observe that the form of the candidate distribu-
tion is highly variable. In some situations, e.g. in Fig. 2a,
d, a unique mode can be clearly identified and gives a
good estimate of the ground truth. However, other exam-
ples show that the main modes do not always correspond to
the ground truth motion vector, and that the distribution can
have highly multimodal and complex shape. In general, the
form of the distribution cannot be accurately predicted from
the input data. Thus, it turns out that the estimation cannot
be only driven by local empirical distributions. Options like
dense linear combination of candidates, fitting of a statistical
distribution or clustering approaches are then not recom-
mended.

Secondly, the relation between the DFD and the true
motion vector also does not follow a general rule. It can
constitute a relevant information to disambiguate complex
distributions, as in Fig. 2c, f, where the ground-truth motion
vector falls in regions with low values of the DFD (dark
values in the background of the distribution). However, fol-
lowing the lowest DFD can sometimes be misleading, as it
is in the case in the other figures, and it cannot be used as a
unique estimation criterion.

Thirdly, cases where the true motion vector cannot be
retrieved from the distribution or from low values of the
DFD also occur in practice, and are illustrated by Fig. 2b,
e. To handle this situation, a third information must be intro-
duced, which can take the form of an a priori smoothness
assumption.

To summarize, we have identified three sources of infor-
mation to guide the design of the aggregation model: the
candidate distribution, a data fitting constraint, and a smooth-
ness assumption. These constraints are complementary and
only valid locally. They should be incorporated jointly in the
aggregation model in a spatially adaptive way.
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Fig. 2 Visualization of the distribution of themotion candidates at sev-
eral pixels in the image. The central image is the ground truth motion
field of the frame 23 of the temple_2 sequence of theMPI Sintel data set.
The six plots represent the motion vector candidates (blue circles), the
motion vector ground truth (red rectangle) and the estimated motion
vector with our method (green triangle)(the estimated motion field on

the whole image is given in Fig. 7) at each corresponding pixel. The
horizontal and vertical axes are respectively the horizontal and vertical
components of themotion vectors. The value of the displaced frame dif-
ference (DFD) penalized by the ℓ1 norm is displayed in the background
of the distributions (Color figure online)

3.1.2 Minimum Distance

In addition to the qualitative analysis of the modeling aspects
of the aggregation given in the previous section, another
requirement that we derived from the analysis of the BCF
in Sect. 2.3 is the selection of a single candidate at each
pixel. To achieve this goal, we could define ρ(w(x),CF (x))
as the distance to the closest element of CF (x):

ρmin(w(x),CF (x)) = min
i∈{1,...,M(x)}

∥w(x) − wi (x)∥p
p, (7)

where wi (x) is a motion candidate, M(x) is the number of
candidates at pixel x, and p ∈ {1, 2}. The min function
naturally selects one candidate used for distance measure.
The proximal operator of ρ(w(x),CF (x)) can be computed
exactly and the resulting energy can then be minimized in a
proximal splitting framework [24]. However, the problem of
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potential (7) lies in its high non-convexity, leading inevitably
to local minima. In practice, we experimentally observe that
the algorithm converges but stays trapped in a localminimum
which is very dependent on the initialization. Thus, we have
to design a model that enforces the selection of a single can-
didate while relaxing the non-convexity of the min function
(7) to facilitate minimization.

3.2 Aggregation Model

To this end, we introduce an additional variable α(x) =
{αi (x)}i=1,...,M(x), weighting the contribution of each candi-
date. The fidelity term is then expressed as

ρ(w(x),CF (x),α(x)) =
M(x)∑

i=1

αi (x)∥w(x) − wi (x)∥p
p. (8)

To ensure that only one candidate is selected, the weight
vector α(x) should be constrained to have binary values with
only one non-zero element. To achieve this goal, we fol-
low [65,66] and point the following property: if the problem
arg mini∥w(x) − wi (x)∥p

p has a unique solution î, then the
solution of the problem

min
α(x)

M(x)∑

i=1

αi (x)∥w(x) − wi (x)∥p
p, (9)

s.t.

