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Abstract

Speckle reduction is a prerequisite for many image processing tasks in syn-
thetic aperture radar (SAR) images, as well as all coherent images. In re-
cent years, predominant state-of-the-art approaches for despeckling are usu-
ally based on nonlocal methods which mainly concentrate on achieving ut-
most image restoration quality, with relatively low computational efficiency.
Therefore, in this study we aim to propose an efficient despeckling model with
both high computational efficiency and high recovery quality. To this end,
we exploit a newly-developed trainable nonlinear reaction diffusion(TNRD)
framework which has proven a simple and effective model for various im-
age restoration problems. In the original TNRD applications, the diffusion
network is usually derived based on the direct gradient descent scheme. How-
ever, this approach will encounter some problem for the task of multiplicative
noise reduction exploited in this study. To solve this problem, we employed
a new architecture derived from the proximal gradient descent method. Tak-
ing into account the speckle noise statistics, the diffusion process for the
despeckling task is derived. We then retrain all the model parameters in
the presence of speckle noise. Finally, optimized nonlinear diffusion filtering
models are obtained, which are specialized for despeckling with various noise
levels. Experimental results substantiate that the trained filtering models
provide comparable or even better results than state-of-the-art nonlocal ap-
proaches. Meanwhile, our proposed model merely contains convolution of
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linear filters with an image, which offers high level parallelism on GPUs. As
a consequence, for images of size 512× 512, our GPU implementation takes
less than 0.1 seconds to produce state-of-the-art despeckling performance.

Keywords:
Despeckling, optimized nonlinear reaction diffusion model, convolutional
neural networks, trainable activation function.

1. Introduction

Synthetic aperture radar (SAR) images are inevitably corrupted by speckle
noise, due to constructive and destructive electromagnetic wave interference
during image acquisition. With fleets of satellites delivering a huge number
of images, automatic analysis tools are essential for remote sensing major
applications. Therefore, the quality of source images should be sufficient
such that it is easy to extract information. However, the speckle noise vi-
sually degrades the appearance of images and therefore hinders automatic
scene analysis and information extraction [6, 20]. For instance, speckle is the
main obstacle towards the development of an effective optical-SAR fusion
[4]. Hence, speckle reduction is a necessary preprocessing step in SAR image
processing. Despeckling techniques have been extensively studied for almost
30 years [33, 31], and new algorithms are continuously proposed to provide
better and better performance. Up to now, the despeckling techniques fall
broadly into four categories: filtering based methods in (1) spatial domain
or (2) a transform domain, e.g., wavelet domain; (3) nonlocal filtering; and
(4) variational methods. As a comprehensive review of the despeckling algo-
rithms is beyond the scope of this paper, we only provide a brief introduction
for these methods. For more details, we refer the reader to [6].

The multi-look technique is a traditional spatial approach. It amounts to
incoherently averaging independent observations of the same resolution cell,
thus reducing the noise intensity. However, this simple averaging approach
results in a clear loss in image resolution. To overcome this deficiency, a great
deal of research has been conducted to develop suitable spatial filters which
can reduce the noise, yet preserve details and edges [26] [37]. Filters of this
kind include Lee filter proposed in [33] [34] which was developed under the
minimum-mean-square-error (MMSE) criterion, and Kuan filter [31] as well
as the Γ-Map filter [36] which are based on the more sophisticated maximum
a posteriori (MAP) approach.

2



Anisotropic diffusion [43] based method is also a type of widely exploited
spatial filtering technology for despeckling. Anisotropic diffusion is a popular
technique in the image processing community, that aims at reducing image
noise without removing significant parts of the image content. A few re-
lated works that apply anisotropic diffusion filtering for the despeckling task
include speckle reducing anisotropic diffusion (SRAD) [53] and detail pre-
serving anisotropic diffusion (DPAD) [3]. SRAD exploits the instantaneous
coefficient of variation and it leads to better performance than the conven-
tional anisotropic diffusion method in terms of mean preservation, variance
reduction and edge localization. DPAD modifies the SRAD filter to rely on
the Kuan filter [31] rather than the Lee filter. DPAD estimates the local
statistics using a larger neighborhood, instead of the four direct neighbors
used by SRAD. However, the despeckling methods based on anisotropic dif-
fusion fell out of favor in recent years mainly because of limited performance.
It is clear that there is a despeckling quality gap between the diffusion based
approaches and state-of-the-art nonlocal algorithms.

Image filtering in the domain of wavelet has also been widely exploited for
despeckling. Most of the wavelet-based despeckling techniques employ the
statistical wavelet shrinkage technique with MAP Bayesian approach, e.g.[44,
1, 8, 45, 5]. In general, the wavelet-based methods guarantee a superior
ability to preserve signal resolution in comparison with conventional spatial
filters. However, they often suffer from isolated patterns in flat areas, or
ringing effects near the edges of the images, leading to visually unappealing
results.

Recently, incorporation with the modern denoising methods, e.g., nonlo-
cal mean (NLM) [10], block-matching 3-D (BM3D) [17] and K-SVD [23], sev-
eral nonlocal despeckling approaches have been proposed [18], [50], [42], [29].
Originated from the NLM algorithm, the probabilistic patch-based (PPB)
filter [18] provides promising results by developing an effective similarity
measure well suited to SAR images. A drawback of the PPB filter is the
suppression of thin and dark details in the regularized images. As an exten-
sion of BM3D, Parrilli et al. [42] derived a SAR-oriented version of BM3D
by taking into account the peculiar features of SAR images. It exhibits an
objective performance comparable or superior to other techniques on sim-
ulated speckled images, and guarantees a very good subjective quality on
real SAR images. Typical artifacts of the nonlocal methods are in the form
of structured signal-like patches in flat areas, originated from the random-
ness of speckle and reinforced through the patch selection process. Generally
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speaking, most of these techniques mainly concentrate on achieving utmost
despeckling quality, with relatively low computational efficiency. An notable
exception is BM3D with its improved version [15]. However, the BM3D-based
method involves a block matching process, which is challenging for parallel
computation on GPUs, alluding to the fact that it is not straightforward to
accelerate BM3D algorithm on parallel architectures.

