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Abstract

Transport based distances, such as the Wasserstein distance and earth mover'sdistance, have been 

shown to be an effective tool in signal and image analysis. The success of transport based 

distances is in part due to their Lagrangian nature which allows it to capture the important 

variations in many signal classes. However these distances require the signal to be nonnegative and 

normalized. Furthermore, the signals are considered as measures and compared by redistributing 

(transporting) them, which does not directly take into account the signal intensity. Here we study a 

transport-based distance, called the TLp distance, that combines Lagrangian and intensity 

modelling and is directly applicable to general, non-positive and multi-channelled signals. The 

distance can be computed by existing numerical methods. We give an overview of the basic 

properties of this distance and applications to classification, with multi-channelled non-positive 

one-dimensional signals and two-dimensional images, and color transfer.

1 Introduction

Enabled by advances in numerical implementation [4, 5, 16, 53, 71, 74], and their 

Lagrangian nature, transportation based distances for signal analysis are becoming 

increasingly popular in a large range of applications. Recent applications include astronomy 

[9, 18, 19], biomedical sciences [3, 25–27, 77, 81, 82, 88, 89], colour transfer [14, 17, 49, 

62, 63], computer vision and graphics [7, 44, 60, 65, 68, 74, 75], imaging [36, 40, 64], 

information theory [78], machine learning [1, 15, 20, 34, 37, 48, 76], operational research 

[69] and signal processing [54, 58].

The success of transport based distances is due to the large number of applications that 

consider signals that are Lagrangian in nature (spatial rearrangements, i.e. transport, are a 

key factor when considering image differences). Many signals contain similar features for 

which transport based distances will outperform distances that only consider differences in 

intensity, such as the Lp distance. Optimal transport (OT) distances, for example the earth 

mover'sdistance or Wasserstein distance, are examples of transport distances. However these 

distances do not directly account for signal intensity. The Lp distance is the other extreme, 

this distance is based on intensity and does not take into account Lagrangian properties.

In this paper we develop the TLp distance introduced in [21] which combines both 

Lagrangian and intensity based modeling. Our aim is to show that by including both 

transport and intensity within the distance we can better represent the similarities between 
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classes of data in many problems. For example, if a distance can naturally differentiate 

between classes, that is the within class distance is small compared to the between class 

separation, then the classification problem is made easier. This requires designing distances 

that can faithfully represent the structure within a given data set.

In the majority of the literature optimal transport distances interpret signals as either 

probability measures or as densities of probability measures. This places restrictions on the 

type of signals one can consider. Probability measures must be non-negative, integrate to 

unity and be real valued (i.e. cannot be applied to multi-channelled signals). In order to 

apply OT distances to a wider class of signals one has to use ad-hoc methods, which do not 

necessarily preserve metric properties, to transform the signal into a probability measure. 

This can often dampen the features, for example renormalization may reduce the intensity 

range of a signal. We do however note the works of Liero, Mielke and Savaré [42, 43], 

Chizat, Peyré, Schmitzer and Vialard [13, 14] and Kondratyev, Monsaingeon and Vorotnikov 

[38] who develop an optimal transport metric that is applicable to un-normalised positive 

measures. Similarly Pele and Wermen propose a variant of the earth movers distance that is 

applicable to un-normalised positive measures [59]. Whilst these are also promising avenues 

research there are still restrictive assumptions, such as signals must be non-negative and real 

valued, required in order to apply these distances.

Extensions to matrix valued optimal transport have been made in [11, 12, 52]. In [52] the 

authors propose a method for defining an optimal transport distance between matrix valued 

densities. As in the scalar valued case for a suitable class of matrix valued densities there 

exists a non-empty set of couplings. A matrix valued optimal transport distance is defined by 

minimising over the set of couplings a cost function that penalises both the transport of mass 

and rotations of the coupling. Similar ideas in [11, 12] use an analogue of the Brenier and 

Benamou formulation of optimal transport [4] to define a matrix valued optimal transport 

distance. Whilst these distances are applicable to matrix valued signals they still require the 

assumption of positivity (in this case positive definite). These distances are also specific to n 
× n matrices which does not include vectors.

The TLp distance does not need the signal to be a probability measure and therefore the 

above restrictions do not apply. Rather, the TLp distance models the intensity directly. The 

applicability of the distance is sufficiently general as to include non-positive, multi-

channelled and un-normalised signals on discrete or continuous domains.

Another property of OT distances, due to the lack of intensity modeling, is its insensitivity to 

high frequency perturbations. This is due to transport being on the order of the wavelength 

of the perturbation. Depending upon the application this can be an advantage or a 

disadvantage. For example in texture modeling one would want to be able to discriminate 

between a highly oscillating image and a constant image. On the other hand, the lack of 

sensitivity to high frequency noise, make the OT distance stable under such perturbations. 

Since the TLp distance directly models intensity then it inherits sensitivity to high frequency 

noise.
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The aim of this paper is to develop the TLp distance and demonstrate its applicability in a 

range of applications. We consider classification problems on data sets where we show that 

the TLp distance better represents the underlying geometry, i.e. achieves a better between 

class to within class distance, than popular alternative distances.

We also consider the colour transfer problem in a context where spatial information, as well 

as intensity, is important. To apply standardised tests in applications such as medical 

imaging it is often necessary to normalise colour variation [33, 45, 73]. One solution is to 

match the means and variance of each colour channel (in some colour space e.g. RGB or 

LAB). However, by transferring the colour of one image onto the other it is possible to 

recolour an image with exactly the same colour profile.

A popular method is to use the OT distance on the histogram of images [14, 17, 49, 62, 63]. 

This allows one to take into account the intensity of pixels but includes no spatial 

information. The TLp distance is able to include both spatial and intensity information.

Our methodology, therefore, has more in common with registration methods that aim to find 

a transformation that maximizes the similarity between two images where our measure of 

similarity includes both spatial and intensity information. One should compare our approach 

to [27] where the authors develop a numerical method for the Monge formulation of OT 

with the addition of an intensity term for image warping and registration. However, unlike 

the method presented in [27], the formulation presented here defines a metric.

Paper Overview

The outline for this paper is the following. In the next section we review OT and give a 

formal definition of the TLp distance followed by examples to illustrate its features and to 

compare with the OT and Lp distances. In Section 3 we give a more general definition and 

explain some of its key properties. In Section 4 we include applications of the TLp distances. 

We first consider classification on synthetic and real- world signals and images. The data 

sets contain non-positive and un-normalised signals in either one or two dimensions. In 

addition one of the data sets is multi-channelled. A further application to the colour transfer 

problem is then given. Conclusions are given in Section 5.

2 Formal Definitions and Examples

2.1 Review of Optimal Transport and the TLp Distance

We begin by reviewing optimal transport in first the Kantorovich formulation and then the 

Monge formulation.

The Kantorovich Formulation of Optimal Transport—For measures μ and ν on Ω ⊂ 
ℝd with the same mass and a continuous cost function c: Ω × Ω → [0, ∞) the Kantorovich 

formulation of OT is given by
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OT μ, ν = min
π ∫

Ω × Ω
c x, y dπ x, y (1)

where the minimum is taken over probability measures π on Ω × Ω such that the first 

marginal is μ and the second marginal is ν, i.e. π (A × Ω) = μ (A) and π (Ω × B) = ν(B) for 

all open sets A and B. We denote the set of such π by П(μ, ν). We call measures π ∈ П(μ, 

ν) transport plans since π (A × B) is the amount of mass in A that is transferred to B. 

Minimizers π* of OT(μ, ν), which we call optimal plans, exist when c is lower semi-

continuous [84, Theorem 4.1]. When c is a metric OT(μ, ν) is also known as the earth 

mover's distance.

A common choice is c x, y = x − y p = ∑i = 1
d xi − yi

p in which case we define 

dOT μ, ν = OT μ, νp . When p = 2 this is known as the Wasserstein distance. We will call 

dOT the OT distance. With an abuse of notation we will sometimes write dOT(f, g) when μ 
and ν have densities f and g respectively.

When μ has a continuous density then the support of any optimal plan π* is contained on the 

graph of a function T*. In particular this implies π*(A, B) = μ ({x : x ∈ A, T*(x) ∈ B}) and 

furthermore that the optimal plan defines a mapping between μ and ν, see for example 

Figure 1a. This leads us to the Monge formulation of OT.

The Monge Formulation of Optimal Transport—An appealing property of optimal 

transport distances are their formulation in a Lagrangian setting. One can rewrite the optimal 

transport problem in the Monge formulation as

OTM μ, ν = inf
T
∫

Ω × Ω
c x, T x dμ x (2)

where the infimum is taken over transport maps T : Ω→ Ω that rearrange μ into ν, i.e. ν = 

T#μ where we define the pushforward of μ onto the range of T by T#μ(A) = μ(T−1(A)), see 

Figure 1b. Historically the Monge formulation comes before the Kantorovich formulation; 

Monge formulated OT for the cost function c(x, y) = |x − y| in 1781 [47] and Kantorovich 

formulated OT (whilst being unaware of Monge's work) in 1942 [31]. In 1948 Kantorovich 

made the connection between his work and Monge's [32].

