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Abstract

The aim of this paper is to introduce and study
a two-step debiasing method for variational reg-
ularization. After solving the standard varia-
tional problem, the key idea is to add a con-
secutive debiasing step minimizing the data fi-
delity on an appropriate set, the so-called model
manifold. The latter is defined by Bregman dis-
tances or infimal convolutions thereof, using the
(uniquely defined) subgradient appearing in the
optimality condition of the variational method.
For particular settings, such as anisotropic `1

and TV-type regularization, previously used de-
biasing techniques are shown to be special cases.
The proposed approach is however easily appli-
cable to a wider range of regularizations. The
two-step debiasing is shown to be well-defined
and to optimally reduce bias in a certain set-
ting.

In addition to visual and PSNR-based evalu-
ations, different notions of bias and variance de-
compositions are investigated in numerical stud-
ies. The improvements offered by the proposed
scheme are demonstrated and its performance is
shown to be comparable to optimal results ob-
tained with Bregman iterations.

1 Introduction

Variational regularization methods with non-
quadratic functionals such as total variation or
`1-norms have evolved to a standard tool in in-
verse problems [10, 34], image processing [13],
compressed sensing [12], and recently related
fields such as learning theory [15]. The pop-
ularity of such approaches stems from superior
structural properties compared to other regular-
ization approaches. `1-regularization for exam-
ple leads to sparse solutions with very accurate
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or even exact reconstruction of the support of
the true solution. On the other hand it is known
that such methods suffer from a certain bias due
to the necessary increased weighting of the regu-
larization term with increasing noise. Two well-
known examples are the loss of contrast in total
variation regularization [10, 27] or shrinked peak
values in `1-regularization. Accordingly, quan-
titative values of the solutions have to be taken
with care.

Several approaches to reduce or eliminate the
bias of regularization methods have been con-
sidered in literature: For `1-regularization and
similar sparsity-enforcing techniques an ad-hoc
approach is to determine the support of the
solution by the standard variational methods
in a first step, then use a second debiasing
step that minimizes the residual (or a general
data fidelity) restricted to that support, also
known as refitting [20, 22, 23]. A slightly more
advanced approach consists in adding a sign-
constraint derived from the solution of the vari-
ational regularization method in addition to the
support condition. This means effectively that
the solution of the debiasing step shares an
`1-subgradient with the solution of the varia-
tional regularization method. A different and
more general approach is to iteratively reduce
the bias via Bregman iterations [27] or simi-
lar approaches [7, 35]. Recent results for the
inverse scale space method in the case of `1-
regularization (respectively certain polyhedral
regularization functionals [8, 25, 5]) show that
the inverse scale space performs some kind of de-
biasing. Even more, under certain conditions,
the variational regularization method and the
inverse scale space method provide the same
subgradient at corresponding settings of the reg-
ularization parameters [6]. Together with a
characterization of the solution of the inverse
scale space method as a minimizer of the resid-
ual on the set of elements with the same sub-
gradient, this implies a surprising equivalence
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to the approach of performing a debiasing step
with sign-constraints. Recently, bias and de-
biasing in image processing problems were dis-
cussed in a more systematic way by Deledalle
et al. [16, 17]. They distinguish two different
types of bias, namely method bias and model
bias. In particular they suggest a debiasing
scheme to reduce the former, which can be ap-
plied to some polyhedral one-homogeneous reg-
ularizations. The key idea of their approach is
the definition of suitable spaces, called model
subspaces, on which the method bias is mini-
mized. The remaining model bias is considered
as the unavoidable part of the bias, linked to the
choice of regularization and hence the solution
space of the variational method. The most pop-
ular example is the staircasing effect that occurs
for total variation regularization due to the as-
sumption of a piecewise constant solution. In
the setting of `1-regularization a natural model
subspace is the set of signals with a given sup-
port, which yields consistency with the ad-hoc
debiasing approach mentioned above.

Based on this observation, the main motiva-
tion of this paper is to further develop the ap-
proach in the setting of variational regulariza-
tion and unify it with the above-mentioned ideas
of debiasing for `1-regularization, Bregman iter-
ations, and inverse scale space methods.

Let us fix the basic notations and give a more
detailed discussion of the main idea. Given a
bounded linear operator A : X → Y between Ba-
nach spaces, a convex regularization functional
J : X → R ∪ {∞} and a differentiable data fi-
delity H : Y × Y → R, we consider the solution
of the variational method

uα ∈ arg min
u∈X

H(Au, f) + αJ(u) (1.1)

as a first step. Here α > 0 is a suitably chosen
regularization parameter. This problem has a
systematic bias, as we further elaborate on be-
low. The optimality condition is given by

A∗∂uH(Auα, f)+αpα = 0, pα ∈ ∂J(uα), (1.2)

where ∂uH is the derivative of H with respect to
the first argument. Now we proceed to a second
step, where we only keep the subgradient pα and
minimize

ûα ∈ arg min
u∈X

H(Au, f) s.t. pα ∈ ∂J(u). (1.3)

Obviously, this problem is only of interest if
there is no one-to-one relation between subgra-
dients and primal values u, otherwise we always

obtain ûα = uα. The most interesting case with
respect to applications is the one of J being ab-
solutely one-homogeneous, i.e. J(λu) = |λ|J(u)
for all λ ∈ R, where the subdifferential can be
multivalued at least at u = 0.

The debiasing step can be reformulated in an
equivalent way as

min
u∈X

H(Au, f) s.t. Dpα
J (u, uα) = 0, (1.4)

with the (generalized) Bregman distance given
by

Dp
J(u, v) = J(u)−J(v)−〈p, u−v〉, p ∈ ∂J(v).

We remark that for absolutely one-homogeneous
J this simplifies to

Dp
J(u, v) = J(u)− 〈p, u〉, p ∈ ∂J(v).

The reformulation in terms of a Bregman dis-
tance indicates a first connection to Bregman
iterations, which we make more precise in the
sequel of the paper.

Summing up, we examine the following two-
step method:

1) Compute the (biased) solution uα of (1.1)
with optimality condition (1.2),

2) Compute the (debiased) solution ûα as the
minimizer of (1.3) or equivalently (1.4).

In order to relate further to the previous ap-
proaches of debiasing `1-minimizers given only
the support and not the sign, as well as the ap-
proach with linear model subspaces, we consider
another debiasing approach being blind against
the sign. The natural generalization in the case
of an absolutely one-homogeneous functional J
is to replace the second step by

min
u∈X

H(Au, f) s.t. ICBpαJ (u, uα) = 0,

where

ICBpαJ (u, uα) :=
[
Dpα
J (·, uα)2D-pα

J (·,−uα)
]
(u)

denotes the infimal convolution between
the Bregman distances Dpα

J (·, uα) and

D−pαJ (·,−uα), evaluated at u ∈ X . The
infimal convolution of two functionals F and G
on a Banach space X is defined as

(F2G)(u) = inf
φ,ψ∈X ,
φ+ψ=u

F (φ) +G(ψ)

= inf
z∈X

F (u− z) +G(z).
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For the sake of simplicity we carry out all anal-
ysis and numerical experiments in this paper for
a least-squares data fidelity (related to i.i.d. ad-
ditive Gaussian noise)

H(Au, f) =
1

2
‖Au− f‖2Y (1.5)

for some Hilbert space Y, but the basic idea does
not seem to change for other data fidelities and
noise models.

We show that the sets characterized by the
constraints

Dpα
J (u, uα) = 0 and ICBpαJ (u, uα) = 0

constitute a suitable extension of the model sub-
spaces introduced in [16] to general variational
regularization. In particular, we use those mani-
folds to provide a theoretical basis to define the
bias of variational methods and investigate the
above approach as a method to reduce it. More-
over, we discuss its relation to the statistical in-
tuition of bias. At this point it is important to
notice that choosing a smaller regularization pa-
rameter will also decrease bias, but on the other
hand strongly increase variance. The best we
can thus achieve is to reduce the bias at fixed α
by the two-step scheme while introducing only
a small amount of variance.

The remainder of the paper is organized as fol-
lows: In Section 2 we motivate our approach by
considering bias related to the well-known ROF-
model [31] and we review a recent approach on
debiasing [16]. In the next section we introduce
our debiasing technique supplemented by some
first results. Starting with a discussion of the
classical definition of bias in statistics, we con-
sider a deterministic characterization of bias in
Section 4. We reintroduce the notion of model
and method bias as well as model subspaces as
proposed in [16] and extend it to the infinite-
dimensional variational setting. We furthermore
draw an experimental comparison between the
bias we consider in this paper and the statisti-
cal notion of bias. Finally, we comment on the
relation of the proposed debiasing to Bregman
iterations [27] and inverse scale space methods
[32, 7]. We complete the paper with a descrip-
tion of the numerical implementation via a first-
order primal-dual method and show numerical
results for signal deconvolution and image de-
noising.

2 Motivation

Let us start with an intuitive approach to bias
and debiasing in order to further motivate our
method. To do so, we recall a standard exam-
ple for denoising, namely the well-known ROF-
model [31], and we rewrite a recent debiasing
approach [16] in the setting of our method.

2.1 Bias of total variation regular-
ization

As already mentioned in the introduction, varia-
tional regularization methods suffer from a cer-
tain bias. This systematic error becomes ap-
parent when the regularization parameter is in-
creased. Indeed this causes a shift of the overall
energy towards the regularizer, and hence a de-
viation of the reconstruction from the data in
terms of quantitative values. Intuitively, this
can be observed from the discrete version of the
classical ROF-model [31], i.e.

uα ∈ arg min
u∈Rn

1

2
‖u− f‖22 + α‖Γu‖1, (2.1)

with a discrete gradient operator Γ ∈ Rm×n.
It yields a piecewise constant signal uα recon-
structed from an observation f ∈ Rn, which has
been corrupted by Gaussian noise (see Figure
1(a)). Figure 1(b) shows the solution of (2.1)
together with the true, noiseless signal we aimed
to reconstruct. Even though the structure of the
true signal is recovered, the quantitative values
of the reconstruction do not match the true sig-
nal. Instead, jumps in the signal have a smaller
height, which is often referred to as a loss of con-
trast. Without any further definition, one could
intuitively consider this effect as the bias (or one
part of the bias) of the ROF model. Hence, the
goal of a bias reduction method would be to re-
store the proper signal height while keeping the
(regularized) structure.

It has been shown in [27, 1] that this can be
achieved by the use of Bregman iterations, i.e.
by iteratively calculating

uk+1
α ∈ arg min

u∈Rn
1

2
‖u− f‖22 + αD

pkα
J (u, ukα),

(2.2)

where in our case J(u) = ‖Γu‖1, and pkα ∈
∂J(ukα) is a subgradient of the last iterate ukα.
Since for total variation regularization the sub-
gradient pkα essentially encodes the edge infor-
mation of the last iterate, its iterative inclusion

3
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(a) Original and noisy signal (b) Denoising with TV regularization
and Bregman iterations

Figure 1: Illustration of the bias of the ROF model on a 1D signal. (a) Original signal, and
noisy signal corrupted by additive Gaussian noise. (b) Restoration of the noisy signal with TV
regularization and Bregman iterations. The TV reconstruction recovers the structure of the signal
but suffers from a loss of contrast, which is however well recovered with Bregman iterations.

allows to keep edges while restoring the correct
height of jumps across edges. We further elab-
orate on that in Section 4. Indeed, the recon-
struction via (2.2) in Figure 1(b) shows an al-
most perfect recovery of the true signal even in
terms of quantitative values. This indicates that
Bregman iterations are able to reduce or even
eliminate our heuristically defined bias.