{∑M(x)
i=1 αi (x) = 1

∀i ∈ {1, . . . ,M(x)},αi (x) ≥ 0,

is ρmin(w(x),CF (x)) defined in (7), and is attained for
αî(x) = 1 and α j (x) = 0,∀ j ̸= î. The case where sev-
eral coefficients are non-zero can only occur if the solution
of arg mini∥w(x)−wi (x)∥p

p is a non-singleton set S. In that
case, the non-zero coefficients are {αi }i∈S and can take any
configuration satisfying the constraints of (9). We observed
that this situation rarely occurs in practice. The formulation
(9) is convex w.r.t. to w and thus offers an algorithmically
tractable alternative to the min function, while reproducing
its behavior.

The fidelity term (8) relies only on the candidate dis-
tribution to guide the selection of a candidate. As men-
tioned in Sect. 3.1.1, purely distribution-driven estimation
is insufficient to handle certain situations and should be
complemented with a data-driven constraint. We exploit pre-
computed confidence measures βi (x) associated to each
candidate wi (x). The fidelity term is then enriched by
defining

ρ(w(x),CF (x),α(x))

=
M(x)∑

i=1

αi (x)
(
∥w(x) − wi (x)∥p

p + λ2βi (x)
)
. (10)

where λ2 > 0 is a balance parameter. The confidence mea-
sure reflects a feature constancy assumption, e.g. based on
the DFD analyzed in Fig. 2. Low values of βi (x) corre-
spond to high confidence and promote high value of αi (x),
such that the similarity to a distribution mode imposed by
∥w(x) − wi (x)∥p

p is balanced with a data fitting constraint
imposed by the confidence term. Apart from [51,52], exist-
ing confidence measures are dedicated to specific motion
estimation methods. For a variational approach, [21] uses
the inverse of the global energy. For local approaches like
[54], eigenvalues of the structure tensor are usually exploited
[59]. For parametric estimations in general, the variance of
the estimate is also a possible confidence measure. To keep
the generality and simplicity of our method, we consider
the following simple weights based on a filtering of the
DFD:

βi (x) =
1
Z

∫

Ω
g(x − y)|v( y + wi (x)) − u( y)|d y, (11)

where g is a convolution kernel and Z = ∑M(x)
j=1

∫
Ω g(x −

y)|v( y + wi (x)) − u( y)|d y.
The analysis of Sect. 3.1.1 also revealed the necessity to

introduce a smoothness assumption on the motion field. We
complete the model with a standard Total Variation regular-
ization to come up with the final optimisation problem

min
w,α

{ ∫

Ω

N∑

i=1

αi (x)
(
∥w(x) − wi (x)∥p

p + λ2βi (x)
)

+ λ1∥∇w(x)∥1dx
}
,

s.t.

{∑M(x)
i=1 αi (x) = 1

∀i ∈ {1, . . . ,M(x)},αi (x) ≥ 0.
(12)

This model fulfills the modeling criteria identified in
Sect. 3.1. Minimization w.r.t. α enforces the selection of
a single candidate at each pixel. The three terms of (12)
combine similarity to the distribution, data-driven constraint
and smoothness assumption. A key advantage of this for-
mulation is that, differently from usual approaches based on
non-linear feature conservation assumption, the optimization
problem (12) can be solved without any linearization w.r.t
w. As a result, it does not impose coarse-to-fine optimiza-
tion strategies with successive linearizations at each level.
Moreover, if good motion candidates have been found at
occluded pixels (see Sect. 2.2), this data term provides a
valid measure even at occlusions. It is worth noting that
p = 1 enables more deviations from the candidates in
case of lack of good candidates or locally wrong candidate
selection.

In [37], we proposed a related model in a sparse represen-
tation framework, where the number of selected candidates
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was controlled by a sparsity constraint on α. The confidence
measures were associated to the sparsity constraint with a
weighted ℓ1 penalization function. The drawback of this
approach comes from the coupling of the sparsity constraint
and the confidence measures: to ensure the selection of a
single candidate, the parameter weighting the sparsity con-
straint has to be very high, which also gives large weight to
the confidence measures. As a result, the weighted ℓ1 term
becomes predominant and the estimation is mainly driven by
the confidence measures. In the model (12), the selection of
a candidate is decoupled from the influence of confidence
measures.