The Monge formulation is a non-convex optimization problem with nonlinear constraints. 

However when, for example, μ and ν have densities, then optimal transport maps T* exist 

and give a natural interpolation between two measures. In particular when c(x, y) = |x − y|p 

the map Tt(x) = (1 – t)x + tT* (x) describes the path of particle x and furthermore the 

measure of μ pushed forward by Tt is the geodesic (shortest path) between μ and ν. This 

property has had many uses in transport based morphometry applications such as biomedical 
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[3, 55, 80, 85], super-resolution [36] and has much in common with large deformation 

diffeomorphism techniques in shape analysis [23, 29].

Optimal Transport in Signal and Image Processing—To further motivate our 

development of the TLp distance we point out some features of optimal transport important 

to signal and image processing. We refer to [35] and references therein for more details and 

a review of the subject.

Key to the success of OT is the ability to provide generative models which accurately 

represent various families of data distributions. The success and appeal of OT owes to (1) 

ability to capture well the signal variations due to spatial rearrangements (shifts, translations, 

transport), (2) that OT distances are theoretically well understood and have appealing 

features (for example the Wasserstein distance has a Riemannian structure and geodesics can 

be characterized), (3) efficiency and accuracy of numerical methods, (4) simplicity 

compared to other Lagrangian methods such as large deformation diffeomorphic metric 

mapping.

The Monge formulation of OT defines a mapping between images which has been used in, 

for example, image registration [24–27, 50, 82, 89] where one wishes to find a common 

geometric reference frame between two or more images. In addition to the properties listed 

above the success of OT is due to the fact that (5) the Monge problem is symmetric (i.e. if T 
is the optimal map from the first image to the second, then T−1 is the optimal map from the 

second image to the first) and (6) OT provides a landmark-free and parameter-free 

registration scheme.

We now introduce the TLp distance in the simplest setting.

The Transportation Lp Distance—In this paper we use the TLp distance (given in more 

generality in the next section), for functions f, g : Ω → ℝm defined by

dTL
p f , g = min

π ∫Ω × Ω
x − y p + f x − g y pdπ x, y

where the minimum is taken over all probability measures π on Ω × Ω such that both the 

marginals are the Lebesgue measure ℒ on Ω, i.e. π ∊(ℒ, ℒ). This can be understood in the 

following two ways.

The first is as an optimal transport distance of the Lebesgue measure with itself and cost c(x, 

y) = |x − y|p + |f(x) − g(y)|p. This observation allows one to apply existing numerical 

methods for OT where the effective dimension is d (recall that Ω ⊆ ℝ d). For example, the 

Sinkhorn framework can be adapted to compute an entropy regularised approximation of the 

TLp distance, see Appendix B. 2 for more details.

The second is as an OT distance between the Lebesgue measure raised onto the graphs of f 
and g. That is, given f, g : Ω → ℝm then we define the measures μ̃, ν̃ on the graphs of f and 

g by
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μ∼ A × B = ℒ x: x ∈ A, f x ∈ B

and

ν∼ A × B = ℒ y: y ∈ A, g y ∈ B

for any open sets A ⊆ Ω, B ⊆ ℝm. For example, given the function f : [0,1] → [0,1] defined 

by f(x) = x and the Lebesgue measure on [0,1], the pushforward of the measure μ onto the 

graph of f is the measure μ∼ C = 1
2Length x: x, x ∈ C  for any (measurable) C ⊂ [0,1]2; it 

is intuitive that μ̃(C) should be proportional to Length({x : (x, x) ∈ C}), the constant of 

proportionality comes from μ∼ 0, 1 2 = μ 0, 1 = 1. See also Figure 1b for an example 

where the measure μ is Gaussian. The TLp distance between f and g is then the OT distance 

between μ̃ and ν̃.

Transport (i.e. matching) with respect to the TLp distance is of the form (x, f (x)) ↦ (y, 

g(y)) and therefore has two components. We refer to horizontal transport as the transport x 
↦ y in Ω, and vertical transport as the transport f (x) ↦ g(y).

Although the TLp distance is a special case of OT we will, in order to make a clearer 

distinction between classical OT distances and the TLp distance, assume that c(x, y) = |x − y|
p in (1).

In the next section we discuss the behaviour of the TLp distance through three examples.

2.2 Examples Illustrating the Behaviour of TLp

No mass renormalization—Unlike for OT, in the TLp distance there is no need to 

assume that f and g are non-negative or that they have the same mass. If a signal is negative 

then a typical (ad-hoc) fix in OT is to add a constant to make the signal non-negative before 

computing the distance. How to choose this constant is often unclear unless a lower bound is 

known a-priori. Furthermore this may damage sensitivity to translations as the defining 

features of the signal become compressed. For example, considering the functions in Figure 

2a, let g = f (∙ – ℓ) be the translation of f. OT will lose sensitivity when comparing 

f = f + α
f f + α  and g = g + α

f g + α . In particular dOT f , g  scales with the height of the 

renormalised function, which is of the order of 1
α , and the size of the shift: dOT f , g α

hoℓ
α

where h0 is the height of f. To ensure positivity one must choose a large but this also implies 

a small OT distance. Note also that both Lp and TLp distances are invariant under adding a 

constant whereas OT is not.

Another approach to apply the OT distance to non-positive signals is to decompose each 

signal into the positive and negative components f = f+− f−, where f+ = max{0, f} and f− = 

max{0, −f}, and compute the OT distance between each component. Whilst this method 

may be reasonable depending on the application it is not invariant under addition which 
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could produce some unnatural properties. For example, consider two signals, one slightly 

negative and one slightly positive. Then applying an (unbalanced) OT distance on the 

positive and negative components is equivalent to matching both signals to zero. Adding a 

small constant to the negative signal so that both signals are positive produces a qualitatively 

different result. Since both the TLp and Lp distances are invariant under addition neither has 

this property. To mitigate this issue Bonneel, van de Panne, and Heidrich [8] consider signals 

decomposed into frequency bands. This also allows them to directly take into account the 

signal frequency. In some sense our approach is complimentary, as we seek a way to take 

into account the signal intensity.

Sensitivity to High Frequency Perturbations—The TLp distance inherits sensitivity 

to high frequency perturbations from the Lp distance. For example, let g = f + Aξ where ξ is 

a high frequency perturbation with amplitude A and wavelength ω. Suppose for simplicity 

that f is constant and ξ is a sinusoid (and that both signals are positive). The function g is the 

landscape consisting of piles of earth and trenches and f is the flat landscape. The OT 

distance between f and g measures the cost of moving piles of earth into trenches (in the 

most efficient manner). The two factors which determine the OT distance are the total 

amount of earth to be moved (which we assume fixed) and how far we move each piece of 

soil, which is determined by the wavelength. Hence the OT distance between f and g is on 

the order of the wavelength ω of ξ, which is small, and independent of the amplitude A. On 

the other hand both the TLp distance and the Lp distance are independent of the wavelength 

but scale linearly with amplitude, see Figure 2b. In particular OT is insensitive to high 

frequency noise regardless of the size of the amplitude whereas both TLp and Lp distances 

scale linearly with the amplitude.

Ability of the TLp Distance to Track Translations—Another desirable property of 

both TLp and OT distances are their ability to keep track of translations for longer than the 

Lp distance. Let f = Aχ[0,1] be the indicator function of the set [0,1] on ℝ scaled by A > 1 

and g(x) = f (x – ℓ) the translation of f by ℓ. Once ℓ > 1 then the Lp distance can no longer tell 

how far apart two humps are. On the other hand OT distances can track the hump 

indefinitely. In this example the TLp distance couples the graphs of f and g in one of three 

ways, see Figure 3. The first is when the transport is horizontal only in the graph (Figure 3 

top left). In the second (top right) there is a mixture of horizontal and vertical transport. And 

in the third there is only vertical transport (bottom left), in which case the TLp distance 

coincides with the Lp distance. One can calculate the range of the TLp distance which is on 

the order of A.

3 Definitions and Basic Properties of the TLp Distance

In the previous section we defined the TLp distance for signals defined with respect to the 

Lebesgue measure. In this section we generalise to signals defined on a general class of 

measures. We let Lp (μ) be the space of functions f such that ∫Ω|f (x)|p dμ(x) < ∞. This is a 

Banach space with the usual norm.

We treat a signal as a pair (f, μ) where μ ∈ p(Ω) (the set of probability measures with finite 

pth moment) and f : Ω →ℝm with f ∈ Lp(μ). The generality considered here allows us to 
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treat continuous and discrete signals simultaneously as well as allowing one to design the 

underlying measure in order to emphasise certain parts of the signal. We are also able to 

compare signals with different discretisations. However, unless otherwise stated, μ = v is the 

Lebesgue measure. There is no assumption on the dimension m of the codomain. This 

allows us to consider multi-channelled signals.