However, a theoretical basis and justification
is still missing, i.e. a proper definition of the
bias of variational methods, a proof that Breg-
man iterations indeed reduce the bias in that
sense, and in particular a link to the statistical
definition and understanding of bias. With this
paper we aim to define a proper basis for this
link, and in particular further establish the con-
nection between bias reduction techniques and
Bregman distances.

2.2 Recent debiasing and Breg-
man distances

In order to further motivate the use of Bregman
distances for bias reduction let us recall and re-
view a very recent approach on debiasing and
work out its relation to Bregman distances. In
[16], Deledalle et al. introduce a debiasing algo-
rithm for anisotropic TV-type regularized prob-
lems

uα ∈ arg min
u∈Rn

1

2
‖Au− f‖22 + α‖Γu‖1,

with a linear operator A ∈ Rn×d, a discrete
gradient operator Γ ∈ Rn×m and noisy data

f ∈ Rd. In [16] the authors argued that the loss
of contrast characteristic for this kind of regu-
larization is indeed bias in their sense. In order
to correct for that error, the proposed debiasing
method in [16] consists in looking for a debiased
solution ûα such that Γûα and Γuα share the
same support, but ûα features the right inten-
sities. Mathematically, the solution ûα of their
debiasing problem is given by

ûα ∈ arg min
u∈Rn

sup
z∈FI

1

2
‖Au− f‖22 + 〈Γu, z〉,

(2.3)

where FI = {z ∈ Rm | zI = 0}, and I is the
set of indices corresponding to nonzero entries of
Γuα. We can explicitly compute the supremum
(the convex conjugate of the indicator function
of the set FI), which is

sup
z∈FI
〈Γu, z〉 =

{
∞, (Γu)i 6= 0 for some i /∈ I,
0, else.

Hence, ûα can only be a minimizer of (2.3) if
supp(Γûα) ⊂ supp(Γuα), thus

ûα ∈ arg min
u∈Rn

1

2
‖Au− f‖22

s.t. supp(Γûα) ⊂ supp(Γuα). (2.4)

We can also enforce this support condition us-
ing the infimal convolution of two `1-Bregman
distances. Defining J(u) = ‖Γu‖1, the subdif-
ferential of J at uα is given by

∂J(uα) = {ΓT qα ∈ Rn | ‖qα‖∞ ≤ 1,

(qα)i = sign((Γuα)i) for (Γuα)i 6= 0}.

4
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Figure 2: TV denoising of a one-dimensional
noisy signal and debiasing using the proposed
approach with zero Bregman distance.

In particular |(qα)i| = 1 on the support of
Γuα. Let qα be such a subgradient and con-
sider the `1-Bregman distances Dqα

‖·‖1(·,Γuα)

and D−qα‖·‖1 (·,−Γuα). According to [24], their in-

fimal convolution evaluated at Γu is given by:

ICBqα‖·‖1(Γu,Γuα)

= [Dqα
‖·‖1(·,Γuα)2D−qα‖·‖1 (·,−Γuα)](Γu)

=

m∑
i=1

(1− |(qα)i|)|(Γu)i|.

We observe that this sum can only be zero if
|(qα)i| = 1 or (Γu)i = 0 for all i. Assuming
that a qualification condition holds, i.e. pα =
ΓT qα ∈ ∂J(uα) with |(qα)i| < 1 for i /∈ I, i.e.
|(qα)i| = 1 ⇔ (Γuα)i 6= 0, we can rewrite the
above debiasing method (2.3) as

min
u∈Rn

1

2
‖Au− f‖22 s.t. ICBqα‖·‖1(Γu,Γuα) = 0.

Note that the zero infimal convolution exactly
enforces the support condition (2.4) only if
|(qα)i| < 1 for all i ∈ I. Intuitively, since the
subdifferential is multivalued at (Γuα)i = 0, this
leads to the question of how to choose qα prop-
erly. However, our method does not depend on
the choice of a particular qα, but instead we use
a unique subgradient pα coming from the op-
timality condition of the problem. We further
comment on this in Section 4.

3 Debiasing

Inspired by the above observations, let us define
the following two-step-method for variational
regularization on Banach spaces. At first we

compute a solution uα of the standard varia-
tional method

1) uα ∈ arg min
u∈X

1

2
‖Au− f‖2Y + αJ(u),

(3.1)
where A : X → Y is a linear and bounded opera-
tor mapping from a Banach space X to a Hilbert
space Y, J : X → R ∪ {∞} denotes a convex
and one-homogeneous regularization functional
and f ∈ Y. We point out that in the following,
we will always make the standard identification
Y∗ = Y without further notice.

The first-order optimality condition of (3.1)
reads:

pα =
1

α
A∗(f −Auα), pα ∈ ∂J(uα), (3.2)

and it is easy to show that this pα is unique (cf.
Section 3.2, Thm. 3.1). We use this subgradient
to carry over information about uα to a second
step. In the spirit of the previous paragraph the
idea is to perform a constrained minimization of
the data fidelity term only:

2 a) ûα ∈ arg min
u∈X

1

2
‖Au− f‖2Y

s.t. ICBpαJ (u, uα) = 0.
(3.3)

If we reconsider the ad-hoc idea of `1 or TV-
type debiasing from the introduction, it can be
beneficial to add a sign or direction constraint
to the minimization, rather than a support con-
dition only. This can be achieved by the use of a
single Bregman distance. Hence it is self-evident
to define the following alternative second step:

2 b) ûα ∈ arg min
u∈X

1

2
‖Au− f‖2Y

s.t. Dpα
J (u, uα) = 0.

(3.4)

We would like to point out that until now
we only argued heuristically that the above
method actually performs some kind of debi-
asing for specific problems. But since we are
able to recover the debiasing method of [16] for
J(u) = ‖Γu‖1 as a special case, at least for this
specific choice of regularization (and a finite-
dimensional setting) our method is provably a
debiasing in their sense.

However, our method is much more general.
Since in contrast to [16] it does not depend on a
specific representation of uα, it can theoretically
be carried out for any suitable regularizer J . In
particular, the method does not even depend on

5



Color image1 Original image Noisy image

TV denoising Bregman debiasing ICB debiasing

PSNR = 19.63 PSNR = 22.75 PSNR = 22.70

Figure 3: Denoising of a cartoon image. First row: original image, noisy image corrupted by
Gaussian noise. Second row: TV reconstruction and debiasing using the Bregman distance and
its infimal convolution, respectively. The TV reconstruction recovers well the structures of the
images but suffers from a loss of contrast, while the debiased solutions allow for a more accurate
dynamic.
1 The color image is provided in order to point out that it is indeed a giraffe and not a cow.

the specific choice of the data term. In order to
obtain a unique subgradient pα from the opti-
mality condition it is desirable e.g. to have a dif-
ferentiable data fidelity, but if we drop that con-
dition, the data term is theoretically arbitrary.
Since this generalization requires more techni-
calities, we focus on a squared Hilbert space
norm in this paper in order to work out the ba-
sics of the approach.

Before we actually lay a theoretical foun-
dation for our framework and prove that our
method indeed is a debiasing method, we show
some motivating numerical results and prove the
well-definedness of the method.

3.1 A first illustration

To give a first glimpse of the proposed method,
we revisit the ROF-reconstruction model (2.1)
from Section 2 and show some numerical results
in one and two dimensions.

Taking the subgradient pα of the TV recon-
struction uα of the one-dimensional signal and
performing our debiasing method, we obtain the
results in Figure 2. The second step restores the
right height of the jumps and yields the same re-
sult as the Bregman iterations we performed in
Section 2.

As a second example we perform denoising on
a cartoon image corrupted by Gaussian noise.
The first row of Figure 3 shows the original im-
age and its noisy version. The left image in the
second row is the denoising result obtained with
the ROF-model (2.1). We observe that noise
has been reduced substantially, but some part
of the contrast is lost. The second step of our
method restores the contrast while keeping the
structure of the first solution, yielding the two
results depicted in the middle and on the right
of the second row.

6



3.2 Well-definedness of the
method

The aim of this section is to show that the
method defined above is well-defined, i.e. that
there always exists at least one solution to the
problem. We fix the setup by restricting our-
selves to conditions ensuring that the original
variational problem (1.1) with quadratic data
fidelity has a solution. The following result can
be established by standard arguments:

Theorem 3.1. Let Y be a Hilbert space, X be
the dual space of some Banach space Z, such
that the weak-star convergence in X is metriz-
able on bounded sets. Moreover, let A : X →
Y be the adjoint of a bounded linear operator
B : Y → Z, J be the convex conjugate of a
proper functional on the predual space Z, and
let the map u 7→ 1

2‖Au‖
2
Y + J(u) be coercive

in X . Then the variational problem (1.1) with
data-fidelity (1.5) has a minimizer uα ∈ X and
there exists a subgradient pα ∈ ∂J(uα) such that
the optimality condition

pα =
1

α
A∗(f −Auα) =

1

α
B(f −Auα) (3.5)

holds. Moreover, if uα 6= ũα are two minimiz-
ers, then Auα = Aũα and the corresponding
subgradient is unique, i.e.,

pα =
1

α
B(f −Auα) =

1

α
B(f −Aũα) = p̃α.

Proof. Since the functional J is proper, there
exists a nonempty sublevel set of the functional
u 7→ 1

2‖Au − f‖2Y + αJ(u), and by the coer-
civity assumption this sublevel set is bounded.
The Banach-Alaoglu theorem now implies pre-
compactness of the sublevel set in the weak-
star topology. Since the latter is metrizable on
bounded sets, it suffices to show that the objec-
tive functional is sequentially weak-star lower
semicontinuous in order to obtain existence of a
minimizer. For the regularization functional J ,
this follows from a standard argument for con-
vex conjugates of proper functionals along the
lines of [18]. The assumption A = B∗ guaran-
tees further that A is continuous from the weak-
star topology in X to the weak topology of Y
and the weak lower semicontinuity of the norm
also implies the weak-star lower semicontinuity
of the data fidelity. Those arguments together
yield the existence of a minimizer.

The first equation of the optimality condition
for the subgradient pα follows from the fact that

the data fidelity is Fréchet-differentiable. From
the argumentation in [4, Remark 3.2] we see
that the assumption A = B∗ furthermore im-
plies that A∗ indeed maps to the predual space
Z (and not to the bigger space Z∗∗), such that
(3.5) holds true. More precisely, this special
property of A∗ is derived from the fact that
A is sequentially continuous from the weak-star
topology of X to the weak(-star) topology of Y,
which implies that it posseses an adjoint which
maps Y into Z regarded as a closed subspace
of Z∗∗ (note that the weak and the weak-star
topology coincide on the Hilbert space Y). Con-
sequently pα ∈ Z.

Finally, assume that uα and ũα are two solu-
tions, then we find

pα = Bwα, wα =
1

α
(f −Auα),

and an analogous identity for p̃α respectively ũα.
Consequently, we have

(wα − w̃α) +
1

α
A(uα − ũα) = 0.

Computing the squared norm of the left-hand
side, we find

‖wα − w̃α‖2Y +
2

α
〈pα − p̃α, uα − ũα〉

+
1

α2
‖A(uα − ũα)‖2Y = 0.

The dual product can be expressed as a sym-
metric Bregman distance

Dsym
J (uα, ũα) = Dp̃α

J (uα, ũα) +Dpα
J (ũα, uα).

Hence all three terms are nonnegative and we
find in particular Auα = Aũα, wα = w̃α and
thus pα = p̃α. �

By exploiting that pα lies in the range of B we
can prove coercivity and subsequently existence
for problem (3.4). In fact, we can give a more
general result.

Theorem 3.2. Let the conditions of Theorem
3.1 hold and let p ∈ ∂J(0) ∩ Z ⊂ X ∗ be such
that there exists w with

J∗
(
p−Bw

τ

)
= 0

for some 0 < τ < 1. Then there exists a mini-
mizer of

min
u∈X

1

2
‖Au− f‖2Y s.t. J(u)− 〈p, u〉 = 0.