The fourth category, i.e., variational methods [48, 7, 25, 12, 22, 30, 11, 24,
21, 28], minimizes some appropriate energy functionals consisted of an image
prior regularizer and a data fitting term. As a well-known regularizer, total
variation (TV) has been widely used for the despeckling task [48, 7, 21, 28].
For instance, in [21] a new variational model based on a hybrid data term
and the widely used TV regularizer is proposed for restoring blurred images
with multiplicative noise. Moreover, [28] proposes a two-step approach to
solve the problem of restoring images degraded by multiplicative noise and
blurring, where the multiplicative noise is first reduced by nonlocal filters
and then a convex variational model is adopted to obtain the final restored
images. Solutions of variational problems with TV regularization admit many
desirable properties, most notably the appearance of sharp edges.

However, TV-based methods generate the so-called staircasing artifact.
To remedy the staircasing artifact, [25] incorporates the total generalized
variation (TGV) [9] penalty into the existing data fidelity term for speckle
removal, and develops two novel variation despeckling models. By involving
and balancing higher-order derivatives of the image, the TGV-based despeck-
ling method outperforms the traditional TV methods by reducing the stair-
casing artifact. Recently, different from hand-crafted regularizers, such as TV
and TGV models, [12] proposes a novel variational approach for speckle re-
moval, which combines an image prior model named Fields of Experts (FoE)
[46] and a recently proposed efficient non-convex optimization algorithm -
iPiano [40]. The proposed method in [12] can obtain strongly competitive
despeckling performance w.r.t. the state-of-the-art method - SAR-BM3D,
meanwhile, preserve the property of computational efficiency.

1.1. Our Contribution

Traditional despeckling approaches based on anisotropic diffusion are
handcrafted models which include elaborate selections of diffusivity coeffi-
cient, or optimal stopping time or proper reaction force term. In order to
improve the capacity of the traditional diffusion-based despeckling models,
we employ the newly-developed anisotropic diffusion based model [13] with
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trainable filters and influence functions. Instead of the first order gradient
operator in previous diffusion-based despeckling models, we explore more
filters of larger kernel size targeted for despeckling. On the other hand,
different influence functions are considered and trained for different filters,
rather than an unique function in the traditional diffusion model. Moreover,
the parameters of each iteration can vary across diffusion steps.

As shown in [13], the optimized nonlinear diffusion model has broad ap-
plicability to a variety of image restoration problems, and achieves recovery
results of high quality surpassing recent state-of-the-arts. Furthermore, it
only involves a small number of explicit filtering steps, and hence is highly
computationally efficient, especially with parallel computation on GPUs.

In this paper, we intend to apply the TNRD framework [13] to the task of
multiplicative noise reduction. However, a direct use of the original TNRD
model is not feasible, as we have to make a few modifications oriented to this
specific task:

• We need to redesign the diffusion process by taking into consideration
the peculiarity of multiplicative noise statistics.

• Based on the new diffusion process specialized for multiplicative noise
reduction, we need to recalculate the gradients required for the training
phase.

• In the original TNRD applications, the diffusion network is usually
derived based on the direct gradient descent scheme. However, this
approach will encounter some problem for the task of multiplicative
noise reduction exploited in this work. The reason is explained in detail
in Section 3.1 and the experimental part 4.1. To solve this problem, we
employed a new architecture as shown in Fig. 2, which is derived from
the proximal gradient descent method. Comparing Fig. 2 and Fig. 1,
we can see that the structure of the proposed diffusion process Fig. 2
in our study is quite different from the original TNRD model Fig. 1.

Then, the model parameters in the diffusion process need to be trained by
taking into account the Speckle noise statistics, including the linear filters
and influence functions. Eventually, we reach a nonlinear reaction diffusion
based approach for despeckling, which leads to state-of-the-art performance,
meanwhile gains high computationally efficiency. Experimental results show
that the proposed despeckling approach with optimized nonlinear diffusion
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filtering leads to state-of-the-art performance, meanwhile gains high compu-
tationally efficiency.

1.2. Organization

The remainder of the paper is organized as follows. Section II presents
a general review of the speckle noise and the trainable nonlinear reaction
diffusion process, which is required to derive the optimized diffusion process
for despeckling. In the subsequent section III, we propose the optimized non-
linear diffusion process for despeckling. Subsequently, Section IV describes
comprehensive experiment results for the proposed model. The concluding
remarks are drawn in the final Section V.

2. Preliminaries

To make the paper self-contained, in this section we provide a brief review
of the statistics property of speckle noise and the trainable nonlinear diffusion
process proposed in [13].

2.1. Speckle Noise

Assume that f ∈ RN (represented as a column-stacked vector) denotes
the observed SAR image amplitude with number of looks L, and u ∈ RN

denotes the underlying true image amplitude i.e., the square root of the
reflectivity. According to [27] [6], the fully-developed speckle can be modeled
as the multiplicative Goodman’s noise, i.e.,

f = un, (2.1)

where n is the so-called speckle noise. In the multiplicative, or fully-developed,
speckle model, the conditional pdf of f given u follows a Nakagami distribu-
tion:

p(f |u) =
2LL

Γ(L)u2L
f 2L−1exp

(
−Lf

2

u2

)
,

where Γ is the classical Gamma function. Note that the distribution Accord-
ing to the Gibbs function, this likelihood leads to the following energy term
via E = −logp(f |u)

D1(u, f) = 〈L · (2logu+
f 2

u2
), 1〉 , (2.2)
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where 〈, 〉 denotes inner product. Unfortunately, this term is nonconvex
w.r.t. u, that is cumbersome to derive the diffusion process as described in
Sec. 3.1. There are two ways to resolve the nonconvexity. First, logarithmic
transformation (i.e., ul = log (u)) can be used. The resulting energy term is
expressed as follows:

D2(ul, f) = 〈L · (2ul + f 2e−2ul), 1〉 . (2.3)

Second, an alternative method to define a convex date term is using the
classical Csiszár I-divergence model [16], which is typically derived for Poisson
noise. The I-divergence based data term for the amplitude model is given by
[48, 25]

D3(u, f) = 〈λ(u2 − 2f 2logu), 1〉 , (2.4)

which is strictly convex w.r.t. u.
Concerning the relation between (2.2) and (2.4), by following the argu-

ment stated in Steidl and Teuber’s work [48], we achieve similar equivalence
by incorporating these two data terms into a Total Variation (TV) regu-
larized variational model in the continuous form. The derivation reads as
follows. Regarding the data term (2.2), let us consider the following convex

variational functional by setting u = e
1
2
w

ŵ = arg min
w∈BV

∫
Ω

(
w + f 2e−w

)
dx+ λ|w|TV , û = e

1
2
ŵ , (2.5)

where |w|TV is the TV semi-norm defined as

|w|TV =

∫
Ω

|∇w|dx . (2.6)