The TLλ
p distance for pairs (f, μ) ∈ TLp where

TLp: = f , μ : f ∈ Lp μ , μ ∈ 𝒫p Ω

is defined by

d
TLλ

p
p f , μ , g, ν = min

π ∈ Π μ, ν ∫
Ω × Ω

cλ x, y; f , g dπ (3)

cλ x, y; f , g = 1
λ x − y p + f x − g y p (4)

and Π(μ, ν) is the space of measures on Ω × Ω such that the first marginal is μ and the 

second marginal is ν. Note that if f = g is constant then we recover the OT distance between 

the measures μ and ν. In the special cases, when μ = ν = ℒ are the Lebesgue measure, we 

write d
TLλ

p f , g : = d
TLλ

p f , ℒ , g, ℒ  and, when λ = 1, λ = 1, d
TLp f , g : = d

TL1
p f , g . The 

result of [21, Proposition 3.3] implies that d
TLλ

p is a metric on TLp.

Proposition 3.1. [21] For any p ∈ [1, ∞] and λ > 0, TLp, d
TLλ

p  is a metric space.

When μ = ν = ℒ is the Lebesgue measure then an admissible plan is the identity plan: π (A 

× B) = ℒ (A ∩ B). This implies that the TLλ
p distance is bounded above by the Lp distance 

(for any λ).

In fact the parameter λ controls how close the distance is to an Lp distance. As λ → 0 then 

the cost of horizontal transport: 1
λ ∫ Ω × Ω x − y pdπ x, y , is very expensive which favours 

transport plans that are approximately the identity mapping. Hence 

d
TL0

p f , g : = limλ 0 d
TLλ

p f , g = f − g
Lp. The following result, and the remainder of the 

results in this section, can be found in [79].
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Proposition 3.2. [79] Let f, g ∈ Lp (with respect to the Lebesgue measure). The TLλ
p

distance is decreasing as a function of λ and

lim
λ 0 d

TLλ
p f , g = f − g

Lp .

Moreover, if either f or g is Lipschitz then

d
TLλ

p
p f , g ≥

ɛp − 1 λ f − g
Lp
p if p > 1

f − g
Lp
p if p = 1and λ < 1

κ

where ε λ = 1

1 + λκ

1
p − 1

 and k = (min{Lip(f), Lip(g)})p.

The above proposition implies that, when p = 1, if 1
λ  is chosen larger than the length scale 

given by the derivative then the TL 1
λ  distance is exactly the L1 distance.

Recall that we can consider the TLλ
p distance as an OT distance on the graphs of f and g:

d
TLλ

p f , μ , g, ν = dOT Id × f #μ, Id × g #ν . (5)

When there exists a map T : Ω × ℝm → Ω × ℝm realising the minimum of the Monge 

formulation of the RHS then we can understand the transport as a map (x, f (x)) ↦ (y, 

g(y)). We recall that we refer to the transport x ↦ y in the domain Ω as horizontal transport 

and transport f(x) ↦ g(y) in the codomain of f and g as vertical transport. We see that 

horizontal transport is cheap as λ ↦ ∞ and we only pay the cost of vertical transport. For 

example, if we consider f (x) = χ[0,1] and g(x) = χ[1,2] defined on the interval [0, 2] then the 

mapping T(x, y) = (T1(x,y), T2(x,y)) where

T1 x, y = x + 1 if y = 1and x ∈ 0, 1
x − 1 if y = 0and x ∈ 0, 1

and

T2 x, y = 1 if y = 1and x ∈ 0, 1
0 if y = 0and x ∈ 0, 1
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defines a transport map on the support of (Id × f )#ℒ. Furthermore, this implies

d
TLλ

p
p f , g ≤ ∫ 0

1 x − T1 x, 1 p

λ + f x − g T1 x, 1 pdx + ∫ 1
2 x − T1 x, 0 p

λ + f x − g T1 x, 0 pdx = 2
λ 0

asλ ∞ .

In this example d
TL∞

p f , g : = limλ ∞ d
TLλ

p f , g = 0. More generally the TL∞
p  distance is 

an OT distance between the measures f#μ and g#ν.

Proposition 3.3. [79] Let Ω ⊆ ℝd, f, g : Ω → ℝm measurable functions and μ, ν ∈ p(Ω) 

where p ≥ 1, then

lim
λ ∞ d

TLλ
p f , μ , g, ν = dOT f #μ, g#ν

where dOT is the OT distance (on (ℝm)) with cost c(x, y) = |x − y|p.

As the example before the proposition showed, d
TL∞

p f , g  is not a metric, however is non-

negative, symmetric and the triangle inequality holds.

In [4, Section 2] the authors, using the fluid mechanics formulation of optimal transport, 

interpolate the optimal transport distance with quadratic cost with the L2 distance. The 

resulting interpolated distance can still be written in the fluid mechanics formulation which 

naturally gives rise to geodesics. By contrast the TLp distance interpolates between Lp and 

the optimal transport distance of the push forward measures. This is well defined for any p ≥ 

1 (unlike the previous method which requires p = 2) however geodesics do not exist in the 

TLp space. One must also treat the signals as probability measures in the approach of [4].

We observe that when μ is a uniform measure (either in the discrete or continuous sense) the 

measure f#μ is the histogram of f. The OT distance between histograms is a popular tool in 

histogram specification. Minimizers to the Monge formulation of dOT(f#μ, g#ν) define a 

mapping between the histograms f#μ and g#ν [49, 62, 63]. However this mapping contains 

no spatial information. If instead one uses minimizers to the Monge formulation of the TLλ
p

distance (6) (λ < ∞) then one can include spatial information in the histogram specification. 

We explore this further in Section 4.4 and apply the method to the colour transfer problem.

It is well known that there exists a minimizer (when c is lower semi-continuous) for OT. 

Since the TLλ
p distance is closely related to an OT distance between measures in ℝd+m (i.e. 

measures supported on graphs) then there exists a minimizer to (3-4).
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Proposition 3.4. [79] Let Ω ⊆ ℝd be open and bounded, f ∈ Lp(μ), g ∈ Lp(ν) where μ, ν ∈ 
(Ω), λ ∈ [0, + ∞] and p ≥ 1. Under these conditions there exists an optimal plan π ∈ 

Π(μ,ν) realising the minimum in d
TLλ

p f , μ , g, ν .

As in the OT case it is natural to set the TLλ
p distance in the Monge formulation (2). We can 

write

d
TLλ

p f , μ , g, ν = inf
T :T#μ = ν

∫
Ω

cλ x, T x ; f , g dμ x . (6)

Minimizers to the above will not always exist. For example, consider when f = g then the 

TLλ
p distance is the OT distance between μ and ν. If one chooses μ = 1

3δx1
+ 1

3δx2
+ 1

3δx3
 and 

ν = 1
2δy1

+ 1
2δy2

 where all of xi, yj are distinct then there are no maps T : {x1, x2, x3} → {y1, 

y2} that pushforward μ to ν.

However, in terms of numerical implementation, an interesting and important case is when μ 
and ν are discrete measures (see also [83, pg 5, 14-15] for the following argument with the 

Monge OT problem). Let μ = 1
n ∑i = 1

n δxi
 and ν = 1

n ∑i = 1
n δyi

 then π = πi j i, j = 1
n ∈ Π μ, ν  is a 

doubly stochastic matrix up to a factor of 1
n , that is

πi j ≥ 0∀i, j, ∑
i = 1

n
πi j = 1

n ∀ jand ∑
j = 1

n
πi j = 1

n ∀i, (7)

and the TLλ
p distance can be written

d
TLλ

p
p f , μ , g, ν = min ∑

i = 1

n
∑
j = 1

n
cλ xi, y j; f , g πi j (8)

where the minimum is taken over π satisfying (7). It is known (by Choquet's Theorem, e.g. 

[67, Theorem 32.3]) that the solution to this minimisation problem is an extremal point in 

the matrix set Π(μ, ν). It is also known (by application of Birkhoff's Theorem, e.g. [6]) that 

extremal points in Π(μ, ν) are permutation matrices. This implies that there exists an optimal 

plan π* that can be written as πi j
∗ = 1

nδ j − σ i  for a permutation σ : {1,…,n} → {1,…,n}. 

Hence there exists an optimal plan to the Monge formulation of the TLλ
p distance.
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Proposition 3.5. For any f ∈ Lp(μ) and g ∈ Lp(ν) where μ=1
n ∑i = 1

n δxi
 and ν=1

n ∑ j = 1
n δy j

there exists a permutation σ : {1, 2, …, n} → {1, 2, …, n} such that

d
TLλ

p f , μ , g, ν = 1
n ∑

i = 1

n
cλ xi, xσ(i); f , g .

The above theorem implies that in the uniform discrete case there exists optimal plans 

(which are matrices) which will be sparse. In particular, π* is an n × n matrix with only n 
non-zero entries. This motivates the use of numerical methods that can take advantage of 

expected sparsity in the solution (e.g. iterative linear programming methods such as [53]).

4 TLp in Multivariate Signal and Image Processing

Written in the form (3) the TLλ
p distance is an OT distance between the measures μ and ν 

with the cost function c given by (4) and which depends upon f and g. Hence, to compute 

TLλ
p distances there are many algorithms for OT distances that we may apply, for example 

the multi-scale approaches of Schmitzer [71] and Oberman and Ruan [53], or the entropy 

regularized approaches of Cuturi [16] and Benamou, Carlier, Cuturi, Nenna and Peyre [5]. 