7



Proof. Let A = {u ∈ X | J(u) − 〈p, u〉 = 0} be
the admissible set. Since 0 ∈ A we can look for
a minimizer in the sublevel set

S =
{
u ∈ A | ‖Au− f‖Y ≤ ‖f‖Y

}
.

By the triangle inequality we have ‖Au‖Y ≤
2‖f‖Y and hence 1

2‖Au‖
2
Y ≤ 2‖f‖2Y on S. Ac-

cordingly, u 7→ 1
2‖Au‖

2
Y is bounded on S. From

the definition of the convex conjugate we know
that for all u ∈ X , r ∈ X ∗ we have

〈r, u〉 ≤ J∗(r) + J(u). (3.6)

Hence for u ∈ S we find

J(u) = 〈p, u〉
= 〈p−Bw, u〉+ 〈w,Au〉

≤ 〈p−Bw
τ

, τu〉+ ‖w‖Y‖Au‖Y

≤ J∗
(
p−Bw

τ

)
+ J(τu) + ‖w‖Y‖Au‖Y

which implies by the one-homogeneity of J that

J(u) ≤ ‖w‖Y ‖Au‖Y
1− τ

.

Thus we obtain the boundedness of u 7→
1
2‖Au‖

2
Y + J(u) on S. The remaining steps fol-

low the proof of Theorem 3.1. �

Note that, provided that the operator A ful-
fills the conditions of Theorem 3.1, the assump-
tions of Theorem 3.2 always hold for p = pα
obtained from (3.2) with w = 1

α (f − Auα) and
τ arbitrarily small, hence we conclude the exis-
tence of a minimizer ûα of (3.4).

The situation for (3.3) is less clear, since there
is no similar way to obtain coercivity. As we
shall see in Section 4, (3.3) consists in mini-
mizing a quadratic functional over a linear sub-
space, which immediately implies the existence
of ûα if X has finite dimensions. In an infinite-
dimensional setting we cannot provide an exis-
tence result in general, since there is neither a
particular reason for the subspace to be closed
nor for the quadratic functional to be coercive
(in ill-posed problems we typically deal with an
operator A with nonclosed range).

3.3 Optimal debiasing on singular
vectors

In the following we work out the behavior of
the debiasing method on singular vectors [1],

which represent the extension of the concept of
classical singular value decomposition to nonlin-
ear regularization functionals. According to [1],
uλ ∈ X is a singular vector if for some λ > 0

λA∗Auλ ∈ ∂J(uλ)

holds. Without going too much into detail, sin-
gular vectors can be considered as generalized
“eigenfunctions” of the regularization functional
J . As such, they describe a class of exact solu-
tions to problem (3.1) in the following sense:

Let us consider a multiple cuλ of such a sin-
gular vector for c > λα. According to [1], the
solution uα of the variational problem (3.1) for
data f = cAuλ is given by

uα = (c− αλ)uλ,

and the subgradient from the optimality condi-
tion is

pα = λA∗Auλ ∈ ∂J(uα).

Hence uα recovers cuλ up to a (known) scalar
factor αλ and shares a subgradient with uλ.
This means that the variational method leaves
the singular vector basically untouched, which
allows for its exact recovery. Intuitively, the
quantity −λαuλ hence represents the bias of the
variational method in this case, which should be
removed by our debiasing method (3.4). And
indeed we obtain ûα = cuλ as a minimizer of
(3.4), since

‖Aûα − f‖Y = ‖A(ûα − cuλ)‖Y = 0

and since ûα lies in the admissible set due to the
shared subgradient. If A has trivial nullspace,
ûα is even unique. Hence, the debiasing strategy
leads to the exact reconstruction of the solution
and corrects the bias −λαuλ. Note that this is
indeed an important result, since if the debias-
ing method failed for singular vectors it would
be doubtful whether the method is reliable in
general.

Since the infimal convolution of Bregman dis-
tances is nonnegative and less or equal than ei-
ther of the Bregman distances, it also vanishes
at ûα = cuλ. In particular

ICBpαJ (cuλ, uα) ≤ Dpα
J (cuλ, uα)

= J(cuλ)− 〈pα, cuλ〉 = 0.

Consequently, ûα is also a solution of (3.3).
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4 Bias and Model Manifolds

In the following we provide a more fundamental
discussion of bias and decompositions obtained
by debiasing methods. An obvious point to start
is the definition of bias, which is indeed not al-
ways coherent in the imaging literature with the
one in statistics.

4.1 Definitions of bias

We first recall the classical definition of bias in
statistics. Let f be a realization of a random
variable modeling a random noise perturbation
of clean data f∗ = Au∗, such that E[f ] = f∗. If
we consider a general canonical estimator Û(f),
the standard definition of bias in this setup is
given by

Bstat(Û) = E[u∗ − Û(f)]

= u∗ − E[Û(f)].
(4.1)

Unfortunately, this bias is hard to manipulate
for nonlinear estimators. Hence, we consider a
deterministic definition of bias, which relies on
the clean data f∗:

B∗(Û) = E[u∗ − Û(f∗)] = u∗ − Û(f∗)

= u∗ − Û(E[f ]).
(4.2)

We immediately note the equivalence of the two
definitions in the case of linear estimators, but
our computational experiments do not show a
significant difference between Bstat and B∗ even
for highly nonlinear variational methods. In
general, the purpose of debiasing is to reduce
the quantitative bias Bd, i.e. here the error be-
tween u∗ and Û(f∗) in an appropriate distance
measure d:

Bd(Û(f∗)) = d(Û(f∗), u∗).

Let us consider the specific estimator uα(f∗),
i.e. the solution of problem (3.1) with clean
data f∗. As already argued in Section 2, it
suffers from a certain bias due to the chosen
regularization. Following [16], this bias can be
decomposed into two parts. The first part is re-
lated to the regularization itself, and it occurs if
the assumption made by the regularization does
not match the true object that we seek to re-
cover. For example, trying to recover a piece-
wise linear object using TV regularization leads
to the staircasing effect due to the assumption
of a piecewise constant solution. This part of

the bias is unavoidable since it is inherent to
the regularization, and it is referred to as model
bias. In particular, we cannot hope to correct
it.

However, even if the regularity assumption
fits, the solution still suffers from a systematic
error due to the weight on the regularization.
For TV regularization for example, this is the
loss of contrast observed in Section 2. This re-
maining part is referred to as method bias, and
this is the part that we aim to correct. As we
shall see in the remainder of the section, the
estimator uα(f∗) provides the necessary infor-
mation to correct this bias. Deledalle et al. [16]
define an appropriate linear model subspace re-
lated to that estimator, on which the debiasing
takes place. It allows to define the model bias
as the difference between u∗ and its projection
onto the model subspace. The remaining part
of the difference between the reconstructed solu-
tion and u∗ is then the method bias. In the fol-
lowing we reintroduce the notion of model sub-
spaces provided by [16] and further generalize
it to the variational setting in infinite dimen-
sions. The latter may imply the nonclosedness
of the model subspace and hence nonexistence
of the projection of u∗ onto it. Moreover, it
seems apparent that in some nonlinear situa-
tions it might be more suitable to consider a
model manifold instead of a linear space and we
hence generalize the definition in this direction.
We remark that the use of the term manifold is
for technical reasons. As we shall see, the sets
we consider in the course of the paper are for ex-
ample (linear) subspaces or convex cones. The
latter are not linear, but can be considered as
manifolds with boundaries. Therefore we shall
use the term model manifold in general, and be
more precise for particular instances of model
manifolds.

Let us first assume that we are already given
an appropriate model manifold.

Definition 4.1. Let Mf∗ be a given model
manifold and d : X×X → [0,∞) a distance mea-
sure. An estimator Û(f∗) of u∗ is a debiasing of
uα(f∗) if Û(f∗) ∈Mf∗ and

d(Û(f∗), u∗) < d(uα(f∗), u∗).

If there exists a minimizer

ûα(f∗) ∈ arg min
v∈Mf∗

d(v, u∗), (4.3)
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we call it an optimal debiasing. In any case, we
define the magnitude of the model bias as

Bdmod(Mf∗) = inf
v∈Mf∗

d(v, u∗).

Obviously the model bias only depends on
the model manifold and for a given uα(f∗) it
is hence, as already indicated, a fixed quantity
that we cannot manipulate. Instead we want to
perform the debiasing on the manifold only, so
we consider another bias for elements of Mf∗

only. Since according to the above definition
there might exist more than one optimal debi-
asing, we shall from here on assume that we are
given one of them.

Definition 4.2. For a fixed optimal debiasing
ûα(f∗) onMf∗ , we define the magnitude of the
method bias of v ∈Mf∗ related to ûα(f∗) as

Bdmeth(v) = d(v, ûα(f∗)).

The optimal debiasing ûα(f∗) obviously does
not suffer from method bias. Note that if the
minimizer in (4.3) does not exist, which can hap-
pen in particular in ill-posed problems in infinite
dimensions, then the magnitude of the method
bias is not well-defined or has to be set to +∞.

With these definitions at hand, we now aim
to compute an optimal debiasing, i.e. the solu-
tion of (4.3). The remaining questions are how
to choose an appropriate model manifold Mf∗

and the distance measure d. We start with the
latter. An easy choice for the distance measure
d is a squared Hilbert space norm: If the mini-
mizer of (4.3) exists, e.g. if Mf∗ is nonempty,
convex and closed, the optimal debiasing ûα(f∗)
is the (unique) projection of u∗ onto Mf∗ . We
obtain a decomposition of the bias of any es-
timator v ∈ Mf∗ into method and (constant)
model bias:

v − u∗ = v − ûα(f∗)︸ ︷︷ ︸
method bias

+ ûα(f∗)− u∗︸ ︷︷ ︸
model bias

.

In case Mf∗ is a closed subspace of X , this de-
composition is even orthogonal, i.e.

Bd(v) = ‖v − u∗‖2

= ‖v − ûα(f∗)‖2 + ‖ûα(f∗)− u∗‖2

= Bdmeth(v) +Bdmod(Mf∗).

Unfortunately, for general inverse problems with
a nontrivial operator we do not know u∗ and
hence cannot compute its projection ontoMf∗ .

Instead we have access to the data f∗ = Au∗ (or
rather to one noisy realization f of f∗ in prac-
tice, which we discuss later). In order to make
the bias (and the associated debiasing) accessi-
ble, we can consider bias through the operator
A. Hence the optimal debiasing comes down
to computing the minimizer of (4.3) with a dis-
tance defined over A(Mf∗), i.e.

ûα(f∗) = arg min
v∈Mf∗

‖Au∗ −Av‖2

= arg min
v∈Mf∗

‖f∗ −Av‖2. (4.4)

Correspondingly, if such a minimizer ûα(f∗) ex-
ists, we measure the magnitude of model and
method bias in the output space, rather than in
image space, i.e.

Bdmod(Mf∗) = inf
v∈Mf∗

‖Av − f∗‖2,

Bdmeth(v) = ‖Aûα(f∗)−Av‖2.

We can hence at least guarantee that the opti-
mal debiasing has zero method bias in the out-
put space. For denoising problems without any
operator (A being the identity), or for A invert-
ible on Mf∗ we obtain the equivalence of both
approaches. In ill-posed inverse problems it is
usually rather problematic to measure errors in
the output space, since noise can also be small
in that norm. Notice however that we do not use
the output space norm on the whole space, but
on the rather small model manifold, on which -
if chosen appropriately - the structural compo-
nents dominate. On the latter the output space
norm is reasonable.

The main advantage of this formulation is
that we are able to compute a minimizer of
(4.4), since it is in fact a constrained least-
squares problem with the data fidelity of (3.1).
Its solution of course requires a proper choice of
the underlying model manifold Mf∗ , which we
discuss in the following.