Regarding the data term (2.2), let us consider the following convex vari-
ational functional by setting u =

√
v

v̂ = arg min
v∈BV,v>0

∫
Ω

(
v − f 2logv

)
dx+ λ|v|TV , û =

√
v . (2.7)

As ∇ew = ew∇w, we have for u = ew that ∇u(x) = 0 if and only if
∇w(x) = 0. As a consequence, if we minimize (2.5) and (2.7) over smooth
functions, the minimizer ŵ for (2.5) and the minimizer v̂ for (2.7) are respec-
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Figure 1: The detailed architecture of the original TNRD model with a reaction term,
e.g., ψ(ut−1, f) = A>(Aut−1 − f). Note that it is represented as a feed-forward network.

tively given by

1− f 2e−ŵ − λdiv
∇ŵ
|∇ŵ|

= 0 ,

and

1− f 2

v̂
− λdiv

∇v̂
|∇v̂|

= 0 ,

for those points |∇ŵ(x)| 6= 0 and |∇v̂(x)| 6= 0. Since we have ∇w
|∇w| = ew∇w

ew|∇w| =
∇u
|∇u| , it turns out that the minimizer ŵ and v̂ of the functional in the model

(2.5) and model (2.7) respectively, coincide in the sense that v̂ = eŵ. There-
fore, for both û, we will obtain the same result. Note that this conclusion
only holds for the those L1-norm induced regularizers, such as the TV reg-
ularization. For some other regularized variational models (e.g., TGV-based
model [25]), although this data term (2.4) seems inappropriate, it performs
very well for despeckling.

2.2. Trainable Nonlinear Reaction Diffusion (TNRD)

2.2.1. Highly parametrized nonlinear diffusion model

Recently, a simple but effective framework for image restoration called
TNRD was proposed in [13], which is based on the concept of nonlinear
reaction diffusion. The TNRD framework is modeled by highly parametrized
linear filters as well as highly parametrized influence functions. In contrast
to those conventional nonlinear diffusion models which usually make use of
handcrafted parameters, all the parameters in the TNRD model, including
the filters and the influence functions, are learned from training data through
a loss based approach.

8



The proposed framework is formulated as the following time-dynamic
nonlinear reaction-diffusion process with T steps

u0 = I0, t = 1 · · ·T

ut = ProxGt︸ ︷︷ ︸
reaction force

ut−1 −


Nk∑
i=1

k̄ti ∗ φti(kti ∗ ut−1)︸ ︷︷ ︸
diffusion force

+ψt(ut−1, f)︸ ︷︷ ︸
reaction force


 ,

(2.8)

where I0 is the initial status of the diffusion process, ∗ is the convolution
operation, T denotes the diffusion stages, Nk denotes the number of filters,
kti are time varying convolution kernels, k̄i is obtained by rotating the kernel
ki 180 degrees, ki ∗ u denotes 2D convolution of the image u with the filter
kernel ki, and φti are time varying influence functions (not restricted to be
of a certain kind). Both the proximal mapping operation ProxGt(û) and
ψt(ut, f) are the reaction force. Usually, the reaction term ψt(u) is chosen as
the derivative of a certain smooth date term D(u, f), i.e., ψt(u) = ∇uDt(u).
Note that the proximal mapping operation [39] related to the function Gt is
given as

ProxGt(û) = min
u

‖u− û‖2
2

2
+ Gt(u, f) .

As shown in [13], the proposed model (2.8) can be interpreted as per-
forming one gradient descent step at ut with respect to a dynamic energy
functional given by

Et(u, f) =

Nk∑
i=1

N∑
p=1

ρti((k
t
i ∗ u)p) +Dt(u, f) + Gt(u, f) , (2.9)

where the functions {ρti}
t=T−1
t=0 are the so-called penalty functions and the

regularization parameter is included in Dt(u, f). Note that ρ′(z) = φ(z) and
the parameters {kti , ρti} vary across the stages i.e., changes at each iteration.

It is easy to apply the proposed TRND framework to different image
restoration problems by incorporating specific reaction force, such as Gaus-
sian denoising, image deblurring, image super resolution and image inpaint-
ing. This is realized by setting Gt = 0, while Dt(u, f) = λt

2
‖Au − f‖2

2 and
ψt(u) = λtA>(Au − f), where λt is related to the strength of the reaction
term, u and f denote the original true image and the input degraded image,
respectively, and A is the associated different linear operator. In the case of

9



Gaussian denoising, A is the identity matrix; for image super resolution, A
is related to the down sampling operation and for image deconvolution, A
should correspond to the linear blur kernel.

2.2.2. Overall training scheme

The proposed diffusion model in [13] is trained in a supervised manner.
In other words, the input/output pairs for certain image processing task are
firstly prepared, and then we exploit a loss minimization scheme to optimize
the model parameters Θt for each stage t of the diffusion process. The train-
ing dataset consists of S training samples {usgt, f s}Ss=1, where usgt is a ground
truth image and f s is the corresponding degraded input. The model param-
eters in stage t required to be trained include 1) the reaction force weight λ,
(2) linear filters and (3) influence functions. All parameters are grouped as
Θt, i.e., Θt = {λt, φti, kti}. Then, the optimization problem for the training
task is formulated as follows

min
Θ
L(Θ) =

S∑
s=1

`(usT , u
s
gt) =

S∑
s=1

1
2‖u

s
T − usgt‖22

s.t.


us0 = Is0

ust = ProxGt

(
ust−1 −

(
Nk∑
i=1

k̄ti ∗ φti(kti ∗ ust−1) + ψt(ust−1, f
s)

))
,

t = 1 · · ·T ,
(2.10)

where Θ = {Θt}t=Tt=1 . The training problem in (2.10) can be solved via gradi-
ent based algorithms, e.g., the L-BFGS algorithm [35], where the gradients
associated with Θt are computed using the standard back-propagation tech-
nique [32].

There are two training strategies to learn the diffusion processes: 1) the
greedy training strategy to learn the diffusion process stage-by-stage; and
2) the joint training strategy to train a diffusion process by simultaneously
tuning the parameters in all stages. Generally speaking, the joint training
strategy performs better [13], and the greedy training strategy is often used
to provide a good initialization for the joint training. Concerning the joint
training scheme, the gradients ∂`(uT ,ugt)

∂Θt
are computed as follows,

∂`(uT , ugt)

∂Θt

=
∂ut
∂Θt

· ∂ut+1

∂ut
· · · ∂`(uT , ugt)

∂uT
. (2.11)

For different image restoration problems, we mainly need to recompute the
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two components ∂ut
∂Θt

and ∂ut+1

∂ut
, the main part of which are similar to the

derivations in [13].