3.2.1 Optimization

The minimization subproblems w.r.t. w and α being both
convex, we resort to a block-coordinate approach alternating
updates of the two variables.

Minimization w.r.t. w The minimum of (12) w.r.t. w is
obtained by solving the Euler–Lagrange equations. For sim-
plicity, we consider p = 1 in this section. The algorithm is
almost equivalent for p = 2. We approximate the vector-
ial ℓ1 norm by a differentiable relaxation such that ∥z∥1 ≈
ψ(∥z∥22) =

√
∥z∥22 + ϵ2, with ϵ a small constant that we fix

to 0.001. Under this assumption, the Euler–Lagrange equa-
tions at a given pixel x can be written:

M(x)∑

i=1

ψ ′
(
∥w(x) − wi (x)∥22

)
αi (v j (x) − [wi (x)] j )

−λ1div
(
ψ ′

(
∥∇w(x)∥22

)
∇v j (x))

)
= 0 (13)

where j = {1, 2} and [·] j denotes the j th component
of a vector. Using standard forward finite differences for
the discretization of the gradient operator, equations (13)
yield a non-linear system of equations, where the nonlin-
earity is due to the terms in ψ ′(·). We solve this system
with the lagged nonlinearity method [18,81]. It consits in
fixing in an inner loop the nonlinear parts of (13), and iter-
ating linear system solving and nonlinearity update until
convergence.

Minimization w.r.t. α We solve the constrained optimization
problem w.r.t. α with an Augmented Lagrangian approach
[16,88]. To facilitate readability, we omit the arguments in x
in this section. The positivity constraint is handled with the
indicator function ιRM

+
defined as

ιRM
+
(z) =

{
0, if z ∈ RM

+
+∞, else,

(14)

which leads to the following problem:

min
α

N∑

i=1

αi
(
∥w − wi∥p

p + λ2βi
)
+ ιRM

+
(α),

s.t.
M∑

i=1

αi = 1. (15)

We reformulate (15) by introducing a splitting variable z
associated to the indicator function:

min
α,z

N∑

i=1

αi
(
∥w − wi∥p

p + λ2βi
)
+ ιRM

+
(z),

s.t.

{
z = α
∑M

i=1 αi = 1.
(16)

The scaled form of theAugmented Lagrangian of problem
(16) writes

L(α, z, ρ1, ρ2) =
N∑

i=1

αi
(
∥w − wi∥p

p + λ2βi
)
+ ιRM

+
(z)

+µ1

2

∥∥∥∥∥

M∑

i=1

αi − 1+ ρ1

µ1

∥∥∥∥∥

2

2

+ µ2

2

∥∥∥∥−α + z + ρ2

µ2

∥∥∥∥
2

2
,

(17)

where ρ1 ∈ R, ρ2 ∈ RM are Lagrange multipliers and µ1,
µ2 are positive penalty parameters. We use the alternated
direction method of multipliers (ADMM), which separates
optimization subproblems w.r.t. each variable to converge to
the solution of the original problem (15). Each iteration k is
composed of the following steps:

αk+1 = arg min
α

L
(
α, zk, ρk

1, ρ
k
2

)
, (18)

zk+1 = arg min
z

L
(
αk+1, z, ρk

1, ρ
k
2

)
, (19)

ρk+1
1 = ρk

1 + µ1

(
N∑

i=1

αk+1
i − 1

)

, (20)

ρk+1
2 = ρk

2 + µ2

(
−αk+1 + zk+1

)
. (21)

Minimization problems (18) and (19) have analytical and
efficiently computable solutions. The solution of (18) is given
by

αk+1 =
(
µ2 I + µ11M1⊤

M

)−1

(

µ1M

(

1 − ρk
1

µ1

)

+ µ2

(

zk + ρk
2

µ2

)

− bλ2

)

, (22)
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wherewedefine theM-dimensional vector1M = (1, . . . , 1)⊤

and the vector bλ2 = (b1, . . . , bM )⊤ with bi = p∥w −
wi∥p

p + λ2βi . The matrix inversion can be easily achieved
with the Sherman-Morrison formula. The update of z is a
simple projection onto the set RM

+ given by

zk+1 = max

(

αk+1 − ρk
2

µ2
, 0

)

. (23)

We emphasize that the positivity and normalization con-
straints of the original problem (12) define a convex set for
which efficient projection can be computed, e.g. using [26] as
proposed in [22]. However, we experimentally observed that
the decoupling of the constraints yielding faster minimiza-
tion subproblems in the augmented Lagrangian framework
described above yielded similar results with a significantly
lower computational time.