4.2 Model manifolds

In general, a model manifold can be character-
ized as the space of possible solutions for the
debiasing step following the first solution uα(f)
of the variational problem (3.1). As such it con-
tains the properties of uα(f) that we want to
carry over to the debiased solution. In the con-
text of sparsity-enforcing regularization this is
basically a support condition on the debiased
solution.

10



4.2.1 Differential model manifolds

Deledalle et al. [16] use the notion of Fréchet
derivative to define their model subspace in a
finite-dimensional setting. We naturally gener-
alize this concept using the directional deriva-
tive instead, and further extend it to infinite di-
mensions. The following definitions can e.g. be
found in [33].

Definition 4.3. Let V and W be Banach
spaces. A mapping F : V → W is called Fréchet
differentiable at x ∈ V if there exists a linear
and bounded operator DF (x; ·) : V → W such
that

lim
‖g‖V→0

‖F (x+ g)− F (x) + DF (x; g)‖W
‖g‖V

= 0.

Definition 4.4. A mapping F : V → W is
called directionally differentiable in the sense of
Gâteaux at x ∈ V if the limit

dF (x; g) := lim
t→0+

F (x+ tg)− F (x)

t

exits for all g ∈ V.

We can immediately deduce from the defini-
tion that, if the directional derivative dF (x; ·)
exits, it is positively one-homogeneous in g, i.e.

dF (x;λg) = λdF (x; g)

for all λ ≥ 0 and g ∈ V. If it is linear in g, we
call F Gâteaux differentiable at x.

Provided a unique and Fréchet differentiable
map f 7→ uα(f), Deledalle et al. [16] introduce
the tangent affine subspace

MF
f =

{
uα(f) + Duα(f ; g) | g ∈ Y

}
,

where Duα(f ; ·) : Y → X is the Fréchet deriva-
tive of uα(f) at f . To be less restrictive, the
easiest generalization of MF

f is to consider the
directional derivative.

Definition 4.5. If the map f 7→ uα(f) is direc-
tionally differentiable with derivative duα(f ; ·),
we define

MG
f =

{
uα(f) + duα(f ; g) | g ∈ Y

}
.

Note that if the map is Fréchet differentiable,
MG

f is a linear space and coincides with the

model subspace MF
f .

We now derive a few illustrative examples
that we use throughout the remainder of the

paper. In order to keep it as simple as possible,
the easiest transition from the finite-dimensional
vector space setting to infinite dimensions are
the `p-spaces of p-summable sequences:

Definition 4.6. For 1 ≤ p < ∞ we define the
spaces `p of p-summable sequences with values
in Rd by

`p(Rd) =
{

(xi)i∈N, xi ∈ Rd :
∑
i∈N
|xi|p <∞

}
,

where | · | denotes the Euclidean norm on Rd.
For p =∞ we define

`∞(Rd) =
{

(xi)i∈N, xi ∈ Rd : sup
i∈N
|xi| <∞

}
.

It is easy to show that `p(Rd) ⊂ `q(Rd) for
1 ≤ p ≤ q ≤ ∞. In particular for d = 1 we de-
note by `1, `2 and `∞ the spaces of summable,
square-summable and bounded scalar-valued se-
quences.

Example 4.7. Anisotropic shrinkage. Let f ∈
`2 be a square-summable sequence. The solution
of

uα(f) ∈ arg min
u∈`1

1

2
‖u− f‖2`2 + α‖u‖`1 (4.5)

for α > 0 is given by

[uα(f)]i =

{
fi − α sign(fi), |fi| ≥ α,
0, |fi| < α.

Its support is limited to where |fi| is above
the threshold α. The directional derivative
duα(f ; g) of uα(f) into the direction g ∈ `2 is
given by

[duα(f ; g)]i

=


gi, |fi| > α

0, |fi| < α

gi, |fi| = α, sign(fi) = sign(gi)

0, |fi| = α, sign(fi) 6= sign(gi).

Proof. See Appendix 8.1.

First, if we exclude the case |fi| = α, the
directional derivative is linear, hence it is a
Gâteaux derivative. In fact it is even an infinite-
dimensional Fréchet derivative, and the result-
ing model manifold coincides with the model
subspace defined in finite dimensions in [16]:

MF
f =

{
u ∈ `2 | supp(u) ⊂ supp(uα(f))

}
.
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The model manifold carries over information
about the support of the first solution uα(f).
Note thatMF

f contains all elements of `2 which
share the same support as uα(f), but as well
allows for zeros where uα(f) 6= 0. In that
sense uα(f) defines the maximal support of all
u ∈ MF

f . If we allow |fi| to be equal to α,
we obtain a larger set which allows for support
changes in the direction of fi on the threshold:

u ∈MG
f ⇔ ui =


λ ∈ R, |fi| > α,

0, |fi| < α,

λ ≥ 0, fi = α,

λ ≤ 0, fi = −α.

Note that the case |fi| > α reveals a remain-
ing shortcoming of the definition via the direc-
tional derivative, e.g. if fi > α it is counter-
intuitive to allow for negative elements in MG

f ,
while this is not the case for fi = α. The
main reason appears to be the strong devia-
tion of the linearization in such directions from
the actual values of [uα(f)]i, which is not con-
trolled by the definition. However, minimizing
the data term overMG

f for the debiasing in Eq.
(4.4) forces the changes to have the right sign
and the debiased solution ûα(f) corresponds to
hard-thresholding:

[ûα(f)]i =

{
fi, |fi| ≥ α,
0, |fi| < α.

Note that we as well maintain the signal directly
on the threshold.

We obtain analogous results for isotropic
shrinkage, i.e. if f ∈ `2(Rd) for d > 1. Since the
computation of the derivative requires a little
more work, we provide the results in Appendix
8.1. A more interesting example is the model
manifold related to anisotropic `1-regularized
general linear inverse problems.

Example 4.8. Anisotropic `1-regularization.
For r > 1 let A : `r → `2 be a linear and
bounded operator and f ∈ `2. Consider the
solution uα(f) of the `1-regularized problem

uα(f) ∈ arg min
u∈`1

1

2
‖Au− f‖2`2 + α‖u‖`1 , (4.6)

where we assume that the solution is unique
for data in a neighborhood of f . Computing
the directional derivative directly is a more te-
dious task in this case, but computing the model

manifold MG
f is actually easier via a slight de-

tour.
Let uα(f) be the solution for data f and uα(f̃)

the solution for data f̃ . First, we derive an esti-
mate on the two subgradients from the optimal-
ity conditions

0 = A∗(Auα(f)− f) + αpα, pα ∈ ∂‖uα(f)‖`1 ,
0 = A∗(Auα(f̃)− f̃) + αp̃α, p̃α ∈ ∂‖uα(f̃)‖`1 .

Following the ideas of [11], we subtract the two
equations and multiply by uα(f)− uα(f̃) to ar-
rive at

‖Auα(f)−Auα(f̃)‖2`2
+ α〈pα − p̃α, uα(f)− uα(f̃)〉
= 〈f − f̃ , Auα(f)−Auα(f̃)〉

≤ 1

2
‖f − f̃‖2`2 +

1

2
‖Auα(f)−Auα(f̃)‖2`2 .

The last line follows from the Fenchel-Young
inequality, obtained by applying the inequality
(3.6) to J = 1

2‖ · ‖
2
`2 . The second term on the

left hand side is a symmetric Bregman distance,
i.e. the sum of two Bregman distances (cf. [11]),
hence positive. Leaving it out and rearranging
then yields

‖Auα(f)−Auα(f̃)‖`2 ≤ ‖f − f̃‖`2 . (4.7)

Since A∗ : `2 → `s, where s−1 + r−1 = 1, A∗ is
also continuous to `∞, hence we derive the fol-
lowing estimate from the optimality conditions:

‖pα − p̃α‖`∞

=
1

α
‖A∗(Auα(f)−Auα(f̃))−A∗(f − f̃)‖`∞

≤ ‖A
∗‖
α
‖Auα(f)−Auα(f̃)‖`2

+
‖A∗‖
α
‖f − f̃‖`2

≤ C

α
‖f − f̃‖`2 ,

where we used (4.7) for the last inequality and
‖ · ‖ denotes the operator norm.

Next, we note that since A∗ maps to `s and
pα and p̃α lie in its range, they necessarily have
to converge to zero. This implies the existence
of N ∈ N such that for all i ≥ N both |(pα)i|
and |(p̃α)i| are strictly smaller than 1 and hence
uα(f) and uα(f̃) vanish for all i ≥ N . As a
consequence it is sufficient to consider a finite
dimensional setting for the following reasoning.
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In view of the subdifferential of the `1-norm,

∂‖u‖`1 = {p ∈ `∞ : ‖p‖`∞ ≤ 1,

pi = sign(ui) for ui 6= 0},

we have to consider several cases. If [uα(f)]i = 0
and |(pα)i| < 1, we derive from

|(p̃α)i| ≤ |(p̃α)i − (pα)i|+ |(pα)i|

≤ C

α
‖f − f̃‖`2 + |(pα)i|,

that if ‖f − f̃‖`2 is sufficiently small, then
|(p̃α)i| < 1. Hence [uα(f̃)]i = 0, and the deriva-
tive related to the perturbed data f̃ vanishes.
In case [uα(f)]i = 0 and (pα)i = 1, by a similar
argument (p̃α)i 6= −1 and thus [uα(f̃)]i ≥ 0 and
[duα(f ; g)]i ≥ 0. Analogously, [duα(f ; g)]i ≤ 0
if [uα(f)]i = 0 and (pα)i = −1. If [uα(f)]i 6= 0,
the directional derivative is an arbitrary real
number depending on the data perturbation.
Summing up we now know that every directional
derivative is an element v ∈ `1 fulfilling

vi =


0, |(pα)i| < 1,

λ ≥ 0, (uα)i = 0, (pα)i = 1,

λ ≤ 0, (uα)i = 0, (pα)i = −1.

(4.8)

Note again that v differs from 0 only for a finite
number of indices. Hence, for v satisfying (4.8),
we can pick t > 0 sufficiently small such that
pα is a subgradient of ũ = uα(f) + tv. Indeed,
for example if (uα)i = 0 and (pα)i = 1, then
vi ≥ 0, so ũ ≥ 0, and hence (pα)i fulfills the
requirement of a subgradient of ũ. The other
cases follow analogously. Then from the opti-
mality condition of uα(f) we get:

A∗(Auα(f)− f)) + αpα = 0

⇔ A∗(A(uα(f) + tv︸ ︷︷ ︸
ũ

)− (f + tAv)) + αpα = 0.

We then deduce that ũ is a minimizer of problem
(4.6) with data f̃ = f+tAv. Hence, there exists
a data perturbation such that v is the directional
derivative of uα(f). Putting these arguments
together we now know that u ∈MG

f if and only
if

ui =


λ ∈ R, [uα(f)]i 6= 0,

0, [uα(f)]i = 0, |(pα)i| < 1,

λ ≥ 0, [uα(f)]i = 0, (pα)i = 1,

λ ≤ 0, [uα(f)]i = 0, (pα)i = −1.

It is not surprising thatMG
f has a similar struc-

ture as the model manifold for the anisotropic
shrinkage in Example 4.7. It allows for arbitrary
changes on the support of uα(f) and permits
only zero values if [uα(f)]i = 0 and |(pα)i| < 1.
If we exclude the case where |(pα)i| = 1 even
though [uα(f)]i vanishes, debiasing on MG

f ef-
fectively means solving a least-squares problem
with a support constraint on the solution. But
we again find an odd case where changes are
allowed outside of the support of the initial so-
lution uα(f). It occurs when |(pα)i| = 1 even
though [uα(f)]i vanishes, which seems to be the
indefinite case. However, it has been argued in
[24] that a subgradient equal to ±1 is a good
indicator of support, hence it is reasonable to
trust the subgradient in that case.