3. Optimized Nonlinear Diffusion Filtering for Despeckling

3.1. Proposed Trainable Reaction Diffusion Filtering for Despeckling
The diffusion filtering process for despeckling can be derived from the

energy functional (2.9) by incorporating data fidelity terms in (2.2)-(2.4).
Considering the data term (2.3), we have the following energy functional

E(w, f) =

Nk∑
i=1

N∑
p=1

ρi((ki ∗ ew)p) + λ〈2w + f 2e−2w, 1〉 , (3.1)

with u = ew. Then, we derive the corresponding diffusion process by setting
D(w, f) = λ〈2w + f 2e−2w, 1〉 and G = 0, as the proximal mapping operation
w.r.t G(w, f) = λ〈2w + f 2e−2w, 1〉 is not easy to compute. The resulting
diffusion process is given as

wt = wt−1 −
(

Nk∑
i=1

ewt−1 �
(
k̄ti ∗ φti(kti ∗ ewt−1)

)
+ λt(2− 2f 2e−2wt−1)

)
,

where � denotes element-wise product. However, due to the formulation
ewt−1 �

(
k̄ti ∗ φti(kti ∗ ewt−1)

)
, the value of ewT is prone to explosion in training

phase and therefore makes the training fail.
If we consider the data term (2.2), we arrive at the following energy

functional

E(u, f)|u>0 =

Nk∑
i=1

N∑
p=1

ρi((ki ∗ u)p) + λ〈2logu+
f 2

u2
, 1〉 . (3.2)

As the proximal mapping operator ProxG(·) only works for a convex function

G, we have to set D(u, f) = λ〈2logu + f2

u2
, 1〉 and G = 0 in (2.9). Then

we arrive at a direct gradient descent process with ψ(ut, f) = λ
(

2
u
− 2f2

u3

)
.

However, this straightforward gradient descent approach is not applicable in
practice, because (1) at the points with u very close to zero the reaction
term is enlarged so much that there will be an obvious problem of numerical
instability; (2) this update rule may produce negative values of u after one
diffusion step, which will violate the constraint of the data term in (3.2).
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Figure 2: The architecture of the proposed diffusion model for despeckling. It is rep-
resented as a feed-forward network. Note that the additional convolution step with the
rotated kernels k̄i. Here, the training parameters for the tth step are Θ t = {Γ t,Ω t} with
Γ t = {φti, kti}

Nk
i=1 and Ω t = λt respectively. More importantly, the employed scheme based

on the proximal gradient descent method is quite different from the straightforward direct
gradient descent (as shown in Fig. 1) employed for TNRD-based denoisng task [14].
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Figure 3: The hard shrinkage operation uout = max(uin, c) with c = 1.

In order to remedy the aforementioned problems, after each diffusion step,
we additionally consider a simple projection operation

u = max(ũ, c), with c > 0 ,

to shrink those “bad” pixels, which do not satisfy the constraint u > 0 or are
very close to zero. Therefore, we arrive at the following diffusion approach

ũt+1 = ut −

(
Nk∑
i=1

k̄t+1
i ∗ φt+1

i (kt+1
i ∗ ut) +

λt+1

ut

(
1− f 2

u2
t

))
,

ut+1 = max(ũt+1, c) .

(3.3)
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An illustrative example of the shrinkage function related to the projection
operation is show in Fig. 3, where we set c = 1. Note that as the shrinkage
function is differentiable, it is not problematic in the training phase.

As the projection operation will somehow manipulate the pixel values,
a small c is required to reduce its influence. However, on the other hand,
a small c will raise a problem of numerical stability due to the formulation
2
u
− 2f2

u3
, and then training will fail. In order to search an appropriate c for

our diffusion model, we progressively increased c from 0.1 with four settings
c = 0.1, 0.2, 0.5, and 1. We observed that the former three settings led to
failure in the training phase, and c = 1 is sufficient for a stable training.

However, although the diffusion model (3.3) overcomes the shortcomings
of the model (2.2), it encounters some other problems which will be explained
in detail in the experimental part 4.1.

As a consequence, we resort to the data term (2.4). Although the data
term (2.4) sounds inappropriate, it is incorporated in a flexible training
framework with many free parameters. The training phase can somehow
automatically adapt to this inappropriate data term.

Therefore, we exploit the data term (2.4), and reach the following energy
functional

min
u>0

E(u) =

Nk∑
i=1

N∑
p=1

ρi((ki ∗ u)p) + λ〈u2 − 2f 2logu, 1〉 . (3.4)

As the data term in (3.4) is smooth and differentiable we have two possible
ways to derive the diffusion process.

I) By setting D(u, f) = λ 〈u2 − 2f 2logu, 1〉 and G = 0 in (2.9), we arrive

at a direct gradient descent process with ψ(ut, f) = λ
(

2u− 2f2

u

)
. In

this case, we will encounter the same problem mentioned above, thus
intractable in practice.

II) By setting D = 0 and G(u, f) = λ 〈u2 − 2f 2logu, 1〉 in (2.9), the re-
sulting diffusion process is able to overcome the above shortcomings.
Details read as follows.

Recall that the proximal mapping with respect to G is given as the fol-
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lowing minimization problem

(I + ∂G)−1 (ũ) = arg min
u

‖u− ũ‖2
2

2
+ λ〈u2 − 2f 2logu, 1〉 . (3.5)

The solution of (3.5) is given by the following point-wise operation

û = (I + ∂G)−1 (ũ) =
ũ+

√
ũ2 + 8 (1 + 2λ)λf 2

2 (1 + 2λ)
. (3.6)

Note that this update rule is able to guarantee û > 0 in diffusion steps
because û is always positive if f > 0.

Finally, the diffusion process for despeckling using the proximal gradient
method is formulated as

ut+1 =
ũt+1 +

√
ũ2
t+1 + 8 (1 + 2λt+1)λt+1f 2

2 (1 + 2λt+1)
, (3.7)

where ũt+1 = ut−
Nk∑
i=1

k̄t+1
i ∗ φt+1

i (kt+1
i ∗ ut). The architecture of the proposed

diffusion model for despeckling is as shown in Fig. 1.