Our choice was the iterative linear programming method of Oberman and Ruan [53] for the 

multivariate signals which we find works well both in terms of accuracy and computation 

time. Our choice for the images was the entropy regularized solution due to Cuturi [5, 16]. 

Whilst this only produces an approximation of the TLp distance we find it computationally 

efficient for 2D images. In particular this method regularizes the OT distance with εH(π) 

where H is entropy. We choose ε as small as possible whilst avoiding numerical instability. 

In practice this corresponds to a choice of ε ≈ 0.005. For convenience we include a review 

of the numerical methods in Appendix B.

With respect to choosing λ there are two approaches we could take. The first is to compute 

the TLp distance for a range of λ and then use cross-validation. There are two disadvantages 

to this approach: we would still have to know the range of λ and computing the TLλ
p distance 

for multiple choices of λ would considerably increase computation time. The second 

approach, and the one we use for each example in this section, is to estimate λ by comparing 

length scales and desired behaviour. In particular we choose λ so that both horizontal and 

vertical transport make a contribution. For the applications in this section we want to stay 

away from the asymptotic regimes λ ≈ 0 and λ ≫. By balancing the vertical and horizontal 

length scale we can formally find an approximation of λ which in our results below works 

well. For example, if we expect a set of real valued time series to have range [fmin, fmax] and 

domain [tmin, tmax] then to balance the vertical and horizontal length scales we choose λ so 

that
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tmax − tmin
p

λ ≈ f max − f min
p .

We first consider two synthetic examples. Considering synthetic examples allows us to better 

demonstrate where the TLp distance will be successful. In particular synthetic examples can 

simplify the analysis and allow us to draw attention to features that may be obscured in real 

world applications.

The first synthetic example considers three classes where we can analytically compute the 

within class distances and between class separation. This allows us to compare how well we 

expect TLp distances to perform in a classification problem.

The second synthetic example uses simulated 2D data from one-hump and two-hump 

functions. We test how well the TLp distance recovers the classes and compare with OT and 

Lp distances.

Our first real world application is in classifying multivariate times series and 2D images. We 

choose a multivariate time series data set where we expect transport based methods to be 

successful but OT cannot be immediately applied. That is, OT must be applied to measures 

that are real valued so cannot be directly applied to multi-channelled signals. As a 

benchmark we find the OT distance on each channel separately and take the average over all 

channels. This would seem reasonable when channels are independent but is not a good 

assumption in the AUSLAN dataset where we expect temporally correlated signals.

Our chosen data set consists of sequences of sign language data (we define the data set in 

more detail shortly) which contains the position of both hands (parametrised by 22 

variables) at each time. The TLλ
p distance can treat these signals as functions f : [0,1] → 

ℝ22. We expect to see certain features in the signals however these may be shifted based on 

the speed of the speaker. The second data set contains 2D images that must be normalised in 

order to apply the OT distance, this distorts some of the features leading to a poor 

performance.

We repeat the classification experiment on the AT&T Database of Faces. This is a database 

of ten 2D greyscale images of forty subjects. Note that if the images were in colour then one 

cannot immediately apply the OT distance.

The second real world application is histogram specification and colour transfer. Histogram 

specification or matching, where one defines a map T that matches one histogram with 

another, is widely used to define a colour transfer scheme. In particular let f : xi i = 1
N ℝ3

represent a colour image by mapping pixels xi to a colour f (xi) (for example in RGB space), 

one defines a multidimensional histogram of colours on an image by 

φ c = 1
N # xi: f xi = c . For colour images the histogram ϕ is a measure on ℝ3. For 

notational clarity we will call ϕ the colour histogram. One can equivalently define a 

histogram for grayscale images as a measure on ℝ.
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Let ϕ and ψ be two colour histograms for images f and g respectively. The OT map T 
defines a rearrangement of ϕ onto ψ, that is ψ = T#ϕ. In colour transfer the map T is used to 

colour the image f using the palette of g by f x = g T x .

The histogram contains only intensity information and in particular there is no spatial 

dependence. Using the TLλ
p-optimal map we define spatially correlated histogram 

specification and explain how this can be applied to the colour transfer problem. We 

demonstrate that TLλ
p distance produces a visually more appealing solution than the OT 

solution when spatial information is important. We also observe that, for colour images, 

computing OT maps is a 3D problem (the domain and range of the transport maps is in 

colour space), whereas computing TLλ
p maps is a 2D problem (the transport maps pixels to 

pixels). By Proposition 3.3 when λ is large we can approximate the OT distance between 

histograms by the TLλ
p distance. For images that use the full spectrum of colours, i.e. the 

colour histograms are 256 × 256 × 256, the size of the discretisation is 2563 ≈ 16.8 × 106. 

Hence the spatially correlated histogram specification method allows for a numerically 

efficient approximation of the OT induced histogram specification method when the size (in 

terms of number of pixels) of the images are less than 4096 × 4096.

4.1 1D Class Separation for Synthetic Data

Objective—We compare the expected classification power of TLp, Lp and OT distances 

with three classes of 1D signals that differ by position (translations), shape (1 hump versus 2 

hump) and frequency (hump versus chirp).

Data Sets—We consider data from three classes defined in Figure 4. The first class 

contains single hump function and the second class contains two hump functions. The third 

class consists of functions with one hump and one chirp, defined to be a high frequency 

perturbation of a hump. The classes are chosen to test the performance of the TL2 distance 

with L2 and OT distances with regards to identifying translations (where we expect the L2 

distance to do poorly) with a class containing high frequency perturbations (where we 

expect the OT distance to do poorly).

Methods—For a distance to have good performance in classification and clustering 

problems it should be able to separate classes. To be able to quantify this we use the ratio of 

‘between class separation’ to ‘class coverage radius’ that we define now.

Let 𝒞i
N = f j

i
j = 1
N

 be a sample of N functions from class i. For a given radius r we let Gi(r) 

be the graph defined by connecting any two points in 𝒞i
N with distance less than r. The 

distance will be defined using the TLλ
p, L2 and OT distances. Let R

TLλ
p 𝒞i

N  be the smallest r 

such that Gi(r) is a connected graph using the TLλ
p distance. Analogously we can define RL

p 

and ROT.
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We define ‘between class separation’ as the Hausdorff distance between classes:

dH, ρ 𝒞i
N, 𝒞 j

N = max sup
f ∈ 𝒞i

N
inf

g ∈ 𝒞 j
N

ρ f , g , sup
g ∈ 𝒞 j

N
inf

f ∈ 𝒞i
N

ρ f , g

where we will consider p to be one of the TL2, L2 or OT distances. Large values of 

dH, ρ 𝒞i
N, 𝒞 j

N  imply that the classes 𝒞i
N and 𝒞 j

N are well separated.

When Rρ 𝒞i
N ≤ dH, ρ 𝒞i

N, 𝒞 j
N  then we say that the class 𝒞i

N is separable from class 𝒞 j
N

since for any f ∈ 𝒞i
N the nearest neighbour in 𝒞i

N ∪ 𝒞 j
N \ f  is also in class 𝒞i

N. We define 

the pairwise property

κij ρ; N =
𝔼dH, ρ 𝒞i

N, 𝒞 j
N

max 𝔼Rρ 𝒞i
N , 𝔼Rρ 𝒞 j

N

where we take the expectation over sample classes 𝒞i
N. We will assume that the distribution 

over each class is uniform in the parameter ℓ. When κij (ρ; N) > 1 then we expect classes 𝒞i
N

and 𝒞 j
N to be separable from each other.

As a performance metric we use the smallest value of N such that κij (ρ; N) ≥ 1. We let

Ni j
∗ ρ = min N :κi j ρ; N ≥ 1 .

This measures how many data points we need in order to expect a good classification 

accuracy.

Results—We leave the calculation to the appendix but the conclusion is

N12
∗ TL2 < N12

∗ OT < N12
∗ L2

N13
∗ TL2 < N13

∗ OT < N13
∗ L2

N23
∗ TL2 < N23

∗ OT < N23
∗ L2 .

In each case the TL2 distance outperforms the L2 and OT distances.

In each class the L2 distance has a larger value of R. This implies a larger data set is needed 

to accurately cover each class. This is due to the Lagrangian nature of signals within each 
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class (translations) that is poorly represented by the L2 distance. The OT distance has the 

lowest (and therefore best) value of R in each class. Since each class is Lagrangian then the 

OT distance is very small between functions of the same class.

When considering between class separation the TL2 and L2 distances coincide and give a 

bigger (and better) between class distance than the OT distance. Since the class 3 can be 

written as a high frequency perturbation of functions in the class 2 then, in the OT distance, 

the functions from class 3 approximate functions from the class 2. The distance 

dH, OT 𝒞2
N, 𝒞3

N  is therefore small so that one needs more data points in order to fully resolve 

these classes. We see a similar effect when considering dH,OT for the other classes.

4.2 2D Classification for Synthetic Data

Objective—We use simulated data to illustrate better separation of the TLp distance 

compared to Lp and OT distances for 2D data from two classes of 1-hump and 2-hump 

functions.