4 Experimental Results

In this section, we analyze the performance of our varia-
tional aggregation for optical flow (VAFlow) aggregation
method. We highlight the versatility of VAFlow by deal-
ing with various issues: large displacements, occlusions,
motion discontinuities, noise in input images, and subop-
timal candidates set. We also quantitatively demonstrate its
superiority over local parametric methods and classical vari-
ational approaches on the Middlebury benchmark.

4.1 Experimental Protocol

4.1.1 Evaluation Metric

When ground truth is available, we use the standard error
metric for optical flow evaluation, which is the averaged end-
point error (EPE). It is defined as the average of euclidean
distances at each pixel between the estimated motion vector
and the ground truth.

4.1.2 Implementation Details

The featurematching steps involved in the candidates compu-
tation (Sects. 2.1.1, 2.2) are implemented with the available
code of thePatchMatch algorithm [7]2. To achieve robustness
to illumination changes, we consider a combination of satu-
ration and value channels of the HSV color space, following
[89]. The distance tominimizewithPatchMatch is the sumof
absolute differences (SAD) of patches. The distance between
pixel x of image u and pixel y of image v is then defined for
a patch size h by SAD(x, y, h) = ∥ pu(x, h) − pv( y, h)∥1.
2 http://gfx.cs.princeton.edu/pubs/Barnes_2009_PAR/index.php.

The affine motion estimation involved in the candidates
computation step (3) is solved with the publicly avail-
able Motion2D software3 [63], which implements a multi-
resolution incremental minimization scheme based on the
iteratively reweighted least squares (IRLS).

The occlusion detection required to extend themotion can-
didates in occluded regions (Sect. 2.2) is performed with a
simple approach exploiting motion candidates computation.
A coarse motion estimation is performed by block match-
ing using PatchMatch with the smallest patch size (h = 15).
The backward flow is then computed and a standard for-
ward/backward consistency criterion [47,60] yields a coarse
occlusion detection. More sophisticated methods could give
more accurate occlusion regions and improve results.

In the optimization procedure described in Sect. 3.2.1, the
motion field w is initialized by selecting at each pixel the
motion candidate with best confidence measure (11). The
weights α are initialized by setting the weight corresponding
to the best confidence measure to one and all the others to
zero.

No post-processing is applied on the flow fields. The can-
didates sets were obtainedwith parametersH={15, 35, 75},
r = 0.75, K = 2 (the typical number of candidates per pixel
with these parameter values is around 100). The convolution
filter g involved in the definition of the confidence measures
in (11) is a rect function of size 5 × 5 pixels, which amounts
to the SAD distance measure defined above and used in the
patch matching step. The value of λ2 is set to 15. Conver-
gence of the ADMM optimization of α has been observed
to be reached for 500 iterations. To save computational cost,
we set a maximum number of 100 iterations, which has a
limited impact on the final results. The penalty parameters
are set to µ1 = 10 and µ2 = 10. The number of alternate
optimizations in the global minimization of (12) was 4, for
which convergence has been experimentally observed. The
number of outer iterations involved in the fixed point iteration
scheme of the minimization w.r.t.w is 15, and the linear sys-
tems are solved with the successive over-relaxation method
[18].

Methods Exploited for Comparison The candidates of
VAFlow are obtained with parametric estimations. Thus, the
comparison with local parametric methods [54,63] is infor-
mative about the efficiency of the aggregation step. In the
following we will refer to “multiscale [54]” as the coarse-
to-fine implementation of [54] described in [15], and to
“multiscale [63]” as an extension of “multiscale [54]” per-
forming the robust affine estimation described in [63] in each
patch. The results of [54] are obtained with the publicly

3 http://www.irisa.fr/vista/Motion2D/.
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Table 2 Average EPE results on the Middlebury benchmark for p = 1
and p = 2

p = 2 p = 1

Average EPE on Middlebury 0.415 0.284

available implementation4, and we use the Motion2D soft-
ware5 to apply the method [63]. The method we call “block
matching [63]” mimics the candidates generation procedure
of VAFlow. At each pixel, an initial block matching is per-
formed and is followed by a parametric refinement between
corresponding patches. Only the motion of the center pixel
of the patch is kept.