4.2.2 Variational model manifolds

As we have shown so far, the appropriate use
of a derivative can yield suitable spaces for the
debiasing. However, for already supposedly easy
problems such as the latter example the explicit
computation of such spaces or of the derivatives
can be difficult or impossible. And even if it is
possible, there remains the question of how to
effectively solve the debiasing on those spaces,
both theoretically and numerically.

On the other hand, the latter example implies
that a subgradient of the first solution rather
than the solution itself can provide the neces-
sary information for the debiasing. This natu-
rally leads us to the idea of Bregman distances
in order to use the subgradient in a variational
debiasing method. And indeed we show that
the associated manifolds are closely related, and
that they link the concept of model manifolds
to the already presented debiasing method from
Section 3. Furthermore, this does not only pro-
vide a theoretical framework, but also numerical
solutions to perform debiasing in practice, even
for more challenging problems.

In the following we introduce related mani-
folds motivated by the variational problem it-
self. The optimality condition of the variational
problem (3.1) defines a unique map f 7→ pα ∈
∂J(uα), which allows us to consider the follow-
ing manifolds. We drop the dependence of uα
on f for the sake of readability.

Definition 4.9. For pα ∈ ∂J(uα) defined by
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(3.2) we define

MB
f =

{
u ∈ X | Dpα

J (u, uα) = 0
}
,

MIC
f =

{
u ∈ X | ICBpαJ (u, uα) = 0

}
.

In order to assess the idea of the above mani-
folds, we first revisit the anisotropic shrinkage
problem of Example 4.7.

Example 4.10. Anisotropic shrinkage. The
optimality condition of problem (4.5) yields the
subgradient

(pα)i =
fi − (uα)i

α
=

{
sign(fi), |fi| ≥ α,
fi
α , |fi| < α,

(4.9)

and for J = ‖ · ‖`1 the Bregman distance takes
the following form:

Dpα
`1 (u, uα) = ‖u‖`1 − 〈pα, u〉

=
∑
i∈N
|ui| − (pα)iui

=
∑
i∈N

(sign(ui)− (pα)i)ui.

A zero Bregman distance thus means that ei-
ther ui = 0 or sign(ui) = (pα)i. Having a closer
look at the subgradient (4.9), we observe that if
|fi| < α, then |(pα)i| < 1. Hence the latter con-
dition cannot be fulfilled, so in this case ui has
to be zero. We can thus characterize the model
manifold related to a zero Bregman distance as:

u ∈MB
f ⇔ ui =

{
λ sign(fi), λ ≥ 0, |fi| ≥ α,
0, |fi| < α.

As for MG
f , the model manifold MB

f fixes the
maximum support to where |fi| ≥ α. However,
MB

f only allows for values on the support shar-
ing the same sign as fi (respectively (uα)i).

By adapting the proof of [24], we obtain a sim-
ilar result for the infimal convolution of Breg-
man distances, without the restriction on the
sign:

ICBpα`1 (u, uα) = [Dpα
`1 (·, uα)2D−pα`1 (·,−uα)](u)

=
∑
i∈N

(1− |(pα)i|)|ui|.

For this infimal convolution to be zero we need
either ui = 0 or |(pα)i| = 1. By the structure of
the subgradient pα we thus find

u ∈MIC
f ⇔ ui =

{
λ ∈ R, |fi| ≥ α,
0, |fi| < α.

Hence we observe the following connection be-
tween the manifolds:

MB
f ⊂MG

f ⊂MIC
f .

Note that the manifold MG
f related to the

directional derivative seems to be the odd one
of the three. While allowing for arbitrary sign
for |f | > α, it only allows for changes in the
direction of f directly on the threshold. In that
sense, MB

f and MIC
f seem to be more suitable

in order to either include or exclude the sign-
constraint. A closer inspection at the manifolds
reveals thatMIC

f is a linear space, as we further
elaborate on in the next subsection. In this case
it is actually even the span of MB

f , which is
however not true in general. This can e.g. be
seen from the next example of isotropic TV-type
regularization.

Example 4.11. Isotropic TV-type regulariza-
tion. Let A : `2(Rn)→ `2(Rd) and Γ: `2(Rn)→
`1(Rm) be linear and bounded operators and
J(u) = ‖Γu‖`1(Rm) for d,m, n ∈ N. We aim
to find the variational model manifolds for the
debiasing of the solution

uα ∈ arg min
u∈`2(Rn)

1

2
‖Au− f‖`2(Rd) + α‖Γu‖`1(Rm).

Given the (unique) subgradient pα ∈ ∂J(uα)
from the optimality condition, the chain rule for
subdifferentials [18, p. 27] implies the existence
of a qα ∈ ∂‖ · ‖`1(Rm)(Γuα) such that pα = Γ∗qα
and

Dpα
J (u, uα) = Dqα

`1(Rm)(Γu,Γuα).

If we denote the angle between (Γu)i and (qα)i
by ϕi, the Bregman distance reads:

Dpα
J (u, uα) = Dqα

`1(Rm)(Γu,Γuα)

=
∑
i∈N
|(Γu)i| − (qα)i · (Γu)i

=
∑
i∈N
|(Γu)i|

(
1− cos(ϕi)|(qα)i|

)
For a zero Bregman distance we can distinguish
two cases: If |(qα)i| < 1, then (Γu)i has to be
zero. If |(qα)i| = 1, then either (Γu)i = 0 or
cos(ϕi) = 1, hence (Γu)i = λ(qα)i for λ ≥ 0.
Hence the model manifold MB

f is given by

u ∈MB
f ⇔

(Γu)i =

{
λ(qα)i, λ ≥ 0, |(qα)i| = 1,

0, |(qα)i| < 1.
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In particular, if (Γuα)i 6= 0, then by the struc-
ture of the `1(Rm)-subdifferential we know that

(qα)i = (Γuα)i
|(Γuα)i| and thus (Γu)i = µ(Γuα)i for

some µ ≥ 0. So provided that |(qα)i| < 1 when-
ever (Γuα)i = 0 we find

u ∈MB
f ⇔

(Γu)i =

{
µ(Γuα)i, µ ≥ 0, (Γuα)i 6= 0,

0, (Γuα)i = 0.

Performing the debiasing on the latter manifold
hence means minimizing the data term with a
support and direction constraint on the gradi-
ent of the solution. This in particular allows to
restore the loss of contrast which we have ob-
served for TV regularization in Section 2. Note
that the condition |(qα)i| < 1⇔ (Γuα)i = 0 ex-
cludes the odd case where the subgradient seems
to contain more information than the first solu-
tion, as already seen in Example 4.8.

In the above illustration of the model mani-
fold, the debiasing seems to rely on the choice of
qα, which is obviously not unique. However, in
practice we still use the unique subgradient pα
from the optimality condition which avoids the
issue of the choice of a “good” qα.

The computation of MIC
f is a little more

difficult in this case, since we cannot access
an explicit representation of the functional
ICBpαJ (·, uα). However, since

ICBqα`1(Rm)(Γu,Γuα) ≤ ICBpαJ (u, uα)

(cf. Appendix 8.2, Thm. 8.1), we can in-
stead use the infimal convolution of two `1(Rm)-
Bregman distances to illustrate the model mani-
fold. We have (cf. Appendix 8.2, Thm. 8.2)

ICBqα`1(Rm)(Γu,Γuα) =
∑
i∈N

G((Γu)i, (qα)i)

with G : Rm × Rm → R defined as

G((Γu)i, (qα)i) =
|(Γu)i|(1− | cos(ϕi)||(qα)i|),

if |(qα)i| < | cos(ϕi)|,
|(Γu)i|| sin(ϕi)|

√
1− |(qα)i|2,

if |(qα)i| ≥ | cos(ϕi)|.

For G to be zero we once again distinguish two
situations. If |(qα)i| < 1, in the first case G
can only vanish if (Γu)i = 0. In the second
case, since 1 > |(qα)i| ≥ | cos(ϕi)|, we infer

ϕi /∈ {0, π}, and hence neither the sinus nor the
square root can vanish. This means once again
that (Γu)i = 0. If |(qα)i| = 1, we can only be in
the second case and G vanishes independently
of (Γu)i. Thus (Γu)i can be arbitrary. Putting
the arguments together, we find

u ∈MIC
f ⇒ ICBqα`1(Rm)(Γu,Γuα) = 0

⇔ (Γu)i =

{
λ ∈ Rm, |(qα)i| = 1,

0, |(qα)i| < 1.

This is indeed not the span of MB
f , but it in-

stead allows for arbitrary elements if |(qα)i| = 1.
From this example, we cannot immediately state
that MB

f ⊂ MIC
f , because so far we only know

that MB
f as well as MIC

f are subsets of the set

{u ∈ X | ICBqα`1(Rm)(Γu,Γuα) = 0}. However, in

the next subsection we see that MB
f ⊂ MIC

f is
indeed true and it is actually a general property
of the variational model manifolds.

Note that we gain the same support condition
on the gradient as for MB

f , but allow for arbi-
trary gradient directions on the support, which
intuitively does not seem restrictive enough.
However, in practice for the debiasing the direc-
tion is not arbitrary, but the data term decides,
so we can expect a similar result for debiasing
in MB

f and MIC
f . Indeed the numerical studies

in Section 6 confirm these expectations.

4.3 Properties of variational
model manifolds

In the following we discuss some properties of
the variational manifoldsMB

f andMIC
f . All re-

sults are general and do not depend on the par-
ticular choice of a subgradient, so we drop the
dependence on f in the notation of the mani-
folds. Let v ∈ X and p ∈ ∂J(v). We start with
a result on the structure of MB:

Theorem 4.12. The set

MB = {u ∈ X | Dp
J(u, v) = 0}

is a nonempty convex cone.

Proof. The map u 7→ Dp
J(u, v) is convex and

nonnegative, hence

{u | Dp
J(u, v) = 0} = {u | Dp

J(u, v) ≤ 0}

is convex as a sublevel set of a convex functional.
Moreover, for each c ≥ 0 we have

Dp
J(cu, v) = c Dp

J(u, v),

15



i.e. if u is an element of the set, then every
positive multiple cu is an element, too. Hence
it is a convex cone. Since Dp

J(v, v) = 0 it is not
empty. �

The structure of MIC is even simpler; as an-
nounced in a special example above it is indeed
a linear space:

Theorem 4.13. The set

MIC = {u ∈ X |[Dp
J(·, v)2D−pJ (·,−v)](u) = 0}

is a nonempty linear subspace of X .

Proof. By analogous arguments as above we de-
duce the convexity and since

ICBpJ(0, v) = inf
φ+ψ=0

Dp
J(φ, v) +D−pJ (ψ,−v)

≤ Dp
J(v, v) +D−pJ (−v,−v) = 0

the set is not empty. For arbitrary c ∈ R \ {0}
we have

ICBpJ(cu, v)

= inf
z
J(cu− z) + J(z)− 〈p, cu− 2z〉

= |c| inf
w
J(u− w) + J(w)− 〈p, u− 2w〉,

where we use the one-to-one transform z = cw
for c > 0 and z = c(u − w) for c < 0. This
implies that ICBpJ(cu, v) = 0 if ICBpJ(u, v) = 0.
Now let u1, u2 ∈ MIC, i.e. ICBpJ(u1, v) = 0
and ICBpJ(u2, v) = 0. Then by definition of the
infimum there exist sequences (zn1 )n∈N, (z

n
2 )n∈N

such that

lim
n→∞

J(u1 − zn1 ) + J(zn1 )− 〈p, u1 − 2zn1 〉 = 0,

lim
n→∞

J(u2 − zn2 ) + J(zn2 )− 〈p, u2 − 2zn2 〉 = 0.