Data Sets—The data set consists of two dimensional images simulated from the following 

classes

ℙ = p 0, 1 2: p(x) = αϕ x γ, σ , γ ∼ unif 0, 1 2 , α ∼ unif 0.5, 1

ℚ = [0, 1]2:q x = αϕ x γ1, σ − αϕ x γ2, σ , γ1, γ2iid∼ unif 0, 1 2 , α ∼ unif 0.5, 1

where ϕ (·|γ, σ) is the multivariate normal pdf with mean γ ∊ ℝ2 and co-variance σ ∊ ℝ2×2. 

We choose σ = 0.01 × Id where Id is the 2 × 2 identity matrix. The first class, ℙ, are the set 

of multivariate Gaussians restricted to [0,1]2 with mean uniformly sampled in [0,1]2 and 

weighted by a uniformly sampled in [0.5,1]. The second class, ℚ, are the set of weighted 

differences between two Gaussian pdf's restricted to [0,1]2 with means γ1, γ2 sampled 

uniformly in [0,1]2. Note that the second class contains non-positive functions. See Figure 5 

for examples from each class.

We simulate 25 from each set and denote the resulting set of functions by ℱ = f i i = 1
N

where N = 50.

Methods—Let f i i = 1
N , D

TLλ
2  be a finite dimensional metric space where D

TLλ
2 is the N × 

N matrix containing all pairwise S
Lλ

2 distances, i.e. D
TLλ

2 i, j = d
TLλ

2 f i, f j . Similarly for 

f i i = 1
N , D

L2  and f i i = 1
N , DOT  where the optimal transport distance is defined by 

dOT f , g = OT f , g  and OT is given by (1) for c(x, y) = |x − y|2.
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To apply the optimal transport distance we need to renormalise so that signals are all non-

negative and integrate to the same value. We do this by applying the nonlinear transform 

𝒩 f = f − β
∫ f − β  where β = min f∈ℱminx∈[0,1]

2 f(x). Neither the L2 nor TL2 distances require 

normalisation.

We use non-metric multidimensional scaling (MDS) [39] to represent the graph in k 

dimensions. More precisely the aim is to approximate f i i = 1
N , D .  by a metric space 

xi i = 1
N , D ⋅ 2  embedded in ℝk (D|.|2 is the matrix of pairwise distances using the Euclidean 

distance, i.e. D|.|2 (i, j) = |xi−xj|2). This is done by minimising the stress S defined by

S
TLλ

2 k =

∑i, j = 1
N xi − x j 2

2 − F D
TLλ

2 i . j
2

∑i, j = 1
N xi − x j 2

2

over xi i = 1
N ⊂ ℝk and monotonic transformations F : [0, ∞) → [0, ∞), with S

Lλ
2, SOT 

defined analogously. The classical solution to finding the MDS projection (for Euclidean 

distances) is to use the k dominant eigenvectors of the matrix of squared distances, after 

double centring, as coordinates weighted by the square root of the eigenvalue. More 

precisely, define D 2 = − 1
2J f i − f j

2
i j

 where J = Id − 1
N 𝕀 and  is the N × N matrix of ones. 

Let Λk be the matrix with the k largest eigenvalues of D(2) on the diagonal and Ek to be the 

corresponding matrix of eigenvectors. Then X = EkΛk

1
2  is the MDS projection. Increasing the 

dimension of the projected space k leads to a better approximation. In Figure 5 we show the 

projection in L2, TL2 and the OT distances for k = 2 as well as the dependence of k on S for 

each choice of distance.

Results—Our results in Figure 5 show that the TL2 distance is the better distance for this 

problem. There is no separation in either L2 or OT distances whereas the TL2 distance 

completely separates the data. It should not therefore be surprising that the 1NN classifier 

with the TL2 distances outperforms the others. In fact, using 5 fold cross validation (CV) we 

get 100% accuracy with the TL2 distance, compared to 72% in the L2 distance and 86% in 

the OT distance. In addition we see that the stress Sp is much smaller and converges quickly 

to zero for the TL2 distance which indicates that the TL2 distance is, in this problem, more 

amenable to a low dimensional representation than either OT or L2 distances.

4.3 Classification with Real World Data Sets

Objective—We evaluate TLλ
2 as a distance to classify real world data sets where spatial and 

intensity information is expected to be important and compare with popular alternative 
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distances. We choose one dataset which is of the type multivariate time series and a second 

data set consisting of images.

Data Sets—We use two data sets. The first is the AUS- LAN [30, 41] data set which 

contains 95 classes (corresponding to different words) from a native AUSLAN speaker 

(Australian Sign Language) using 22 sensors on a CyberGlove (recording position of x, y, z 
axis, roll, yaw, pitch for left and right hand). Therefore signals are considered as functions 

from {t1,t2,.. .tN} to ℝ22. There are 27 signals in each class which give a total of 2565 

signals.

We make two pre-processing steps. The first is to truncate each signal so it is 44 frames in 

length. Empirically we find that the signal is constant after the 44th frame and therefore 

there is no loss of information in truncating the signal. The second pre-processing step is to 

normalise each channel independently. This is because some channels are orders of 

magnitude greater than others and would otherwise dominate each choice of distance.

The second data set we use is the AT&T Database of Faces [70]. The dataset consists of ten 

greyscale facial images from forty subjects, see Figure 6b for examples. There were 400 

images in total. In order to reduce the computation time we reduced the size of the images 

from 92 × 112 pixels to 50 × 50 pixels.

Methods—For the multivariate time series we compare the performance of a 1NN 

classifier using the L2 and TLλ
2 distances as well as the state-of-the-art method dynamic time 

warping [22] and the OT distance average over each channel:

dMOT f , g = 1
22 ∑

i = 1

22
dOT f , gi

where f̂i is the ithchannel of f after normalisation that is given by f i =
f i + c

∫ f i + c
 and where c is 

chosen so that each signal is non-negative. We use the OT distance with cost c(x, y) = |x – y|
2.

There are three common variations of dynamic time warping. One can apply dynamic time 

warping directly to the signals f and g (denoted by DTW), to the derivative f′ of the signals 

(denoted by DDTW) and to a weighted average of DTW and DDTW (denoted by WDTW). 

We define

dDDTW f , g = dDTW f ′, g′

dWDTW f , g = αdDTW f , g + 1 − α dDDTW f , g .

The parameter a is chosen by 5-fold 2nd depth cross validation. To be more precise the 

training data set is split into five partitions. One forms the testing data set (accounting for 
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20% of the data) and the other four form the training data set. To choose α we further divide 

the training data set into five partitions (each accounting for 16% of the data set). For each 

α = i
100 , where i = 0,1, …, 100, we compute how accurately one partition of the training set 

is classified using the remaining four parts. We then choose the value of α which produces 

the best classification accuracy on the training data. This value of α is then used to classify 

the testing data set.

The analogous distances for L2, TLλ
2 and multi-channelled OT are defined by

d
DL2 f , g = d

L2 f ′, g′

d
DTLλ

2 f , g = d
TLλ

2 f ′, g′

d
DL2 f , g = d

L2 f ′, g′

dDMOT f , g = dMOT f ′, g′

d
WL2 f , g = αd

L2 f , g + 1 − α d
DL2 f , g

d
WTLλ

2 f , g = αd
TLλ

2 f , g + 1 − α d
DTLλ

2 f , g

dWMOT f , g = αdMOT f , g + 1 − α dDMOT f , g .

We do not have to choose the same value of λ in the TLλ
2 and DTLλ

2 distances however 

considering that signals are normalised, we will use the same value. Note that DL2, DTW, 

DDTW, WDTW DTLλ
2 and DMOT are not metrics.

We remark that an alternative method for including derivatives in the TLλ
p distance would be 

to extend the signal to include the derivative. We briefly assume that f is defined over a 

continuous domain. Let f : ℝ →ℝ, and f
∼ = f , d f

dx , then we define

d
TWλ

1, p f , g = d
TLλ

p f
∼, g∼ .

We take our notation TWλ
k, p from the Sobolev space notation where Wk,p is the Sobolev 

space with k weak derivatives integrable in Lp. There is no reason to limit this to one 

derivative, and we may define f
∼ = f , d f

dx , …, dk f

dxk  and

d
TWλ

k, p f , g = d
TLλ

p f
∼, g∼ .
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When the signals are discrete one should use a discrete approximation of the derivative. In 

order to be consistent with previous extensions of dynamic time warping we do not develop 

this approach here.

Dynamic time warping is only defined on time series so we are not able to apply it to the 

AT&T Database of Faces. We apply the optimal transport distance by normalising each 

image f ∈ ℝ2 → {0, 1} f x = f x
∫

[0, 1]2
f y dy . There is no normalisation for either L2 or TL2 

distances. We find the 1NN classifier using TL2, L2 and OT distances.

We will use λ =1 in AUSLAN and λ = 0.1 in the AT&T Database of Faces for the TLλ
2 based 

distances. The underlying measure μ is chosen to be the uniform measure defined on [0,1] or 

[0,1]2.

Results—We considered two methods for comparing the performance of each distance. 

The first is the 1NN classification accuracy in each distance. We use the 1NN classification 

accuracy as a measure as to how well each distance captures the underlying geometry. A 

higher accuracy implies closest neighbours are more likely to belong to the same class.