As state-of-the-art results are achieved with global varia-
tional approaches, we also compare to themethods of [18,24]
providing open access softwares6,7, which implement TV-l1
models with different optimization strategies. We also con-
sider the method [19] and use the code made available by
the authors8. It extends [18,24] with an additional energy
term imposing similarity to pre-computed feature matches.
It aims at reducing the undesirable effects of the coarse-to-
fine scheme. Current top performing methods [67,68,83,86]
rely on the baseline principles of [18,19,24], on which
they elaborate more sophisticated modules like efficient fea-
ture matching, or non-local regularization. In this paper, we
propose a baseline version of our continuous aggregation
concept, with simple block matching and TV regularization.
Therefore, we compare it with methods [18,19,24] using the
same basic ingredients. More sophisticated features could be
integrated as well in our method to still improve results in
the future.

Finally, we also compare VAFlow with the discrete opti-
mization approach we introduced in [38]. We remove the
exemplar-based aggregation termandpost-processing of [38]
to compare only the baseline aggregation methods. We refer
to this method as Discrete Aggregation.

Results

4.1.3 Choice of the ℓp norm

We first point out the importance of the choice of p in the
ℓp norm promoting similarity to the selected candidate in
(12). Table 2 gives the Average EPE obtained on the Mid-
dlebury dataset with ground truth for p = 2 and p = 1, and
Fig. 3 illustrates these results on an example. Choosing p = 1

4 http://www.mathworks.com/matlabcentral/fileexchange/
23142-iterative-pyramidal-lk-optical-flow.
5 http://www.irisa.fr/vista/Motion2D/.
6 http://lmb.informatik.uni-freiburg.de/resources/software.php.
7 http://gpu4vision.icg.tugraz.at/index.php?content=downloads.php.
8 http://lmb.informatik.uni-freiburg.de/resources/software.php.

Fig. 3 Illustration of the impact of the choice of ℓp for the data fidelity
term

yields robustness in the similarity constraint to the chosen
candidate, such that few large differences between estimated
motion vectors and the chosen candidate are allowed. This is
a desirable property in case of locally wrong candidate selec-
tion. In Fig. 3, the result with p = 2 contains two regions of
large errors where the candidate selection was not optimal,
whereaswith p = 1, these outliers are properly handled. Few
large errors could have a significant impact on the average
EPE, as it can be seen in Table 2. In the light of these results,
we will take p = 1 in the rest of the experiments.

4.1.4 Large Displacements of Small Objects

One of the main limitations of coarse-to-fine schemes arises
in case of large displacements of small objects, as illustrated
on real sequences without ground truth in Figs. 4, 5 and 6.
The results supplied by [18,24] are typical examples of fail-
ures due to coarse-to-fine schemes, which prevent here from
satisfyingly recovering the duck head in Fig. 4, the ball in
Fig. 5 and the foot in Fig. 6. In contrast, VAFlow estimates
correctly all these large displacements. In most cases, [19]
also captures these movements, but at the same time, it gen-
erates large errors in other parts of the image. This is due to
its high sensitivity to feature matching errors, which is better
handled by VAFlow.

4.1.5 Motion Details and Discontinuities

Motion details like the legs of the girl in Fig. 5 and the duck
legs in Fig. 4 are better preserved byVAFlow compared to the
three competing methods. In Fig. 6, the discontinuities of the
motion field supplied by VAFlow are sharper and delineate
better the leg and the foot of the football player.
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Fig. 4 Estimated motion fields with VAFlow and [18,19,24] on the
Bird sequence

4.1.6 Occlusion Handling

When the large displacements concern large parts of the
image, occlusions become a prominent issue, as illustrated in
the three image pairs of Fig. 7. To demonstrate the effect of
our occlusion handling, we deactivate the occlusion handling
module (VAFlow w/o occlusions) in the motion candidate
generation step, and compare the results with those obtained
by the full VAFlow method. In each case, VAFlow w/o
occlusion still captures well large displacements, but it also
exhibits large errors at occluded pixels, due to the absence
of good candidates. When occlusion handling is activated,
the result is visually greatly improved in these regions and is
very close to the ground truth. This observation is confirmed
by the large decrease of the EPE in each case (also reported
in Fig. 7).