3.2. Computing The Gradients for Training

In this section we derive the gradients of the loss function w.r.t the train-
ing parameters Θt = {λt, φti, kti} in joint training. In summary, we need to

compute three parts of ∂`(uT ,ugt)

∂Θt
, i.e., ∂ut+1

∂ut
, ∂ut
∂Θt

and ∂`(uT ,ugt)

∂uT
.

First of all, according to (2.10), it is easy to check that the gradient
∂`(uT ,ugt)

∂uT
is given as follows

∂`(uT , ugt)

∂uT
= uT − ugt ,

where we omit the image index s for brevity. Then, ∂ut+1

∂ut
is computed as

follows according to the chain rule,

∂ut+1

∂ut
=
∂ũt+1

∂ut
· ∂ut+1

∂ũt+1

. (3.8)
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According to (3.7), it is easy to check that

∂ũt+1

∂ut
= I−

Nk∑
i=1

Kt+1
i

> · Λi ·
(
K̄t+1
i

)>
. (3.9)

where Λi is a diagonal matrix Λi = diag(φti
′
(z1), · · · , φti

′
(zp)) with φti

′
denoting

the first order derivative of function φti and z = kt+1
i ∗ut. Here, {zi}i=pi=1 denote

the elements of z which are represented as a column-stacked vector. Note
that K̄i is related to the kernel k̄i, i.e., K̄iu⇔ k̄i ∗ u. As shown in [13], K>i
and K̄>i can be computed by the convolution operation with the kernel ki
and k̄i, respectively with careful boundary handling. Moreover, ∂ut+1

∂ũt+1
can be

easily derived according to (3.7), and is formulated as

∂ut+1

∂ũt+1

= diag(y1, · · · , yp) , (3.10)

where {yi}i=pi=1 denote the elements of

y =
1

2 (1 + 2λt+1)

[
1 +

ũt+1√
ũ2
t+1 + 8 (1 + 2λt+1)λt+1f 2

]
.

Now, the calculation of ∂ut+1

∂ut
is obtained by incorporating (3.9) and (3.10).

Concerning the gradients ∂ut
∂Θt

, we should derive three parts of Θt =
{λt, φti, kti} respectively. It is worthy noting that the gradients of ut w.r.t

{φti, kti} are only associated with ũt = ut−1 −
Nk∑
i=1

k̄ti ∗ φti(kti ∗ ut−1), and are

given as ∂ut
∂φti

= ∂ũt
∂φti
· ∂ut
∂ũt
, and ∂ut

∂kti
= ∂ũt

∂kti
· ∂ut
∂ũt
.

The detailed derivations of ∂ũt
∂φti

has been provided in our previous work

[13], and therefore we omit them in this paper. The formulation of ∂ut
∂ũt

is
straightforward to compute according to (3.10).

According to (3.7), the gradient of ut w.r.t λt is formulated as

∂ut
∂λt

= (x1, · · · , xp) , (3.11)
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where {xi}i=pi=1 denote the elements of

x =
2f2 + 8λtf2

(1 + 2λt)
√
ũ2
t + 8 (1 + 2λt)λtf2

− ũt +
√
ũ2
t + 8 (1 + 2λt)λtf2

(1 + 2λt)
2 . (3.12)

Note that ∂ut
∂λt

is written as a row vector.
In practice, in order to ensure the value of λt positive during the training

phase, we set λ = eβ. As a consequence, in implementation we employ the
gradient ∂ut

∂βt instead of ∂ut
∂λt

. The gradient ∂ut
∂βt is explicitly formulated as

∂ut
∂βt

= λt
[

2f2+8λtf2

(1+2λt)
√
ũ2t+8(1+2λt)λtf2

− ũt+
√
ũ2t+8(1+2λt)λtf2

(1+2λt)2

]
. (3.13)

The architecture of the proposed diffusion model for despeckling is as shown
in Fig. 2 which is quite different from the straightforward direct gradient
descent (as shown in Fig. 1) used for the original TNRD-based denoisng task
[13].

4. Experiments

In this section, we abbreviate the proposed method as TRDMD (the
fully Trained Reaction Diffusion Models for Despeckling). To evaluate the
performance of the proposed method, three representative state-of-the-art
approaches are compared: the nonlocal methods PPBit [18], SAR-BM3D
[42], and our previous FoE-based despeckling work [12]. Moreover, consider-
ing that the proposed model is essentially a diffusion process, we also employ
the traditional Γ-Map filter [36] and some related anisotropic diffusion ap-
proaches for comparison, e.g., speckle reducing anisotropic diffusion (SRAD)
[53] and detail preserving anisotropic diffusion (DPAD) [3]. The correspond-
ing codes are downloaded from the authors’ homepage, and we use them as is.
Note that the two excellent variational methods [21] and [28] mainly focus on
the restoration of images that are simultaneously blurred and corrupted by
multiplicative noise. Even though these two papers also work for the prob-
lem of pure multiplicative noise reduction, the more advanced approaches
such as patch-based method PPBit or SAR-BM3D for multiplicative noise
removal could have better results. In [21], a TV regularized variational model
is exploited, which is a pair-wise model and inevitably suffers from the well-
known stair-case effect. In our model, we exploited a much more effective
image regularization term with larger clique and adjustable potential func-
tions. In [28], the nonlocal filtering algorithm proposed in [49] is exploited
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to accomplish the first step for removing multiplicative noise. The nonlocal
filtering algorithm [49] makes use of the same framework as PPBit, but inves-
tigates a different similarity measure in the presence of multiplicative noise.
It is stated in [19] that the nonlocal filtering algorithms [49] and PPBit both
have the same performance. As a consequence, we only provide compari-
son to those algorithms PPBit, SAR-BM3D and FoE-based methods, which
generally perform better than [21] and [28].

These methods are evaluated on several real SAR images and synthesized
images with speckle noise using 68 optical images originally introduced by
[46], which have been widely exploited for Gaussian denoising. To provide
a comprehensive comparison, the test number of looks are distributed be-
tween 1 to 8. For the quality assessment of despeckling methods, we closely
follow the indexes employed in [6]. Two classes of indexes are involved: full-
reference quality indexes for simulated SAR images and no-reference quality
indexes for real SAR images. Three commonly used with-reference indexes
are taken to evaluation, i.e., PSNR, the mean structural similarity index
(MSSIM) [52] and the edge correlation (EC) [47] [2]. The MSSIM underlines
the perceived changes in structural information after despeckling. MSSIM
takes values over the interval [0,1], where 0 and 1 indicate no structural sim-
ilarity and perfect similarity, respectively. The EC index is a measure of
edge preservation between the high-pass versions of the original and filtered
images. Larger values correspond to a better edge retaining ability of the
despeckling method.