Due to its convexity and absolute one-
homogeneity J is a seminorm and thus satisfies
the triangle inequality:

ICBpJ(u1 + u2, v)

= inf
z
J(u1 + u2 − z) + J(z)

− 〈p, u1 + u2 − 2z〉
≤ J(u1 + u2 − zn1 − zn2 ) + J(zn1 + zn2 )

− 〈p, u1 + u2 − 2zn1 − 2zn2 〉
≤ J(u1 − zn1 ) + J(zn1 )− 〈p, u1 − 2zn1 〉

+ J(u2 − zn2 ) + J(zn2 )− 〈p, u2 − 2zn2 〉
→ 0, for n→∞.

Hence u1 + u2 ∈MIC and MIC is a linear sub-
space. �

As one may expect from the fact that the in-
fimal convolution is a weaker distance than the
original Bregman distance, we obtain an imme-
diate inclusion between the corresponding mani-
folds:

Lemma 4.14. MB ⊂MIC.

Proof. Let u ∈ MB, i.e. Dp
J(u, v) = 0. For

c ≥ 0 we have

D−pJ (−cu,−v) = c Dp
J(u, v).

Thus we deduce

ICBpJ(u, v) = inf
φ+ψ=u

Dp
J(φ, v) +D−pJ (ψ,−v)

≤ Dp
J(2u, v) +D−pJ (−u,−v)

= 2Dp
J(u, v) +Dp

J(u, v) = 0.

The assertion follows by the nonnegativity of the
maps u 7→ Dp

J(u, v) and u 7→ D−pJ (u,−v). Note
that for p 6= 0 the subset is proper, since e.g.
−v ∈MIC but −v /∈MB. �

We finally elaborate on the importance of ab-
solute one-homogeneity of J for our approach
(respectively also other debiasing approaches as
in [16]), such that the subdifferential can be mul-
tivalued. Otherwise the model manifolds may
just contain a single element and debiasing in
this manifold cannot produce any other solu-
tion. This is e.g. the case for a strictly convex
functional.

Lemma 4.15. Let J be strictly convex. Then
MB is a singleton.

Proof. For strictly convex J the mapping u 7→
Dp
J(u, v) is strictly convex as well, hence

Dp
J(u, v) = 0 if and only if u = v andMB = {v}.

�

However, one can easily exclude this
case since our assumption of J being one-
homogeneous guarantees that it is not strictly
convex.

4.4 Bias-variance estimates

Another justification for the deterministic defi-
nition of bias as well as our choice for the dis-
tance measure in Section 4.1 can be found in
the variational model itself. In order to derive
quantitative bounds for bias and variance in a
variational model, we start with the Tikhonov
regularization (Ridge regression) model related
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to the functional J(u) = 1
2‖u‖

2
X . The optimal-

ity condition for this problem is given by

A∗(Auα(f)− f) + αuα(f) = 0.

We easily see that there exists wα = 1
α (f −

Auα(f)) such that uα(f) = A∗wα and

Auα(f)−Au∗ + αwα = f −Au∗.

Now let us assume that a source condition u∗ ∈
Im[A∗] holds, i.e. u∗ = A∗w∗ for some w∗. In
this case we can subtract αw∗ on both sides and
take a squared norm to arrive at

‖Auα(f)−Au∗‖2Y + α2‖wα − w∗‖2Y
+ 2α〈Auα(f)−Au∗, wα − w∗〉

= ‖f −Au∗‖2Y + α2‖w∗‖2Y − 2α〈f −Au∗, w∗〉.

Now taking the expectation on both sides and
using E[f ] = f∗ = Au∗ we find

E[‖Auα(f)−Au∗‖2Y ] + α2E[‖wα − w∗‖2Y ]

+ 2αE[‖uα(f)− u∗‖2X ]

= E[‖f −Au∗‖2Y ] + α2‖w∗‖2Y . (4.10)

The left-hand side is the sum of three error
terms for the solution measured in different
norms: in the output space, the space of the
source element, and the original space used for
regularization. All of them can be decomposed
in a bias and a variance term, e.g.

E[‖uα(f)− u∗‖2X ]

=‖E[uα(f)]− u∗‖2X + E[‖uα(f)− E[uα(f)]‖2X ].

The term E[‖f −Au∗‖2Y ] in (4.10) is exactly the
variance in the data. As a consequence α‖w∗‖Y
measures the bias in this case. Note that in
particular for zero variance we obtain a direct
estimate of the bias via α‖w∗‖Y .

In the case of the variational model (3.1)
this can be generalized using recent approaches
[5, 9, 11, 29] using the source condition A∗w∗ ∈
∂J(u∗). Now completely analogous computa-
tions as above yield

E[‖Auα(f)−Au∗‖2Y ] + α2E[‖wα − w∗‖2Y ]

+ 2αE[Dsym
J (uα(f), u∗)]

= E[‖f −Au∗‖2Y ] + α2‖w∗‖2Y ,

with the only difference that we now use the
symmetric Bregman distance

Dsym
J (uα(f), u∗) = 〈A∗wα −A∗w∗, uα(f)− u∗〉,

with A∗wα ∈ ∂J(uα(f)). The bias-variance de-
composition on the right-hand side remains the
same. In the noiseless case it is then natural to
consider this (here, deterministic) estimate as a
measure of bias:

‖Auα(f∗)−Au∗‖2Y + α2‖wα − w∗‖2Y
+ 2αDsym

J (uα(f∗), u∗)

= α2‖w∗‖2Y ,

Here, as already discussed in Section 4.1, we
again consider a difference between the exact
solution u∗ and the estimator for E[f ] = f∗, i.e.
the expectation of the noise, rather than the ex-
pectations of the estimators uα(f) over all real-
izations of f (which coincide if J is quadratic).
We observe that there are three natural dis-
tances to quantify the error and thus also the
bias: a quadratic one in the output space and
a predual space (related to w), and the sym-
metric Bregman distance related to the func-
tional J . The first term ‖Auα(f∗) − Au∗‖2Y is
exactly the one we use as a measure of bias.
The second term α2E[‖wα − w∗‖2Y ] is constant
on the model manifold MB

f∗ , since by defini-
tion of the manifold pα = A∗wα is a subgra-
dient of all the elements in MB

f∗ . The third

term Dsym
J (uα(f∗), u∗) is not easy to control;

if the manifold is appropriate, meaning that
pα ∈ ∂J(u∗), then the symmetric Bregman dis-
tance vanishes for every element in MB

f∗ . In
any other case, we do not have access to a sub-
gradient p∗ ∈ ∂J(u∗), so we cannot control the
Bregman distance for any element of the mani-
fold. Hence, with our method we minimize the
part of the bias that we can actually control.
In fact, if the model manifold is right, we even
minimize the whole bias.

4.5 Back to the proposed method

To sum up, the debiasing method we have intro-
duced in Equations (3.3) and (3.4) comes down
to debiasing over MIC

f∗ and MB
f∗ , respectively,

while the results of Section 3 guarantee the ex-
istence of the optimal debiasing ûα(f∗) at least
on MB

f∗ .
However in practice, we do not have access to

the clean data f∗, but often only to one noisy
realization f , which makes the regularization in
(3.1) necessary in the first place. Instead of the
true model manifold Mf∗ , we hence use an ap-
proximationMf computed from the noisy data
f to perform the debiasing of the reconstruction
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Figure 4: TV denoising and debiasing of the Giraffe and the Parrot images for either noisy data
f or clean data f∗, with the same regularization parameter α = 0.3.

uα(f) for noisy data. The following experiments
show thatMf is a good approximation ofMf∗

in terms of the resulting bias and bias reduction.
They also relate the different definitions of bias
that we have considered. In particular, we dis-
tinguish between the statistical bias of Equation
(4.1) which is the expectation over several noisy
realizations f and the deterministic bias that we
define in Equation (4.2), which instead considers
the outcome given the noiseless data f∗.

Figure 4 displays the TV denoising and debi-
asing (using the Bregman distance model mani-
fold) results obtained with noisy data f (first
row) or clean data f∗ (second row) with the
same regularization parameter α = 0.3. We
have performed the experiments for both the
cartoon Giraffe image and the natural Parrot
image2. First, for the Giraffe image we ob-
serve that the TV denoised solution uα(f∗) for
clean data suffers from a heavy loss of contrast,
i.e. from method bias. The debiased solution
ûα(f∗) however is again close to the original
data f∗. This shows that if the noiseless data
is well represented by the choice of regulariza-
tion (and henceMf∗), i.e. if there is no or little
model bias, the debiasing procedure allows to
recover the original signal almost perfectly. On
the other hand, the same experiments on the
natural Parrot image show the problem of model

2http://r0k.us/graphics/kodak/

bias since the choice of regularization does not
entirely match the data f∗. The debiasing al-
lows to recover the lost contrast, but even the
result for noiseless data still suffers from bias,
i.e. the loss of small structures, which is model
bias in that case.

Besides, if α is big enough to effectively re-
move noise during the denoising step, then the
TV solutions uα(f) and uα(f∗) are close to each
other. This leads to comparable model mani-
folds and hence debiased solutions, which con-
firms that Mf is indeed a good approximation
to Mf∗ .

Furthermore, we can assess the bias for both
manifolds. On Mf∗ we can only use the de-
terministic definition (4.2) of bias whereas on
Mf we use the statistical definition (4.1). Fig-
ures 5 and 6 show the bias estimation on the
Giraffe cartoon image and the natural Parrot
image. The first row shows the estimations of
the statistical bias Bstat for the two estimators
uα(f) and ûα(f) for noisy data f . In the second
row the bias B∗ for the two estimators uα(f∗)
and ûα(f∗) for clean data f∗ is displayed. This
deterministic bias can also be decomposed into
the associated model and method bias, whereas
such a decomposition has not been defined for
the statistical bias. The overall deterministic
bias B∗(uα(f∗)) = u∗ − uα(f∗) for TV denois-
ing appears to be really close to the statistical
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Figure 5: Bias estimation. First row: Statistical bias computed on five hundred noisy realizations
of the Giraffe cartoon image. Second row: Deterministic bias computed between the clean data
and the recovered solution from clean data f∗. In the first column, TV denoising leads to bias.
In the second column, the debiasing that has been performed has reduced (or suppressed) the
method bias. The remaining (small) model bias is due to the necessary regularization. In the
third column, the difference between ûα(f∗) and uα(f∗) shows the bias that has been reduced by
the debiasing step, hence the method bias.

bias on noisy data in the first row. The same
applies for the bias of the debiased solutions in
the second column. This confirms that the esti-
mation of the model manifold that we perform
with noisy data is indeed a good approximation
to the ideal model manifold for clean data, and
that the resulting statistical and deterministic
bias are closely related.

Besides, the difference u∗− ûα(f∗) in the sec-
ond row shows the remaining bias after the debi-
asing step, which is model bias. For the Giraffe
image, this bias is small because the cartoon
image is well approximated in the model mani-
fold associated to TV regularization. The Par-
rot image however suffers from a heavier model
bias, for example the loss of the small structures
around the eye. Finally, in the third column, the
difference ûα(f∗)− uα(f∗) shows the error that

has been removed by the debiasing step, which
corresponds to the method bias. It is particu-
larly interesting for the Parrot image. Here one
can see the piecewise constant areas which cor-
respond to the re-establishment of the lost con-
trast within the piecewise constant model pro-
vided by the model manifold.
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Figure 6: Bias estimation. First row: Statistical bias computed on five hundred noisy realizations
of the Parrot natural image. Second row: Deterministic bias computed between the clean data
and the recovered solution from clean data f∗. On the first column, TV denoising leads to both
kinds of bias, model bias and method bias. On the second column, the debiasing that has been
performed has reduced (or suppressed) the method bias, and the remaining bias is model bias. On
the third column, the difference between ûα(f∗) and uα(f∗) shows the bias that has been reduced
by the debiasing step, hence the method bias.