4.1.7 Quantitative Evaluation

We provide a quantitative evaluation in Table 3, reporting
the EPE obtained with VAFlow, local approaches [54,63],

Fig. 5 Estimated motion fields with VAFlow and [18,19,24] on the
Backyard sequence of the Middlebury dataset

and variational methods [18,19,24] for the sequences of the
Middlebury dataset with ground truth. The candidates of
VAFlow are computed by local methods. In particular, they
are obtained with the same estimation procedure as block
matching [63]. Therefore, the large improvement offered by
VAFlow on these methods is due to the efficiency of the
aggregation step, which is able to select the best motion can-
didate rather than just keeping the motion estimate at the
central point of each patch. VAFlow also outperforms the
global variational approaches [18,19,24] on almost all the
sequences.

In Table 4, we report results obtained on the MPI Sin-
tel training dataset [23], characterized by the presence of
sequences with very large displacements. We give the aver-
age error on the whole benchmark, and we also give average
errors obtained on the seven sequences with the largest dis-
placements. The advantage between of VAFlow over the
other methods is larger than in Table 3, which confirms the
ability of our aggregation strategy to handle large displace-
ments, in particular compared to the integration of feature
matching as an additional constraint in a classical variational
approach [19]. We mention some recent methods like [4,57]
are able to outperform these results with an average endpoint
error of respectively 2.61 and 2.25 on the whole MPI Sintel
training dataset. However, as explained in Sect. 4.1, these
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Fig. 6 Estimated motion fields with VAFlow and methods [18,19,24]
on the Football sequence

methods exploit sophisticated modules that could be inte-
grated in our framework. For instance, the contributions of
[4,57] are coarse feature matching methods that have to be
refined with the variational method [68], which integrates
a sophisticated edge detection to sharpen motion discon-
tinuities. These ingredients could be incorporated in our
aggregation model to improve results and compete on state-
of-the-art computer vision benchmarks. Our primary aim
is to propose a general aggregation framework for motion
estimation.

We also report in Tables 3 and 4 results obtained by select-
ing at each pixel the candidate with the best confidence
measure (the lowest value of βi (x)), which we refer to as
“Best confidence flow.” The results are always significantly
worse than those of VAFlow. It demonstrates that the motion
estimation withVAFlow is not over-guided by the confidence
measures and can deviate from them to improve global accu-
racy of the motion field.

4.1.8 Values of the Selection Weights

α The averaged final estimation of α obtained for the whole
sequence temple_2 of the MPI Sintel dataset (50 frames) is
illustrated in Fig. 8. 98.7 % of the coefficients are lower than
0.01 and are considered to have no significant influence on
the final results. Therefore, only coefficients superior to 0.01
are displayed in Fig. 8. Among coefficients greater than 0.01,
96% are greater than 0.95, which confirms that the algorithm
selects only one candidate for the reconstruction most of the
time. In that sense, our method finds the sparsest solution in
most cases.

4.1.9 Robustness to Noise

Existing optical flow benchmarks do not integrate robustness
to noise as an evaluation criterion. However, it is common
to deal with noisy images when specific optical devices are
used, as in microscopy or astronomy.

VAFlow performs patch-based parametric motion esti-
mation, in the candidates generation step. The aggregation
step (motion reconstruction) does not exploit any pixel-wise
feature conservation assumption, but only uses a patch-
based confidencemeasure. Parametric estimations in patches
[54,63] are known to be more robust to noise than global
variational methods. Therefore, we expect VAFlow to pro-
vide with robustness to noise while ensuring of the accuracy
global variational methods in the absence of noise, as previ-
ously demonstrated in Table 3.