For without-reference indexes, we employ the mean RIM and the variance
RIV of the ratio image RI [41]. The ideal values of RIM and RIV are one
and (4/π − 1)/L respectively for an L−look amplitude SAR image [41]. We
also employ the comparison between the coefficient of variation calculated
on the despeckled image, namely Cû, and its expected theoretical value on
the noise-free image, Cu [51]. The coefficient of variation is a widespread
indicator of texture preservation. Theoretically speaking, the value of Cû
should be close to Cu. If Cû departs significantly from Cu the texture is
certainly altered.

In the following, the nonlinear diffusion process of stage T with filters of
size m×m is expressed as TRDMDT

m×m whose number of filters is m2− 1 in
each stage, if not specified.

To generate the training data for the simulation denoising experiments, we
cropped a 256×256 pixel region from each image of the Berkeley segmentation
dataset [38], resulting in a total of 400 training samples of size 256 × 256. We
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Figure 4: Performance comparison between the proposed diffusion model TRDMD5
5×5 and

Model (3.3) for despeckling. The peak values of the test images are distributed between
0.5∼255.

also employ different amounts of training samples to observe the denoising
performance comparison, as shown in Fig. 5(a). Note that the PSNR values
in the following three subsections are evaluated by averaging denoised results
of 68 test images. For simplicity the value of L is set as 8 in the following
three contrastive analysises, without loss of generality.

4.1. The Experimental Comparison Between the Diffusion Model (3.3) and
TRDMD

In this subsection, we conducted experiments based on the diffusion model
(3.3), and compared its performance with the proposed model TRDMD in
this study. For the sake of fairness, these methods are evaluated on syn-
thesized images with speckle noise using 68 optical images, just as in the
submitted paper. The test number of looks L is set as 1. In order to perform
a fast comparison, we employ the filter size 5 × 5 and stage = 5 to setup
the training models. Two cases as follows are considered for experimental
analysis.

Case 1:
In this case, we take experiments directly on the 68 optical images whose

minimum pixel value for each image is 1. The PSNR value obtained by the
Model (3.3) is 24.30dB, just the same as TRDMD5

5×5, indicating that the
Model (3.3) also works for images with pixel values bigger than 1.

Case 2:
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In this case, we set the maximum value (peak value) of each of the 68
optical images to be 0.5∼255 by dividing the ground-truth image ugt by a
factor n, i.e., ugt = ugt

n
. The obtained PSNR values along with the peak values

are presented in Figure 4. From Figure 4 we can see that the gap between
the two models decreases as the peak value increases. For lower peak values,
the number of pixels that are smaller than 1 is bigger, leading to worse PSNR
performance for Model (3.3). Especially, there is an inflection point around
peak value 6. At this point, the number of pixels that are smaller than 1
becomes so large that the performance of Model (3.3) is degraded obviously.

In summary, in order to perform a stable training, we have to set c =
1. However, the hard projection operation u = max(u, 1) will obviously
manipulate some of the pixels, because it will set those pixels that should
be 0 or very close to 0 to be 1. If the number of those pixels is relatively
small, it is not a problem. However, if there is a large number of dark areas
in the target image, e.g., for the case of real SAR images, the projection
u = max(u, 1) will significant affect the despeckled results. As a consequence,
the despeckling performance will degrade dramatically. In an extreme case,
if we carry out a toy test on a constant image whose size is 256 × 256 and
pixel value is 0.5. The PSNR value obtained by the Model (3.3) is -0.01dB.
However, the PSNR value obtained by TRDMD5

5×5 is 20.04dB, which is much
higher than the Model (3.3).

Therefore, we mainly exploited the model TRDMD in this study.

4.2. Influence of The Number of Training Samples

In this subsection, we evaluate the despeckling performance of trained
models using different amounts of training samples for TRDMD5

5×5.
The results are summarized in Fig. 5(a), from which one can see that

too small training set will result in over-fitting which leads to inferior PSNR
value. By observation, 400 images are typically enough to provide reliable
performance.

4.3. Influence of filter size

In this subsection, we investigate the influence of the filter size on the
despeckling performance in Fig. 5(b). The diffusion stages are set as 5, and
400 images are used for training.

One can see that increasing the filter size keeps bringing improvement.
However, the rate of increase in PSNR becomes relatively slower for larger
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Figure 5: (a) Influence of the number of training examples. (b) Influence of the filter size.
(c) Influence of the number of diffusion stages.

filter size. Balancing the training time and the performance improvement,
we choose the TRDMDT

7×7 model in our experiments.

4.4. Influence of Diffusion Stages

In this study, any number of diffusion stages can be exploited in our
model. But in practice, the trade-off between run time and accuracy should
be considered. Therefore, we need to study the influence of the number of
diffusion stages on the denoising performance. TRDMDT

5×5 and 400 images
are used for training.

As shown in Fig. 5(c), the performance improvement becomes quite in-
significant when the diffusion stages ≥ 10. In order to save the training time,
we choose diffusion stage = 10 in the following experiments as it provides the
best trade-off between performance and computation time.

4.5. Experimental Results

By analyzing the above three subsections, we decide to employ TRDMD10
7×7

model and 400 images for training. Note that, the diffusion model needs to
be trained respectively for different number of looks.

4.5.1. Comparison with Traditional Anisotropic Diffusion Based Approaches

In this subsection, we compare the proposed despeckling model with the
Γ-Map filter [36] and some related anisotropic diffusion approaches, e.g.,
speckle reducing anisotropic diffusion (SRAD) [53] and detail preserving
anisotropic diffusion (DPAD) [3]. Moreover, to ensure that SRAD and DPAD
achieve their best performance respectively, we set a time step ∆t = 0.2 and
run 400-3000 iterations for different noise levels.
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(a) Mountain (b) Noisy image. L = 1 (c) Γ-Map (22.49/0.578/0.182)

(d) SRAD ( 23.47/0.728/0.300) (e) DPAD (23.54/0.729/0.318) (f) TRDMD10
7×7

(26.80/0.752/0.461)

Figure 6: Despeckling of Mountain with L = 1. The results are reported by
PSNR/MSSIM/EC index. Best results are marked.