The results are given in Table 1 where we report error rates using 5-fold cross-validation. In 

terms of the 1NN classifier for the AUSLAN data set we see that TL2 is better than L2 and is 

a modest improvement over dynamic time warping.

A rather surprising result is the difference between the MOT distance between the signals 

and the MOT distance between the derivative of signals. We believe this is most likely due to 

the length of the word being a good indicator of the word (this would also explain why the 

L2 distance has reasonable performance). We can see from the example signal in Figure 6a 

only the first part of the signal contains information (the word being spoken), the remainder 

of the signal is noise. Because we need to renormalise in order to apply the MOT distance 

then, similar to the example in Figure 2a, the difference between the first part of the signal 

(containing information) and the latter part of the signal (containing noise) is reduced.

On the other hand the derivative of the signal will place a lot of mass at the end of the word, 

with smaller masses in other places where the signal is changing. In particular MOT is now 

able to identify the length of the signal, leading to a big improvement in performance. 

Furthermore, some channels are likely to contain more information than others. The 

decoupling of channels in the MOT distance could be an advantage as simultaneously 

matching across all channels, as in the TLλ
p distance, can mean the latter distance is 

corrupted by low quality channels. This artefact could be removed by weighting channels 

(this would require training the distance). Since we expect a temporally correlated distance 

to be a better model then, when weighting channels, we would expect to see an improved 

performance of the TLp distance over the MOT distance.

Our results indicate that the TLλ
p distance better represents the geometry of the dataset than 

any of the other (psuedo) distances. However a 1NN classifier should not be expected to 
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achieve the best classification results. We refer to [2] for a state-of-the- art neural network 

which produces a much better classification error than the 1NN method considered here (the 

smallest error rate in [2] for AUSLAN is 2.53%, this uses a training data set equal to 4
9 th of 

the total data set). We stress that the aim of this paper is to introduce a distance that better 

models signals where both spatial and intensity is important, not to define a new 

classification method.

For the AT&T Database of Faces the 1NN classifier using the OT distance performs worse 

with an error of 3.3%. The L2 distance does the second best with 2.5% and the TL2 distance 

is the best with 2%.

In the same spirit as Section 4.1 we define the performance metric κij(ρ) as the ratio of 

distance between class i and class j and the maximum class coverage radius of class i and 

class j. For the distance between classes we use the Hausdorff distance (see Section 4.1) and 

for the class coverage radius we use the minimum radius r such that connecting any two data 

points in class i closer than r defines a connected graph. We plot the results in Figures 6c and 

6d. The x axis represents pairs of classes where for visual clarity we have ordered the pairs 

so that the κ(L2) is increasing. A large value of κij indicates that it is easier to identify class i 
from class j whereas a small value indicates that identifying the two classes is a difficult 

problem.

For AUSLAN we see that the TL2 distance has, for the majority of pairs of classes, a larger 

value of κij than the L2 distance and DTW and therefore better represents the class structure. 

The MOT distance does poorly, except in a few cases. We notice that all distances follow the 

trend that class separation is increasing with κ(L2).

For AT&T Database of Faces the L2 and TL2 distances perform very similarly. However 

both the TL2 and L2 distances are much more consistent than the OT distance, we can see 

that although between some classes the OT distance achieves the best results, with other 

classes the OT distance does extremely poorly (there are many more classes with a class 

separation close to 1).

4.4 Histogram Specification and Colour Transfer with the TLp Distance

Histogram specification and colour transfer—Histogram specification concerns the 

problem of matching one histogram onto another. For a function f on a discrete domain X 
the histogram is given by f#μ where μ is the uniform discrete measure supported on N points. 

We do not make any assumption on the dimension of the codomain of f (so that f may be 

multivalued and the histogram may be multidimensional). This coincides with the definition 

given in the introduction to the section, that is

f #μ y = 1
N # x ∈ X : f x = y .

Given two functions f : X → ℝm and g : Y → ℝm, with histograms ϕ and ψ respectively, 

histogram specification is the problem of finding a map T : X → Y such that ψ = T# ϕ.

Thorpe et al. Page 21

J Math Imaging Vis. Author manuscript; available in PMC 2018 September 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The colour transfer problem is the problem of colouring one image f with the palette of an 

exemplar image g. A common method used to solve this problem is to use histogram 

specification where T is the minimizer to Monge's optimal transport problem (2) between ϕ 
and ψ [14, 17, 49, 62, 63]. Let our colour space be denoted by  where for example if the 

colour space is 8 bit RGB then  = {0,1,…, 255}3. The colour histogram then defines a 

measure over . If we consider two such histograms ϕ and ψ corresponding to images f : X 
→  and g : Y →  respectively then a histogram specification is a map T :  →  that 

satisfies ψ = T#ϕ. The recoloured image fˆ = g∘T has the same colour histogram as g. The 

solution fˆ is a recolouring of f using the palette of g.

If we consider grayscale images then  = [0,1] and the optimal transport map (assuming it 

exists) is a monotonically increasing function. In particular this implies that if pixel x is 

lighter than pixel y (i.e. f (x) > f (y)) then in the recoloured image f ∘ = Tº f pixel x is still 

lighter than pixel y. In this sense the OT solution preserves intensity ordering. But note that 

no spatial information is used to define T; only the difference in intensity between pixels is 

used and not the distance between pixels.

Spatially correlated histogram specification—Let ϕ and ψ be the histograms 

corresponding to images f : X → ℝm and g : Y → ℝm respectively. If we recall Proposition 

3.3 then limλ ∞ d
TLλ

p f , μ , g, ν = dOT f #μ, g#ν  (where μ and ν are the discrete uniform 

measures over the sets X and Y). For λ < ∞ the TLλ
p distance includes spatial and intensity 

information. Hence the TLλ
p distance provides a generalization of OT induced histogram 

specification.

Analogously to the OT induced histogram specification method we define the spatially 

correlated histogram specification to be histogram specification using the map T : X → Y 

which is a minimizer to Monge's formulation of the TLλ
p distance (6). When the images are 

of the same size then, by Proposition 3.5 such a map exists. The recoloured image f ̂ of f is 

given by f̂ = g∘T. Furthermore when the images are of the same size the map T is a 

rearrangement of the pixels in X and therefore the histograms are invariant under T. In 

particular the histogram of f̂ is the same as the histogram of g.

Although we propose the spatially correlated histogram specification as a method to 

incorporate spatial structure we recall from the discussion at the start of Section 4 the value 

of the method as a numerically efficient approximation to OT induced histogram 

specification for colour images that are not too large. Motivated by Proposition 3.3 one 

expects that for large λ the TLλ
p map is approximately the OT map between colour 

histograms. The OT problem is in the C space which, for colour images is 3 dimensional. 

However, the TLλ
p problem is in the domain of the images Ω, which is typically 2 

dimensional. Hence one can use the TLλ
p distance to approximate OT induced histogram 

specification in a lower dimensional space when O nc
3 = 𝒞 > Ω = O ns

2  where nc is the 
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size of discretisation in each colour channel and ns is the size discretisation is each spatial 

dimension.

We briefly remark that histogram specification methods often include additional 

regularization terms. Such choices of regularization on the transport map include penalizing 

the gradients [17, 62, 63], sparsity [63], average transport [56] and rigidity [28]. One could 

apply any of the above regularizations to spatially correlated histogram specification.

Examples—First, let us consider the 128 × 128 grayscale images in Figure 7. The 

objective is to combine the shading of the first image with the geometry of the second 

image. We are motivated by the scenario where one wishes to combine information about a 

scene obtained by two different measurements: one where intensities (dynamical range) are 

well resolved, but the spatial resolution (geometry) is not well captured, and another where 

dynamical range is poorly captured, but the geometry is well resolved. We furthermore allow 

that the scenes captured may be somewhat different. The desire is to combine the images to 

obtain a single image with both good geometry and intensity. The solution we propose is to 

use spatially correlated histogram specification to re-shade the image with low quality 

intensity.

The result, as given in Figure 7, produces what we consider to be the desired output. The 

shading has been transferred and the geometry has not been lost. One is not able to apply 

histogram specification (induced by the OT map) due to the lack of existence of an optimal 

transport map from the histogram of the original image ϕ to the histogram exemplar image 

ψ. This is due to the histogram of the original image being a sum of two delta masses as in 

Figure 7d.

As a more challenging example we consider real world colour images. Images are 128 × 

128. We compare our method with histogram specification using the OT mappings and the 

following state of the art methods for which code is freely available. Reinhard, Ashikhmin, 

Gooch and Shirley's renormalisation method (RAGS) [66] rescales the image so that the 

mean and standard deviation of the LAB channels match the exemplar image. Pitié and 

Kokaram (PK) [61] approximate colour histograms with a Gaussian and look for the best 

linear map between the two colour histograms. Essentially they look for couplings, as in the 

Monge formulation of optimal transport but they restrict to linear mappings. In general there 

may not be any linear mappings between two histograms, however it can be shown that 

when the histograms are Gaussians the set of mappings is not empty. The final method we 

compare to is the regularized transportation method due to Ferradans, Papadakis, Rabin, 

Peyré and Aujol (FPRPA) [17].