In Fig. 9, we plot the average EPE for Middlebury
sequences with ground truth after adding Gaussian noise
to the input images with different standard deviations. The
results supplied by VAFlow are compared with those of
[18,24] in Fig. 9a andwith [19] in Fig. 9b. The impact of noise
is significantly lower on the performance of VAFlow than on
those of [18,24]. The difference is even more pronounced
between VAFlow and [19], which is due to the high sensitiv-
ity of [19] to wrong feature matches, as already emphasized
in previous results.

4.1.10 Suboptimal Candidates Set

The final output of VAFlow is dependent on the quality of
the motion candidates. More patches should be considered
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Fig. 7 Comparison of motion fields computed with VAFlow and with VAFlow without the occlusion handling module (w/o occlusions). Results
are obtained on sequences of the MPI Sintel dataset [23] with large displacements. The EPE of each result is given in the captions attached to the
motion fields

to augment the variety of candidates. A crucial parameter
is the overlap ratio r ∈ [0, 1], defining the amount of com-
mon area shared by two neighbor patches. When r is close to
one, there are as many patches as pixels for a given patch
size, and the number of candidates the is highest. How-
ever, the number of patches also increases the computation
time, such that a trade-off has to be found between accu-

racy and complexity. The impact of the overlap ratio on
these two aspects is reported in Table 5, which summarizes
the evolution with r of the average EPE on the Middlebury
benchmark sequences with ground truth on and the compu-
tational time on the Urban_2 sequence of the Middlebury
dataset. While the computation time increases slowly when
r is small, it changes much faster when r > 0.5. In the
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Table 3 Endpoints error obtained with VAFlow, the local methods [54,63] and the variational methods [18,19,24] on the Middlebury dataset with
ground truth

Grove2 Grove3 Urban2 Urban3 Venus RubberWhale Dimetrodon Hydrangea Average

Best confidence flow 0.324 1.203 1.885 2.002 1.510 0.134 0.172 0.506 0.928

VAFlow 0.161 0.630 0.374 0.395 0.298 0.134 0.090 0.194 0.284

Local methods

Multiscale [54] 0.670 1.871 2.603 3.144 1.646 0.476 0.638 0.896 1.493

Multiscale [63] 0.461 1.347 1.570 1.611 0.859 0.409 0.249 0.627 0.892

Block matching [63] 0.437 1.362 1.512 1.766 1.678 0.448 0.241 0.571 1.002

Global methods

Brox et al. [18] 0.184 0.724 0.420 1.044 0.484 0.138 0.175 0.177 0.358

Chambolle and Pock [24] 0.193 0.645 0.353 0.559 0.351 0.132 0.178 0.219 0.329

Brox and Malik [19] 0.176 0.680 0.343 0.586 0.402 0.116 0.100 0.198 0.325

Bold font indicates the best result among all the compared methods

Table 4 Endpoints error obtained with VAFlow, the local methods
[54,63] and the variational methods [18,19,24] on the MPI Sintel
dataset with ground truth. The last column gives the average result on

the whole data set, and results on the seven sequences with the largest
displacements are also given

Sequences with
large displace-
ments

cave_2 market_6 temple_3 ambush_5 ambush_6 ambush_2 market_5 Average onwhole
benchmark

Best confidence
flow

22.02 12.95 21.19 16.86 25.90 26.13 38.87 11.19

VAFlow 7.99 4.82 8.74 6.34 7.86 10.17 11.79 3.90

Brox et al. [18] 27.54 7.30 15.84 12.72 15.44 34.94 23.07 7.31

Chambolle and
Pock [24]

25.01 8.55 21.43 12.22 16.07 35.67 23.74 7.91

Brox and Malik
[19]

9.20 5.61 14.67 10.90 11.11 20.73 14.98 5.03

Bold font indicates the best result among all the compared methods

same time the error increase remains relatively limited for
r > 0.5. This robustness to suboptimal candidates sets is fur-
ther emphasized by the visual results of Fig. 10,wherewe can
observe that the results stay very similar when r decreases,
in particular when r > 0.5. In practical scenarios where
computational time matters, this robustness can allow us to
make huge gains in complexity without loosing too much
accuracy.