L=1 L=3 L=5 L=8
PSNR/MSSIM/EC PSNR/MSSIM/EC PSNR/MSSIM/EC PSNR/MSSIM/EC

Γ-Map 21.02/0.513/0.238 23.46/0.651/0.394 24.70/0.708/0.469 25.97/0.757/0.540
SRAD 24.82/0.686/0.465 25.42/0.738/0.489 26.92/0.790/0.570 28.25/0.819/0.639
DPAD 24.78/0.681/0.473 25.48/0.735/0.499 27.00/0.789/0.577 28.29/0.818/0.643

TRDMD10
7×7 24.95/0.678/0.479 27.28/0.775/0.630 28.53/0.819/0.700 29.70/0.852/0.754

Table 1: Comparison of the performance of the test algorithms in terms of PSNR, MSSIM
and EC. Best results are marked.

By observation on despeckling performances in Fig. 6 and Fig. 7, we can
see that in comparison with the Γ-Map filter, the other three methods show
superior performance on edge localization and detail preservation. However,
the unnatural smoothness introduced after iterative processing makes SRAD
and DPAD produce cartoon-like images, i.e., made up by textureless geomet-
ric patches. Therefore, SRAD and DPAD may be unsuitable for practical
application, because fine details and textures that may be useful for analysis
are destroyed. On the contrary, the proposed method produces more natural
results in visual quality and preserves more detailed information.

Quantitative evaluation results are shown in Table 1. Overall speaking,
DPAD gives slightly better results than SRAD in terms of evaluation indexes.
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(a) water castle (b) Noisy image. L = 3 (c) Γ-Map

(23.27/0.687/0.420)

(d) SRAD

(25.38/0.799/0.525)

(e) DPAD

(25.45/0.799/0.532)

(f) TRDMD10
7×7

(27.20/0.817/0.647)

Figure 7: Despeckling of Tower with L = 3. The results are reported by
PSNR/MSSIM/EC index. Best results are marked.

Meanwhile, Table 1 show that the best indexes are provided by the proposed
model, indicating that the proposed model is more powerful in structural and
edge preservation.

4.5.2. Comparison with State-of-the-art Despeckling Approaches

In this subsection, we compare the proposed despeckling model with sev-
eral state-of-the-art despeckling approaches, i.e., the nonlocal methods PPBit
[18], SAR-BM3D [42], and our previous FoE-based despeckling work [12].

Examining the recovery images with L = 1 in Fig. 8, we see that in
comparison with PPBit and FoE, the proposed method and SAR-BM3D work
better at capturing textures, details and small features. On the other hand,
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(a) Flower (b) Noisy image. L = 1 (c) PPBit (23.22/0.595/0.278)

(d) SAR-BM3D

(24.40/0.672/0.354)

(e) FoE (24.08/0.637/0.388) (f) TRDMD10
7×7

(24.53/0.675/0.392)

Figure 8: Despeckling of Flower with L = 1. The results are reported by
PSNR/MSSIM/EC index. Best results are marked.

L=1 L=3 L=5 L=8
PSNR/MSSIM/EC PSNR/MSSIM/EC PSNR/MSSIM/EC PSNR/MSSIM/EC

Noisy 12.95/0.223/0.148 17.42/0.378/0.255 19.59/0.460/0.322 21.61/0.535/0.393
PPBit 23.78/0.590/0.346 25.95/0.713/0.487 26.95/0.763/0.549 27.86/0.803/0.602

SAR-BM3D 24.85/0.676/0.455 27.12/0.776/0.605 28.27/0.818/0.669 29.35/0.852/0.723
FoE 24.65/0.669/0.493 27.07/0.763/0.637 28.32/0.812/0.698 29.54/0.848/0.753

TRDMD10
7×7 24.95/0.678/0.479 27.28/0.775/0.630 28.53/0.819/0.700 29.70/0.852/0.754

Table 2: Comparison of the performance of the test algorithms in terms of PSNR, MSSIM
and EC. Best results are marked.

in comparison with SAR-BM3D, the proposed method recovers clearer edges
and is relatively less disturbed by artifacts. As shown in Fig. 8(d)-Fig. 11(d)
the despeckled results of SAR-BM3D are affected by the structured signal-like
artifacts that appear in homogeneous areas of the image. This phenomenon
is originated from the selection process in the BM3D denoising process. The
selection process is easily influenced by the noise itself, especially in flat areas
of the image, which can be dangerously self-referential.

In Fig. 9-Fig. 10 are reported the recovered results for L = 5. For better
visual comparison, we also provide the magnified results within the red rect-
angles shown in Fig. 9. By observation, one can see that the performance of
TRDMD10

7×7 is better than FoE and SAR-BM3D on detail preservation. In the
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(a) Race (b) Noisy image. L = 5 (c) PPBit (26.80/0.722/0.616)

(d) SAR-BM3D

(28.06/0.769/0.714)

(e) FoE (27.94/0.755/0.745) (f) TRDMD10
7×7

(28.36/0.772/0.751)

Figure 9: Despeckling of Race with L = 5. The results are reported by PSNR/MSSIM/EC
index. Best results are marked.

visual quality, the typical structured artifacts encountered with the BM3D-
based algorithm do not appear when the proposed method TRDMD10

7×7 is
used. Moreover, our method works better in geometry-preserving than FoE,
which can be visually perceived by comparison on (e) and (f) in Fig. 10. Ac-
tually, one can see that functional (2.9) is exactly the fields of experts (FoE)
image prior regularized variational model for image restoration. However,
in the TRDMD10

7×7 model, both the linear filters and influence functions are
trained and optimized, which is the critical factor for the effectiveness of the
proposed diffusion despeckling model. This critical factor of the optimized
diffusion model is quite different from the FoE prior based variational model
and traditional convolutional networks, where only linear filters are trained
with fixed influence functions.

The recovery error in terms of PSNR (in dB) and MSSIM are summarized
in Table 2. Comparing the indexes in Table 2, the overall performance of
TRDMD10

7×7 in terms of PSNR/MSSIM is better than the other methods.
This indicates that for most images our method is powerful in the recover
quality and geometry feature preservation. Overall speaking, the proposed
model and SAR-BM3D perform better than the other test methods in terms
of texture and detail preservation, as illustrated in the MSSIM index. In
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(a) Race (b) Noisy image. L = 5 (c) PPBit

(d) SAR-BM3D (e) FoE (f) TRDMD10
7×7

Figure 10: The magnified despeckling results within the red rectangle in Fig. 9(a).

addition, according to the EC index, the proposed model preserves more
clearer edges in comparison with SAR-BM3D.