4.6 Relation to inverse scale space
methods

We finally comment on the relation of the debi-
asing approaches to Bregman iterations respec-
tively inverse scale space methods, which are
rather efficiently reducing bias as demonstrated
in many examples [27, 32, 7]. The Bregman it-
eration is iteratively constructed by

uk+1 ∈ arg min
u∈X

1

2
‖Au− f‖2Y + αDpk

J (u, uk),

pk+1 = pk +
1

α
A∗(f −Auk+1) ∈ ∂J(uk+1).

In the limit α → ∞ we obtain the time contin-
uous inverse scale-space method, which is the
differential inclusion

∂tp(t) = A∗(f −Au(t)), p(t) ∈ ∂J(u(t)),

with initial values u(0) = 0, p(0) = 0. A strong
relation to our debiasing approach comes from
the characterization of the primal solution given
p(t) [8, 25, 26]

u(t) ∈ arg min
u∈X
‖Au− f‖2Y s.t. p(t) ∈ ∂J(u(t)).

This reconstruction step is exactly the same as
the variational debiasing step using the Breg-
man distance, however with a different preced-
ing construction of the subgradient p(t) (notic-
ing that t corresponds to 1

α for the variational
method).

From the last observation it becomes appar-
ent that the Bregman debiasing approach with
(3.2) and (3.4) is exactly equivalent if the vari-
ational method yields the same subgradient as
the inverse scale space method, i.e. pα = p( 1

α ).
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This can indeed happen, as the results for sin-
gular vectors demonstrate [1]. Moreover, in
some cases there is full equivalence for arbi-
trary data, e.g. in a finite-dimensional denoising
setting investigated in [6]. It has been shown
that for A being the identity and J(u) = ‖Γu‖1
with ΓΓ∗ being diagonally dominant the identity
pα = p( 1

α ) holds, which implies that the Breg-
man debiasing approach and the inverse scale
space method yield exactly the same solution.
For other cases that do not yield a strict equiva-
lence we include the Bregman iteration for com-
parison in numerical studies discussed below.

5 Numerical Implementa-
tion

In Section 3 we have introduced a two-step-
method (cf. Eq. (3.1) – (3.4)) in order to com-
pute a variationally regularized reconstruction
with reduced method bias in the sense discussed
in Section 4. Its solution requires the minimiza-
tion of the data fidelity over the model manifold
defined by a zero Bregman distance or a zero
infimal convolution thereof, respectively.

This constraint is difficult to realize numeri-
cally, but can be approximated by a rather stan-
dard variational problem. We can translate the
hard constraint into a soft constraint such that
for γ > 0 the reformulated problems read:

a) ûα ∈ arg min
u∈X

1

2
‖Au− f‖2Y + γDpα

J (u, uα),

b) ûα ∈ arg min
u∈X

1

2
‖Au− f‖2Y + γICBpαJ (u, uα).

For γ → ∞ we obtain the equivalence of the
hard and soft constrained formulations. How-
ever, for the numerical realization already a
moderately large γ is enough to enforce the con-
straint up to a satisfactory level. For our simu-
lations we chose γ = 1000, but our tests showed
that already for γ ≥ 500 the value of the Breg-
man distance or its infimal convolution stays nu-
merically zero. Of course the choice of the pa-
rameter γ depends on the specific problem we
aim to solve and probably has to be adjusted
slightly for different image sizes or involved op-
erators.

Discretization

For our numerical experiments we choose the
setting X = Rn, Y = Rd and J(u) = ‖Γu‖1.

In general Γ ∈ Rn×m denotes a discrete linear
operator, for the experiments with total varia-
tion regularization we choose a discretization of
the gradient with forward finite differences. For
a general linear forward operator A ∈ Rn×d we
hence end up with the following discrete opti-
mization problems:

1. uα ∈ arg min
u∈Rn

1

2
‖Au− f‖22 + α‖Γu‖1,

2. a) ûα ∈ arg min
u∈Rn

1

2
‖Au− f‖22

+ γ (‖Γu‖1 − 〈pα, u〉) ,

b) ûα ∈ arg min
u∈Rn

1

2
‖Au− f‖22

+ γ min
z∈Rn

{
‖Γ(u− z)‖1 − 〈pα, u− z〉

+ ‖Γz‖1 + 〈pα, z〉
}
,

where we leave out the particular spaces for the
primal (and dual) variables for the sake of sim-
plicity in the following. Taking a closer look at
these minimization problems, we observe that
we can exactly recover the optimization prob-
lem in the first step by means of problem 2. a)
if we choose γ = α and pα = 0. We therefore
concentrate on the minimization problems in the
second step.

Primal-dual and dual formulation

Using the notion of convex conjugates [30], the
corresponding primal-dual and dual formula-
tions of our problems are given by

a) min
u

max
y1,y2

〈y1, Au〉+ 〈y2,Γu〉 − γ 〈pα, u〉

− 1

2
‖y1‖22 − 〈y1, f〉 − ιB∞γ (y2)

= max
y1,y2

−1

2
‖y1‖22 − 〈y1, f〉 − ιB∞γ (y2)

− ιγpα(A∗y1 + Γ∗y2),

b) min
u,z

max
y1,y2,y3

〈y1, Au〉+ 〈y2,Γu− Γz〉

+ 〈y3,Γz〉 − γ 〈pα, u〉+ 2γ 〈pα, z〉

− 1

2
‖y1‖22 − 〈y1, f〉

− ιB∞γ (y2)− ιB∞γ (y3)

= max
y1,y2,y3

−1

2
‖y1‖22 − 〈y1, f〉

− ιB∞γ (y2)− ιB∞γ (y3)

− ιγpα(A∗y1 + Γ∗y2)

− ι−2γpα(−Γ∗y2 + Γ∗y3),
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Algorithm 1 Primal-Dual Algorithm for Variational Regularization (Step 1)

Input: f , α > 0
Initialization: σ, τ > 0, u0 = ū0 = 0, y0

1 = y0
2 = 0

while not converged do

yk+1
1 =

yk1 +σAuk−σf
1+σ

yk+1
2 = ΠB∞α

(yk2 + σΓuk)

uk+1 = uk − τ(A∗yk+1
1 + Γ∗yk+1

2 )
ūk+1 = 2uk+1 − uk

end while
return uα = uk+1, pα = 1

αA
∗(f −Auα) (c.f. (3.2))

Algorithm 2 Primal-Dual Algorithm for Bias-Reduction with MB
f (Step 2 a))

Input: f , γ > 0, pα, which is obtained via Algorithm 1
Initialization: σ, τ > 0, u0 = ū0 = 0, y0

1 = y0
2 = 0

while not converged do

yk+1
1 =

yk1 +σAuk−σf
1+σ

yk+1
2 = ΠB∞γ

(yk2 + σΓuk)

uk+1 = uk − τ(A∗yk+1
1 + Γ∗yk+1

2 − γpα)
ūk+1 = 2uk+1 − uk

end while
return ûα = uk+1

Algorithm 3 Primal-Dual Algorithm for Bias-Reduction with MIC
f (Step 2 b))

Input: f , γ > 0 and pα, which is obtained via Algorithm 1.
Initialization: σ, τ > 0, u0 = z0 = ū0 = z̄0 = 0, y0

1 = y0
2 = y0

3 = 0
while not converged do

yk+1
1 =

yk1 +σAuk−σf
1+σ

yk+1
2 = ΠB∞γ

(yk2 + σΓ(uk − zk))

yk+1
3 = ΠB∞γ

(yk3 + σΓzk)

uk+1 = uk − τ(A∗yk+1
1 + Γ∗yk+1

2 − γpα)
zk+1 = zk − τ(−Γ∗yk+1

2 + Γ∗yk+1
3 + 2γpα)

ūk+1 = 2uk+1 − uk
z̄k+1 = 2zk+1 − zk

end while
return ûα = uk+1
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Solution with a primal-dual algorithm

In order to find a saddle point of the primal-dual
formulations, we apply a version of the popular
first-order primal-dual algorithms [28, 19, 14].
The basic idea is to perform gradient descent on
the primal and gradient ascent on the dual vari-
ables. Whenever the involved functionals are
not differentiable, here the `1-norm, this comes
down to computing the corresponding proximal
mappings. The specific updates needed for our
method are summarized in Algorithm 1 for the
first regularization problem, and Algorithm 2
and Algorithm 3 for the two different debiasing
steps.

We comment on our choice of the stopping
criterion. We consider the primal-dual gap of
our saddle point problem, which is defined as
the difference between the primal and the dual
problem for the current values of variables. As
in the course of iterations the algorithm is ap-
proaching the saddle point, this gap converges
to zero. Hence we consider our algorithm con-
verged if this gap is below a certain threshold
ε1 > 0. We point out that the indicator func-
tions regarding the `∞-balls are always zero due
to the projection of the dual variables in every
update. Since the constraints with respect to
the other indicator functions, for example

A∗y1 + Γ∗y2 − γpα = 0

in case a), are hard to satisfy exactly numeri-
cally, we instead control that the norm of the
left-hand side is smaller than a certain thresh-
old ε2 (respectively ε3 for case b)). All in all we
stop the algorithm if the current iterates satisfy:

a) PD(u, y1, y2) =
(
− γ〈pα, u〉

+
1

2
‖Au− f‖22 + γ‖Γu‖1

+
1

2
‖y1‖22 + 〈y1, f〉

)
/n < ε1

and

‖A∗y1 + Γ∗y2 − γpα‖1/n < ε2

b) PD(u, z, y1, y2) =
(
− γ〈pα, u〉+ 2γ〈pα, z〉

+
1

2
‖Au− f‖22

+ γ‖Γu− Γz‖1 + γ‖Γz‖1

+
1

2
‖y1‖22 + 〈y1, f〉

)
/n < ε1

Parameters
α 0.3
γ 1000
σ = τ 1√

8

ε1 10−5

ε2 10−6

ε3 10−6

Table 1: Choice of parameters for a total vari-
ation denoising problem of an image of size
256x256 with values in [0, 1], corrupted by Gaus-
sian noise with variance 0.05.

and

‖A∗y1 + Γ∗y2 − γpα‖1/n < ε2,

‖ − Γ∗y2 + Γ∗y3 + 2γpα‖1/n < ε3.

Note that we normalize the primal-dual gap and
the constraints by the number of primal pixels
n in order to keep the thresholds ε1, ε2 and ε3
independent of varying image resolutions. We
give an example for the specific choice of param-
eters for our total variation denoising problems
in Table 5.

6 Numerical Results

This section provides further experiments and
numerical results that illustrate the proposed
debiasing method.

6.1 `1-deconvolution

The first application that we illustrate is the
deconvolution of a one-dimensional signal using
anisotropic shrinkage (4.6). Figure 7 displays
the original signal, the blurry signal corrupted
by additive Gaussian noise with standard devi-
ation σ = 0.05, the `1-reconstructed signal and
the debiased signals computed over the Breg-
man manifold MB

f and the infimal convolution

subspaceMIC
f . The last two completely overlap

on these two plots. One can see that provided
that the `1-reconstruction finds the right peak
locations, the debiasing method is able to re-
store the amplitude of the original signal.

Figure 8 displays the evolution of the aver-
age bias of the estimated signals as well as the
standard deviation of the error. They were com-
puted over one thousand noisy realizations for
the noisy, `1-reconstructed and debiased signals,
as a function of the regularization parameter α.
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Figure 7: `1-deconvolution of a 1D signal. Original and noisy convolved signals, and `1-
reconstruction, Bregman debiasing and Infimal convolution debiasing.