4.1.11 Comparison with Discrete Optimization

We focus now on the comparison between the variational
aggregation scheme of VAFlow and the aggregation based on
discrete optimization described in [38], that we call Discrete
Aggregation. Table 6 reports the EPE obtained on sequences
of the Middlebury and MPI Sintel datasets with ground truth
by VAFlow and Discrete Aggregation. Results supplied by
Discrete Aggregation are in general slightly more accurate
than those ofVAFlow.However, the advantageofVAFlow lies
in its robustness to suboptimal candidate sets and its compu-

Fig. 8 Average distribution of the coefficients α on the temple_2
sequence of the MPI Sintel benchmark (50 frames). Only coefficients
greater than 0.01 are displayed. 98.7 % of the coefficients are below
0.01

tation time. Figure 11 compares the impact of the overlap
ratio on the EPE and the computation time. While the EPE
ofDiscrete Aggregation is lower for a large overlap ratio, the
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Fig. 9 Evolution of the EPE with the standard deviation of the added Gaussian noise in the input images. The reported EPE is the average EPE
over all the sequences of the Middlebury dataset with ground truth. a compares VAFlow with [18,24] and b compares VAFlow with [19]

Table 5 Evolution with the overlap ratio r of the Average EPE on the
Middlebury dataset with ground truth and the computational time on
the Urban_2 sequence of the Middlebury dataset

Overlap ratio 0.75 0.5 0.25 0.1

Average EPE 0.296 0.310 0.329 0.354

Computation time (s) 305 142 117 111

results of VAFlow are less impacted by a lower quality of the
candidates, and it gives lower EPE when the overlap ratio is
approximately below 0.45. In the same time, the computation
time ofDiscrete Aggregation increases faster than the one of
VAFlowwith r . For r = 0.75,Discrete aggregation is almost
two times slower than VAFlow.

5 Conclusion

We have proposed a variational aggregation framework for
optical flow estimation based on a sparse representation
of the motion field. We combine in two successive steps
local parametric estimation yielding motion candidates, and
global aggregation supplying the global recovered flow. We
formulated the aggregation step as a global energy mini-
mization problemwithout coarse-to-fine strategy, combining
the best motion candidates at every pixel while preserv-
ing motion discontinuities. We promoted sparse solutions,
that is, the selection at each pixel of a few candidates in
space-variant motion vector dictionaries. We handle occlu-
sion with an exemplar-based motion inpainting approach

Fig. 10 Visual evaluation of the impact of the overlap ratio r on the results of VAFlow, for the Grove2 (top) and Dimetrodon (bottom) sequences
of the Middlebury dataset
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Table 6 Endpoints error obtained with VAFlow and Discrete Aggregation on the sequences with ground truth of the Middlebury and MPI Sintel
datasets

Middleburry Grove2 Grove3 Urban2 Urban3 Venus RubberWhale Dimetrodon Hydrangea

VAFlow 0.161 0.630 0.374 0.395 0.298 0.134 0.090 0.194

Discrete aggregation 0.166 0.621 0.337 0.381 0.287 0.121 0.122 0.179

MPI Sintel cave_2 market_6 temple_3 ambush_5 ambush_6 ambush_2 market_5

VAFlow 7.99 4.82 8.74 6.34 7.86 10.17 11.79

Discrete aggregation 8.228 4.547 8.314 5.50 6.251 9.456 11.958

Bold font indicates the best result among all the compared methods
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Fig. 11 Comparison of the behavior of VAFlow and Discrete Aggregation w.r.t. the overlap ratio. a Show the evolution of the average EPE on the
sequences with ground truth of the Middlebury benchmark, and b shows the evolution of the computational time on the Urban_2 sequence of the
Middlebury benchmark

in the candidates computation step. We demonstrated the
improvements yielded by our method over standard varia-
tional approaches in various situations of large displacements
of small objects, occlusions, noise in input images and
motion discontinuities. We also achieved a lower computa-
tional time and more robustness to suboptimal candidates
set compared to the discrete aggregation approach intro-
duced [38]. The framework is generic, and both the local
and global steps could be adapted for specific purposes,
especially using more sophisticated feature matching tech-
niques.
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