Skip to main content
Log in

An Algorithmic Framework of Generalized Primal–Dual Hybrid Gradient Methods for Saddle Point Problems

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The primal–dual hybrid gradient method (PDHG) originates from the Arrow–Hurwicz method, and it has been widely used to solve saddle point problems, particularly in image processing areas. With the introduction of a combination parameter, Chambolle and Pock proposed a generalized PDHG scheme with both theoretical and numerical advantages. It has been analyzed that except for the special case where the combination parameter is 1, the PDHG cannot be casted to the proximal point algorithm framework due to the lack of symmetry in the matrix associated with the proximal regularization terms. The PDHG scheme is nonsymmetric also in the sense that one variable is updated twice while the other is only updated once at each iteration. These nonsymmetry features also explain why more theoretical issues remain challenging for generalized PDHG schemes; for example, the worst-case convergence rate of PDHG measured by the iteration complexity in a nonergodic sense is still missing. In this paper, we further consider how to generalize the PDHG and propose an algorithmic framework of generalized PDHG schemes for saddle point problems. This algorithmic framework allows the output of the PDHG subroutine to be further updated by correction steps with constant step sizes. We investigate the restriction onto these step sizes and conduct the convergence analysis for the algorithmic framework. The algorithmic framework turns out to include some existing PDHG schemes as special cases, and it immediately yields a class of new generalized PDHG schemes by choosing different step sizes for the correction steps. In particular, a completely symmetric PDHG scheme with the golden-ratio step sizes is included. Theoretically, an advantage of the algorithmic framework is that the worst-case convergence rate measured by the iteration complexity in both the ergodic and nonergodic senses can be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We analyzed the case \(\tau \in [-1,1]\) in [16]; but for simplicity we only focus on \(\tau \in [0,1]\) in this paper.

References

  1. Arrow, K.J., Hurwicz, L., Uzawa, H.: Studies in linear and non-linear programming. In: Chenery, H.B., Johnson, S.M., Karlin, S., Marschak, T., Solow, R.M. (eds.) Stanford Mathematical Studies in the Social Science, vol. II. Stanford University Press, Stanford (1958)

    Google Scholar 

  2. Blum, E., Oettli, W.: Mathematische Optimierung Grundlagen und Verfahren. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  3. Bonettini, S., Ruggiero, V.: On the convergence of primal–dual hybrid gradient algorithms for total variation image restoration. J. Math. Imaging Vis. 44, 236–253 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  5. Chambolle, A., Pock, T.: A first-order primal–dual algorithms for convex problem with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal–dual algorithm. Math. Program. 159, 253–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chambolle, A., Pock, T.: A remark on accelerated block coordinate descent for computing the proximity operators of a sum of convex functions. SMAI J. Comput. Math. 1, 29–54 (2015)

    Article  Google Scholar 

  8. Condat, L.: A primal–dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158, 460–479 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Douglas, J., Rachford, H.H.: On the numerical solution of the heat conduction problem in 2 and 3 space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  10. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal–dual algorithms for TV minimization. SIAM J. Imaging Sci. 3, 1015–1046 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer Series in Operations Research, vol. I. Springer, New York (2003)

    MATH  Google Scholar 

  12. Glowinski, R., Marrocco, A.: Approximation par éléments finis d’ordre un et résolution par pénalisation-dualité d’une classe de problèmes non linéaires. RAIRO R2, 41–76 (1975)

    MATH  Google Scholar 

  13. Goldstein, T., Li, M., Yuan, X.M.: Adaptive primal-dual splitting methods for statistical learning and image processing. In: Advances in Neural Information Processing Systems, pp. 2089–2097 (2015)

  14. Gol’shtein, E.G., Tret’yakov, N.V.: Modified Lagrangian in convex programming and their generalizations. Math. Program. Study 10, 86–97 (1979)

    Article  MathSciNet  Google Scholar 

  15. He, B.S., You, Y.F., Yuan, X.M.: On the convergence of primal–dual hybrid gradient algorithm. SIAM J. Imaging Sci. 7, 2526–2537 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, B.S., Yuan, X.M.: Convergence analysis of primal–dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imaging Sci. 5, 119–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, B.S., Yuan, X.M.: On the \(O(1/n)\) convergence rate of Douglas–Rachford alternating direction method. SIAM J. Numer. Anal. 50, 700–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, B.S., Yuan, X.M.: On non-ergodic convergence rate of Douglas–Rachford alternating directions method of multipliers. Numer. Math. 130, 567–577 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  20. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mat. Metod. 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  21. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Martinet, B.: Regularization d’inequations variationelles par approximations successives. Rev. Fr. Inform. Rech. Oper. 4, 154–159 (1970)

    MATH  Google Scholar 

  23. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal–dual algorithms in convex optimization. In: IEEE International Conference on Computer Vision, pp. 1762–1769 (2011)

  24. Popov, L.D.: A modification of the Arrow–Hurwitz method of search for saddle points. Mat. Zamet. 28(5), 777–784 (1980)

    MathSciNet  MATH  Google Scholar 

  25. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 227–238 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shefi, R.: Rate of convergence analysis for convex non-smooth optimization algorithms. PhD Thesis, Tel Aviv University, Israel (2015)

  27. Weiss, P., Blanc-Feraud, L., Aubert, G.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31(3), 2047–2080 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, X., Burger, M., Osher, S.: A unified primal–dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1), 20–46 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, M., Chan, T.F.: An efficient primal–dual hybrid gradient algorithm for total variation image restoration. CAM Report 08–34,UCLA, Los Angeles, CA (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Yuan.

Additional information

Bingsheng He was supported by the NSFC Grants 11471156 and 91530115, Feng Ma was supported by the NSFC Grant 71401176 and Xiaoming Yuan was supported by the General Research Fund from Hong Kong Research Grants Council: HKBU12300515.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Ma, F. & Yuan, X. An Algorithmic Framework of Generalized Primal–Dual Hybrid Gradient Methods for Saddle Point Problems. J Math Imaging Vis 58, 279–293 (2017). https://doi.org/10.1007/s10851-017-0709-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0709-5

Keywords

Navigation