We also present the despeckling results for real SAR amplitude images
in Fig. 11-Fig. 12. The test four SAR images are as follows: 1) single-look
Radarsat-1 image of Vancouver (Canada) in Fig. 11, identified as V ancouver;
2) single-look SAR images identified as Bayard and Cheminot from Saint-
Pol-sur-Mer (France), sensed in 1996 by RAMSES of ONERA, as shown
in Fig. 11; and 3) six-look AirSAR cropland scene identified as Cropland,
as shown in Fig. 12. By closely visual comparison, we can observe that
TRDMD10

7×7 recovers clearer texture and sharper edges. Especially for the
tiny features, TRDMD10

7×7 is able to catch but the other methods neglects
them. Although these features are not quite obvious, the trained diffusion
model still extracts them and exhibit these features apparently.

Table 3 lists the three without-reference indexes of the different algorithms
on four real SAR images. Comparing the indexes in Table 3, one can see that
no algorithm is predominant in the despeckling performance. However, over-
all speaking, the proposed model provides most preferable results in terms of
the evaluation indexes. Overall speaking, the proposed model provides com-
parable or even better results than the test state-of-the-art methods, both in
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Image Index Ideal PPBit BM3D FoE TRDMD
RI M 1 0.862 0.873 0.913 0.900

V ancouver RI V 0.273 0.198 0.179 0.195 0.179
Cu 0.304 0.236 0.284 0.281 0.314

RI M 1 0.861 0.850 1.020 0.859
Bayard RI V 0.273 0.178 0.157 0.073 0.203

Cu 0.770 0.744 0.736 0.838 0.750
RI M 1 0.863 0.837 1.027 0.847

Cheminot RI V 0.273 0.165 0.147 0.060 0.203
Cu 0.844 0.848 0.808 0.932 0.829

RI M 1 0.974 0.969 0.965 0.973
Cropland RI V 0.046 0.037 0.038 0.028 0.048

Cu 0.337 0.412 0.415 0.426 0.423

Table 3: Comparison of the performance of the test algorithms on real SAR images. Best
results are marked. Note that in the table BM3D refers to SAR-BM3D method and
TRDMD denotes TRDMD10

7×7.

visual effects and the numerical indexes.

4.5.3. Run Time

The proposed method merely contains convolution of linear filters with an
image, which offers high computation efficiency and high levels of parallelism
making it well suited for GPU implementation. More precisely, the proposed
model can not only run fast on CPU especially when the 2-D convolution
is efficiently realized by FFT, but also be implemented using GPU. Even
without GPU, the proposed model is efficient enough.

In Table 4, we report the typical run time of our model for the images
of two different dimensions for the case of L = 8. It is worthy noting that
the FoE-based method needs more iterations to converge if the noise level
is higher. Therefore, for L = 1, 3 or 5, the consuming time of FoE-based
method is more than L = 8. We also present the run time of four com-
peting algorithms for a comparison. Note that the method FANS [15] is
the improved version of SAR-BM3D, at the expense of slight performance
degradation. Meanwhile, the main body of SAR-BM3D, PPBit and FANS
are all implemented in C language. All the methods are run in Matlab with
single-threaded computation for CPU implementation.

Due to the structural simplicity of our model, it is well-suited to GPU
parallel computation. We are able to implement our algorithm on GPU with
ease. It turns out that the GPU implementation based on NVIDIA Geforce
GTX 780Ti can accelerate the inference procedure significantly, as shown
in Table 4. By comparison, we see that our TRDMD10

7×7 model is generally
faster than the other methods, especially with GPU implementation. This is
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SAR-BM3D FANS PPBit FoE (L=8) TRDMD10
7×7

256× 256 42.4 3.71 13.2 14.86(0.12) 3.05 (0.03)
512× 512 169.1 14.40 48.9 59.43(0.37) 9.33 (0.09)

Table 4: Typical run time (in second) of the Despeckling methods for images with two dif-
ferent dimensions. The CPU computation time is evaluated on Intel CPU X5675, 3.07GHz.
The highlighted number is the run time of GPU implementation based on NVIDIA Geforce
GTX 780Ti.

reasonable because the PPBit and SAR-BM3D are based nonlocal approach
with high computation complexity. For FoE-based method, the required
maximum number of iterations is 120 for L = 8, 150 for L = 5, 300 for
L = 3 and 600 for L = 1. On the contrary, our TRDMD10

7×7 model needs
only 10 iteration steps with similar amount of computations at each step in
comparison with FoE.

5. Conclusion

In this study we proposed a simple but effective despeckling approach with
both high computational efficiency and comparable or even better results
than state-of-the-art approaches. We achieve this goal by exploiting the
newly-developed trainable nonlinear reaction diffusion model. The linear
filters and influence functions in the model are simultaneously optimized by
taking into account the speckle noise statistics.

The proposed model merely contains convolution of linear filters with
an image, which offers high computation efficiency on CPU. Moreover, high
levels of parallelism in the proposed model make it well suited for GPU imple-
mentation. Therefore, the proposed model is able to deal with massive-scale
and huge amount of data. In comparison with several related anisotropic
diffusion despeckling approaches with handcrafted filters and unique influ-
ence function, e.g., SRAD and DPAD, the proposed model provides a much
enhanced performance in both visual effects and evaluation indexes. In com-
parison with the nonlocal-based PPBit and SAR-BM3D methods, the pro-
posed model bears the properties of simple structure and high efficiency with
strongly competitive despeckling performance.

Note that, the training data is our study is natural images. Hence, the
despeckling performance on real SAR images could be enhanced if the remote
sensing dataset is employed for training.
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(a) V ancouver. L = 1 (b) Bayard. L = 1 (c) Cheminot. L = 1

Figure 11: Despeckling of real SAR images with L = 1. The employed methods are PPBit
(the second row), SAR-BM3D (the third row), FoE (the fourth row) and the proposed
TRDMD10

7×7 (the fifth row). 33



(a) Cropland. L = 6 (b) PPBit

(c) SAR-BM3D (d) FoE (e) TRDMD10
7×7

Figure 12: Despeckling of Cropland with L = 6.
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