It is difficult to quantitatively assess the performance of each method objectively. Whether 

the output is satisfactory depends on content and artistic preferences. We refer to [86] for an 

objective quantitative measure of colour transfer results, however this explicitly marks 

against introducing colour artefacts. Whilst some colour artefacts are clearly undesirable 

introducing others, such as the northern lights in Figure 8 was the objective. Hence we no of 

no way to quantify the performance of our method and instead rely on qualitative 

assessments.
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In the first pair of images the exemplar image contains a few trees with the northern lights in 

the background, whilst the other image has a few trees with a mostly clear sky in the 

background. The challenge is to recreate the northern lights in the second image.

As one would expect, in Figure 8c we see that the histogram specification induced by OT 

loses the spatial structure. Indeed, it is hard to recognise the northern lights. Similar with 

each competing method in Figure 8g-8i, none of them successfully manage to reproduce the 

northern lights and the palm trees all pick up an unnatural reddish shade. The spatially 

correlated histogram specification solution does a much better job at preserving the ordering 

locally. As λ increases it becomes cheaper to match pixels that are further apart and 

therefore, for large λ, the matching does not preserve the local structure in the exemplar 

image.

In the second real world example we consider colour transfer between two images from 

Masson's trichrome staining procedure shown in Figures 9a and 9b. We manipulate the 

luminosity of the second images. The objective is to colour the second image using the 

palette of the first. In Figure 9 we compare the spatially correlated histogram specification 

method of TLλ
p to the other methods.

Since we know the true image we may compare the colourisation with the true image. We 

report the L2 error computed by

err f − g = 1
N ∑

i = 1

3
∑

j
f i x j − gi x j

2

where f = (f1, f2, f3) and g = (g1,g2,g3) are images in RGB space and N = 1282 is the number 

of pixels. The TLp method (error 0.2885) gives a more accurate colourisation compared to 

the RAGS method (error 0.4040), the PK method (error 0.3568), the FPRPA method (error 

0.4817), and the OT induced histogram specification method (error 0.4030). One can also 

see that the TL1
2 based method does not have the same artefacts as the other methods. In 

particular, (a) the darker band is still evident in RAGS and PK, (b) FPRPA fails to accurately 

recolour the white band on the right hand side, and (c) OT places too much white on the left 

hand side and not enough on the right hand side.

5 Conclusions

In this paper we have developed and applied a distance that directly accounts for the 

intensity of the signal within a Lagrangian framework. This differs from OT distances that 

do not directly measure intensity and the Lp distance which measures intensity only. 

Through applications we have shown the potential of this distance in signal analysis.

The distance is widely applicable, unlike in classical OT distances, such as the Wasserstein 

distance or the earth mover distance, the TLλ
p distance does not require treating signals as 

measures. Treating a signal as a measure implies the following constraints: non-negativity, 
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normalised mass and single channelled. None of these assumptions are necessary for the TLλ
p

distance. Furthermore the distance is applicable to both discrete and continuous signals as 

well as allowing practitioners to emphasise features which in many cases should allow for a 

better representation of data sets, for example one could include derivatives.

Efficient existing methods, such as entropy regularized or multi-scale linear programming, 

for optimal transport are applicable to the TLλ
p distance. In fact any numerical method for 

optimal transport that can cope with arbitrary cost functions is immediately available. This 

includes the entropy regularised approach of Cuturi [16]. However, there are more efficient 

methods that are specific to the OT distance with quadratic cost that are unavailable here, 

e.g. [74].

Via the representation as an OT distance between measures supported on graphs we expect 

many other results for OT distances to carry through to TLλ
p distances. For example, one 

could extend the LOT method [85] for signal representation and analysis to the TLλ
p distance. 

This would allow pairwise distances of a data set to be computed with numerical cost that is 

linear in the number of images. We leave the development for future work.

We considered a few examples where we expect (and then showed) that TLλ
p will outperform 

OT and other distances. We expect the TLλ
p distance to give a better performance than OT 

distances when intensity information is important. On the other hand, we do not expect the 

TLλ
p distance to be robust to high frequency noise. In this case an OT distance would 

probably have superior performance.

The applications we considered were to classification and histogram specification in the 

context of colour transfer. For classification we chose data sets with a Lagrangian nature but 

were either multi-channelled or non-positive (so that in both cases one must apply ad-hoc 

methods in order to apply the OT distance). We showed the TLλ
p distance better represented 

the underlying geometry. The 1NN classifier is a very simple method and we expect our 

results here could be significantly improved by, for example, replacing the L2 distance in the 

MDS projection approach of Weinberger and Chapelle [87] with the TLλ
p distance. For the 

colour transfer problem we defined a spatially correlated histogram specification method 

which produced more visually appealing results when combining the colour of one image 

with the geometry of another.

Although the main motivation was to develop a distance which better represents Lagrangian 

data sets we also note that the TLλ
p distance provides a numerically efficient (for images that 

are not too large) approximation for the OT induced histogram specification method by, for 

2-dimensional images colour images, reducing the effective dimension of the problem from 

three for OT distances to two for the TLλ
p distance. We also observe that the effective 

dimension of multi-channelled time signals is one. In particular the effective dimension is 

independent of the number of channels.
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The applications we have considered are for demonstration on the performance of the TLλ
p

distance. A next step would be to consider a more detailed study of a specific problem. For 

example in the colour transfer application we could have considered regularization terms/

constraints which would have improved the performance, e.g. [17, 28, 51, 56, 62, 63]. It was 

not the aim to propose a state-of-the-art method for each application, indeed each 

application would constitute a paper within its own right.
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A Performance of TLλp in Classification Problems with Simple and 

Oscillatory Signals

We compare the performance of TLλ
2, L2 and OT distances with respect to classification/

clustering for the three classes { j}i=1,2,3 of signals defined in Figure 4. We test how each 

distance performs by finding the smallest number of data points such that the classes 

𝒞i
N = f i i = 1

N ⊂ 𝒞i are separable. For sufficiently large N the approximation 

dH, ρ 𝒞i
N, 𝒞 j

N ≈ dH, ρ 𝒞i, 𝒞 j  is used to simplify the computation. Similarly, as a proxy for 

𝔼Rρ 𝒞i
N  we use Rρ 𝒞N  where

𝒞i
N = f ℓ:ℓ = ℓmin

i + n − 1
N − 1 ℓmin

i − ℓmax
i , n ∈ 1, 2, …, N

is the uniform sample from class i (recall that class i is parameterized by ℓ ∈ ℓmin
i , ℓmax

i

and with an abuse of notation we use the subscript of fℓ to denote the dependence of ℓ).

It follows that the class separation distances and class coverage radius are approximated by
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d
H, L2
2 𝒞1

N, 𝒞2
N ≈ α

2 R
L2
2 𝒞1

N ≈ 2
N

d
H, L2
2 𝒞1

N, 𝒞3
N ≈ 3α

4 R
L2
2 𝒞2

N ≈ 1
N

d
H, L2
2 𝒞2

N, 𝒞3
N ≈ α

4 R
L2
2 𝒞3

N ≈ 2α
Nγ

dH, OT
2 𝒞1

N, 𝒞2
N ≈ β2α

4 ROT
2 𝒞1

N ≈ α

N2

dH, OT
2 𝒞1

N, 𝒞2
N ≈ β2α

4 ROT
2 𝒞1

N ≈ α

N2

dH, OT
2 𝒞1

N, 𝒞3
N ≈ β2α

4 ROT
2 𝒞2

N ≈ α

N2

dH, OT
2 𝒞2

N, 𝒞3
N ≈ αγ2

8 ROT
2 𝒞3

N ≈ α

N2

d
H, TLλ

2
2 𝒞1

N, 𝒞2
N ≈ α

2 R
TLλ

2
2 𝒞1

N ≈ α2
N

d
H, TLλ

2
2 𝒞1

N, 𝒞3
N ≈ 3α

4 R
TLλ

2
2 𝒞2

N ≈ 4α2
N

d
H, TLλ

2
2 𝒞2

N, 𝒞3
N ≈ α

4 R
TLλ

2
2 𝒞3

N ≈ α2
N .

We have

κ12
2 L2; N ≈ αN

4 , κ13
2 L2; N ≈ 3γN

8 ,

κ12
2 OT; N ≈ β2N

4 , κ13
2 OT; N ≈ β2N2

4 ,

κ12
2 TLλ

2; N ≈ N
8α , κ13

2 TLλ
2; N ≈ 3N

4α ,

κ23
2 L2; N ≈ γN

8 ,

κ23
2 OT; N ≈ γ2N2

8 ,

κ23
2 TLλ

2; N ≈ N
16α .

Finally we can compute N*,

N12
∗ L2 ≈ 4

α , N13
∗ L2 ≈ 8

3γ , N23
∗ L2 ≈ 8

γ

N12
∗ OT ≈ 2

β , N13
∗ OT ≈ 2

β , N23
∗ OT ≈ 8

γ

N12
∗ TL2 ≈ α

8 , N13
∗ TL2 ≈ 4α

3 , N23
∗ TL2 ≈ 16α
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which for β > α
2 , β > 3γ

4  and γ < 2α
8  implies the ordering given Section 4.1.

B Numerical Methods

In principle any numerical method for computing OT distances capable of dealing with an 

arbitrary cost function can be adapted to compute TLλ
p the distance. Here we describe two 

numerical methods we used in Section 4.

B.1 Iterative Linear Programming

Here we describe the iterative linear programming method of Oberman and Ruan [53] which 

we abbreviate OR. Although this method is not guaranteed to find the minimum in (3) we 

find it works well in practice and is easier to implement than, for example, methods due to 

Schmitzer [71] that provably minimize (3) but require a more advanced refinement 

procedure. See also [46] and references therein for a multiscale descent approach.

The linear programming problem restricted to a subset M ⊆ Ωh
2 is

minimize: ∑
i, j ∈ M

cλ xi, x j; f h, gh πi joverπ

subject to ∑
i: i, j ∈ M

πi j = q j, ∑
j: i, j ∈ M

πi j = pi,
LPh

where cλ is given by (4). When ℳ = Ωh
2 then the TLλ

p distance between (fh, μh) and (gh, νh) 

is the minimum to the above linear programme. Furthermore if πh is the minimizer in the 

TLλ
p distance then it is also the solution to the linear programme in (LPh) for any ℳ 

containing the support of πh. That is if one already knows (or can reasonably estimate) the 

set of nodes ℳ for which the optimal plan is non-zero then one need only consider the linear 

programme on ℳ. This is advantageous when ℳ is a much smaller set. Motivated by 

Proposition 3.5 we expect to be able to write the optimal plan as a map. This implies whilst 

πh has n2 unknowns we only expect n of them to be non-zero.

The method proposed by OR is given in Algorithm 1. An initial discretisation scale h0 is 

given and an estimate πh0 found for the linear programme (LPh) with ℳ = Ωh0
2 . One then 

iteratively finds ℳr ⊆ Ωhr
2 , where hr =

hr − 1
2 , to be the set of nodes defined by the following 

refinement procedure. Find the set of nodes for which πhr−1 is non-zero, add the 

neighbouring nodes and then project onto the refined grid Ωhr
2 . The optimal plan πhr on Ωhr

2

is then estimated by solving the linear programme (LPh) with ℳ = ℳr.

The grid Ωhr will scale as 2rdh0
−1 2

. If the linear programme is run N times then at the rth 

step the linear programme has on the order of 2rdh0
−1 variables. In particular on the last (and 
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most expensive) step the number of variables is O 2Ndh0
−1 . This compares to size 2Ndh0

−1 2

if the linear programme was run on the final grid without this refinement procedure.

Algorithm 1 An Iterative Linear Programming Approach [53]

Input: functions f,g ∈ Lp(Ω), measures μ,ν ∈ (Ω) and parameters h0, N.

1: Set r = 0.

2: repeat

3:
 Define 𝒮r = Ωhr

2  where Ωhr is the square grid lattice with distances between neighbouring points hr and 

discretise functions f, g and measures μ,ν on Ωh.

4:  if r = 0 then

5:   Solve (LPh) on So and call the output πh0.

6:  else

7:   Find the set of nodes on r−1 for which πhr−1 is non-zero and call the set r−1.

8:   To r−1 add all neighbouring nodes and call this set r−1.

9:   Define ℳr to be the set of nodes on r that are children of nodes in r−1.

10:   Solve (LPh) restricted to ℳr and call the optimal plan πhr.

11:  end if

12:

 Set hr + 1 =
hr
2  and r ↦ r +1.

13: until r = N

Output: The optimal plan πhN−1 for (LPh).

B.2 Entropic Regularisation

Cuturi, in the context of computing OT distances, proposed regularizing the minimization in 

(3) with entropy [16]. This was further developed by Benamou, Carlier, Cuturi, Nenna and 

Peyré [5], abbreviated to BCCNP, which is the method we describe here. Instead of 

considering the distance TLλ
p we consider

Sɛ = inf
π ∈ Π μ, ν ∑

i = 1

n
∑

j = 1

n
cλ xi, x j; f , g πi j − ɛH π

where H π = − ∑i = 1
n ∑ j = 1

n πi j log πi j is the entropy. In the OT case the distance Sε is also 

known as the Sinkhorn distance. It is a short calculation to show

Sɛ = ɛ inf
π ∈ Π μ, ν

KL π κ
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where 𝒦i j = exp −
cλ xi, x j: f , g

ɛ  (the exponential is taken pointwise) and KL is the 

Kullback-Leibler divergence defined by

KL π 𝒦 = ∑
i = 1

n
∑

j = 1

n
πi j log

πi j
𝒦i j

It can be shown that the optimal choice of π for Sε can be written in the form π* = diag(u) 

diag(v) where u, v ∈ ℝn are limits, as r →∞, of the sequence

υ 0 = 𝕀, u r = p

𝒦υ(r) , υ(r + 1) = q

𝒦⊺u(r)

and p =(p1,…pn),q= (q1,…qn) (multiplication is the usual matrix-vector multiplication, 

division is pointwise and Τ denotes the matrix transpose). The algorithm given in 2 is a 

special case of iterative Bregman projections and also known as the Sinkhorn algorithm.

The stopping condition proposed in [16] is to let π(r) = diag(u(r))  diag(v(r)) then stop 

when

∑i, j = 1
n 𝒦i jπi j

r − ɛH π(r)

∑i, j = 1
n 𝒦i jπi j

r − 1 − ɛH π(r − 1) − 1 < 10−4 .

Note that although as ε →0 we will recover the unregularised TLλ
p distance we also suffer 

numerical instability as  → 0 exponentially in ε. These instabilities have been addressed 

in, for example, [14, 72].

For optimal transport with quadratic cost c(x, y) = |x − y|2 the Sinkhorn algorithm can be 

more efficiently implemented using Gaussian convolutions [74]. The two numerical methods 

described so far use the formulation of TLλ
2 given by (3-4) which interprets the TLλ

2 as an OT 

distance between measures μ and ν for a (non-quadratic) cost function cλ(·,·; f, g), hence 

one cannot make use of previous OT methods such as [74].

However, we also recall that we can define the TLλ
2 distance as the optimal transport distance 

between measures (f × Id)#μ and (g × Id)#ν, see (5), in which case the entropy regularized 

approach can be implemented using Gaussian convolutions in dimension d + m (when p = 

2), where f :Ω⊆ ∝d → ∝m. Although this means that the numerical method is based in a 

higher dimension we note the success of the bilateral grid method for bilateral filters that are 

also based on computing a Gaussian filter in a higher dimension [10, 57]. For colour images, 
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where m = 3 this approach may not be efficient however for m =1 these ideas have the 

potential for an improved algorithm.

Algorithm 2 An Entropy Regularised Approach [5, 16]

Input: discrete functions f = (f1,…,fn), g = (g1, …, gn), discrete measures μ = ∑i = 1
n piδxi, ν = ∑ j = 1

n q jδx j, the 

parameter ε and a stopping condition.

1:

Set r = 0, 𝒦 = exp −
c xi, x j; f , g

ɛ
i j

 and u(0) =  ∈ ℝn
.

2: repeat

3:

 Let r↦r+ 1, υ r = q

𝒦⊺u(r − 1)and u(r) = p

𝒦u(r)  where p =(p1,…pn),q= (q1,…

qn)

4: until Stopping condition has been reached

5: Set π = diag(u(r)) diag(v (r)).

Output: An estimate π on the optimal plan for Sε where the accuracy is determined by the stopping condition.
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Figure 1. 
On the left an example optimal transport map for OT, on the right an illustration of the 

pushforward measure.
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Figure 2. 
A Comparison of TLp with OT.
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Figure 3. 
TL2 transport between f (x) = Aχ[0,1] (black) and g(x) = f(x−ℓ) (red) and the TL2 distance 

(red), L2 distance (blue) and OT (black) between f and g (bottom right).
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Figure 4. 
For fixed α, β, γ ∈ (0,1) where β> α ≫ γ the definition of the classes i.
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Figure 5. 
Example signals and results for the synthetic data in Section 4.2.
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Figure 6. 
Example signals and results for the data sets described in Section 4.3.
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Figure 7. 
Spatially correlated histogram specification of synthetic grayscale images. An OT induced 

solution does not exist since there are no transport maps between the image to be shaded and 

the exemplar image.
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Figure 8. 
Spatially correlated histogram specification of real colour images between palm trees and 

the northern lights.
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Figure 9. 
Spatially correlated histogram specification of real colour images between two images of 

Masson's trichrome staining procedure, one of which the luminosity has been manipulated.
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Table 1

Error rates for 1NN classification in AUSLAN. The top row corresponds to applying each method to the 

signal, the second row is each method applied to the derivative of the signal, and the third row is the method 

applied to a weighted average of the signal and the derivative of the signal.

L2 DTW
TL2

λ

MOT

Signal 15.39% 11.45% 12.12% 61.71%

Derivative 22.15% 19.77% 12.63% 10.41%

Weighted Average 8.06% 7.33% 6.70% 10.41%
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