Figure 8: `1-deconvolution of a 1D signal. Aver-
age bias and variance computed over one thou-
sand realizations of the noisy signal for the noisy,
restored and debiased signals.

These curves illustrate several behaviors: As ex-
pected, the residual variance decreases when the
regularization parameter increases. For a very
low value of α, the debiasing reintroduces some
noise so the average variance is higher than for
the `1-reconstructed signal, revealing the bias-
variance trade-off that has to be settled. As α
increases, the gap between the variance of the
`1-reconstructed and debiased signal vanishes.
On the other hand, the average bias is indeed
smaller for the debiased signal than for the `1-
reconstructed signal. Besides, for small values

of the regularization parameter the average bias
for the debiased signal is stable and close to zero,
showing the effective reduction of the method
bias. Then it increases by steps which corre-
spond to the progressive vanishing of the peaks,
related to model bias. All in all, these plots
show the ability of the proposed approach to re-
duce the method bias (here, the loss of intensity
on the peaks), hence allowing for more efficient
noise reduction and reconstruction for a wider
range of regularization parameters.

6.2 Anisotropic TV denoising

In this subsection we study debiasing by means
of the discrete ROF-model [31] given by:

uα(f) ∈ arg min
u∈Rn

1

2
‖u− f‖22 + α‖Γu‖1, (6.1)

where the 1-norm is anisotropic, i.e.

‖Γu‖1 =

m/2∑
i=1

|(Γu)1,i|+ |(Γu)2,i|,

with (Γu)1 and (Γu)2 denoting the discrete gra-
dient images in horizontal and vertical direction,
respectively. We compare the original denoising
result of Problem (6.1) to the proposed debiased
solutions obtained with the Bregman manifold
MB

f or the infimal convolution subspace MIC
f .
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(a) TV / residual vs. α (b) PSNR vs. α, Giraffe (c) PSNR vs. α, Parrot

Figure 9: Evolution of (a) The total variation and the residual for the cartoon Giraffe image,
(b) The average PSNR for TV denoising, Bregman debiasing and infimal convolution debiasing
for the cartoon Giraffe image and (c) The average PSNR for TV denoising, Bregman debiasing
and infimal convolution debiasing for the natural Parrot image as a function of the regularization
parameter α.

6.2.1 Cartoon image

The Giraffe cartoon image has been designed
not to have model bias; it is piecewise con-
stant, which makes it suitable for TV denois-
ing and allows us to study the reduction of
the method bias only. It takes values in [0, 1]
and has been artificially corrupted with addi-
tive Gaussian noise with zero mean and vari-
ance σ2 = 0.05, reaching an initial PSNR of
about 13dB. The original image and a noisy re-
alization are already displayed on the first line
of Fig. 3 in Section 3.

Figure 10 displays the TV denoising result as
well as the debiased solutions computed on the
Bregman manifold MB

f or the infimal convolu-

tion subspace MIC
f for different values of the

regularization parameter α. On the first line,
α = 0.15 is the optimal regularization parameter
for TV denoising (in terms of PSNR, see Fig. 9-
(b)). However, when performing the debiasing,
noise is strongly amplified. On the second line,
α = 0.3 is the optimal regularization parameter
for debiasing, and overall, (in terms of PSNR,
see Fig. 9-(b)). On the third line α = 0.6 leads
to an oversmoothed solution, but the debiasing
step still allows to recover a lot of the lost con-
trast.

Since we expect the variational method to
systematically underestimate the value of the
regularization functional and overestimates the
residual (see [1] for a precise computation on
singular values), we compare the corresponding
quantities when varying α in Figure 9-(a). We
observe that for a very large range of values of
α there appears to be an almost constant off-
set between the values for the solution uα(f)

and the debiased solution ûα(f) (except for very
small values of α, when noise dominates). This
seems to be due to the fact that the debiasing
step can correct the bias in the regularization
functional (here total variation) and residual to
a certain extent. This corresponds well to the
plot of PSNR vs. α in Fig. 9-(b), which confirms
that the PSNR after the debiasing step is signif-
icantly larger than the one in uα(f) for a large
range of values of α, which contains the ones
relevant in practice. The fact that the PSNR is
decreased by the debiasing step for very small α
corresponds to the fact that indeed the noise is
amplified in such a case, visible also in the plots
for the smallest value of α in Figure 10.

Altogether, these results show that the pro-
posed debiasing approach improves the denois-
ing of the cartoon image both visually and quan-
titatively.

6.2.2 Natural image

The debiasing can also be evaluated on natural
images such as the Parrot picture. TV denois-
ing on such images leads to both method bias
and model bias. We expect to reduce the for-
mer with the proposed method, while the latter
is due to the piecewise constant approximation
associated with the ROF-model. The Parrot
image takes values in [0, 1] and has been arti-
ficially corrupted with additive Gaussian noise
with zero mean and variance σ = 0.05, reaching
an initial PSNR of about 13dB. The original im-
age and a noisy realization are displayed on the
first line of Figure 13.

Analogously to Figure 10, Figure 13 also dis-
plays the TV denoising result as well as the de-
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TV denoising Bregman debiasing ICB debiasing
α

=
0.

1
5

PSNR = 22.43 PSNR = 17.82 PSNR = 17.69

α
=

0.
3

(o
p
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m

al
)

PSNR = 19.63 PSNR = 22.75 PSNR = 22.70

α
=

0.
6

PSNR = 16.05 PSNR = 18.19 PSNR = 18.34

Figure 10: Denoising of the Giraffe cartoon image for different values of the regularization param-
eter α. First column: TV denoising. Second column: Debiasing on the Bregman manifold. Third
column: Debiasing on the infimal convolution subspace.

biased solutions computed on the Bregman sub-
space or the infimal convolution subspace for
different values of the regularization parameter
α. On the second line, α = 0.15 is the optimal
regularization parameter for TV denoising (in
terms of PSNR, see Fig. 9-(c)). However, when
performing the debiasing, the remaining noise is
strongly amplified. On the third line, α = 0.3 is
the optimal regularization parameter for debias-
ing (in terms of PSNR, see Fig. 9-(c)). On the
fourth line α = 0.6 leads to an oversmoothed
solution but the debiasing step still allows to
recover the lost contrast.

Note that in the Parrot case, the optimal re-

sult in terms of PSNR is obtained for the TV
denoising, for α = 0.15. However, the debias-
ing obtained with α = 0.3 visually provides a
smoother result on the background, while pre-
serving the fine structures such as the stripes
around the eye.

Note also that in each case the artifacts of TV
denoising such as staircasing remain and even
become more apparent. This however seems
natural as the contrast is increased. Since these
issues are in fact model bias they are not dealt
with by the debiasing method we perform here,
but could be reduced by an appropriate choice
of regularization such as total generalized vari-
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ation [3].

6.2.3 Statistical behavior

For both images, the statistical behavior of the
proposed debiasing methods can be evaluated
by computing the statistical bias E[u∗ − Û ] as
well as the variance Var[u∗−Û ] between the true
image u∗ and an estimator Û . In our case this
is either the solution of the ROF-model (6.1)
or the corresponding debiased result. Figure 11
displays the evolution of the estimated statisti-
cal bias and standard deviation of the TV, Breg-
man debiased and infimal convolution debiased
estimators for the cartoon Giraffe and natural
Parrot images, as a function of the regulariza-
tion parameter α. These curves reflect some in-
teresting behaviors: As expected, the residual
variance decreases as the regularization param-
eter increases. Besides, the variance is always
slightly higher for the debiased solutions, which
reflects the bias-variance compromise that has
to be settled. However, as the regularization pa-
rameter increases, the gap between the denoised
and debiased variance decreases. On the other
hand, as the regularization parameter grows, the
bias increases for each method, and it always re-
mains higher for the denoised solutions than for
the debiased solutions. One interesting fact is
the behavior of the bias curve for the cartoon
Giraffe image: for low values of the regulariza-
tion parameter (up to α ≈ 0.3), the evolution of
the bias for the debiased solutions is relatively
stable. This means that for those values, one
can increase the regularization parameter in or-
der to reduce the variance without introducing
too much (at this point, method) bias. Then,
for higher regularization parameters the bias in-
creases in a steeper way, parallel to the evolu-
tion of the original bias for the TV denoised im-
age. This reflects the evolution of the model bias
from this point on, when the high regularization
parameter provides a model subspace whose el-
ements are too smooth compared to the true
image. For the natural Parrot image, the model
bias occurs even for small values of the regu-
larization parameter, because the model mani-
fold provided by the TV regularization does not
properly fit the image prior.

These curves also illustrate the optimal bias-
variance balance that can be achieved with or
without the debiasing procedure. Intuitively,
one would expect the optimal bias-variance
trade-off to be reached when the bias and the

standard deviation curves intersect each other.
This is indeed confirmed by the PSNR curves
from Fig. 9-(b) and 9-(c). Looking at those in-
tersection points on both curves for the TV de-
noised solution on the one hand and for the de-
biased solutions on the other hand, one can see
that the optimal compromise for the debiasing
is reached for a higher regularization parameter
than for the denoising. This offers more denois-
ing performance, and it leads to a smaller (for
the Giraffe image) or equal (for the Parrot im-
age) average bias and standard deviation.

6.3 Isotropic TV denoising

Finally, we extend the examples presented in
[16] with a few numerical results for isotropic
TV denoising:

‖Γu‖1 =

m/2∑
i=1

√
|(Γu)1,i|2 + |(Γu)2,i|2.

We then compare the denoising result to the so-
lutions provided by the two alternative second
steps of our debiasing method. Moreover, we
also compare them to the result obtained from
Bregman iterations. Figure 12 displays the opti-
mal (in terms of PSNR) denoising and debiasing
for the Giraffe and Parrot images. The regular-
ization parameter has been set to α = 0.2 for
the denoising result and to α = 0.3 for the de-
biasing. Similarly to the anisotropic case, the
debiasing both visually and quantitatively im-
proves the quality of the cartoon Giraffe image.
For the natural Parrot image, even though the
PSNR is not improved by the debiasing process,
one can still observe that the higher regular-
ization parameter offers a better denoising of
the background, while the debiasing guarantees
that the fine structures around the eye are pre-
served with a good contrast. Besides, the pro-
posed debiasing approach offers similar results
to Bregman iterations, displayed in the fourth
column. However, the interesting aspect of our
debiasing approach is that we only apply a two-
step procedure, while Bregman iterations have
to be performed iteratively with a sufficiently
high number of steps. Note that our numerical
approach to debiasing (see Section 5) is actually
equivalent to performing one Bregman iteration
with zero initialization of the subgradient, then
updating the subgradient and solving a second
Bregman step with a sufficiently high regular-
ization parameter.
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(a) Giraffe (b) Parrot

Figure 11: Evolution of the average residual bias and standard deviation computed over 500
noisy realizations of (a) Giraffe and (b) Parrot for TV denoising, Bregman debiasing and infimal
convolution debiasing.

Isotropic TV Bregman debiasing ICB debiasing Bregman iterations

PSNR = 22.14 PSNR = 22.49 PSNR = 22.58 PSNR = 22.97

PSNR = 25.38 PSNR = 24.69 PSNR = 24.76 PSNR = 24.60

Figure 12: Isotropic TV denoising and debiasing of the cartoon Giraffe and natural Parrot images,
and comparison to Bregman iterations.

7 Conclusion

We have introduced two variational debiasing
schemes based on Bregman distances and their
infimal convolution, which are applicable for
nonsmooth convex regularizations and gener-
alize known debiasing approaches for `1 and
TV-type regularization. Based on a recent ax-
iomatic approach to debiasing by Deledalle and
coworkers [16], which we further generalized to-
wards infinite-dimensional problems, we were
able to provide a theoretical basis of our debi-

asing approach and work out meaningful model
manifolds for variational methods. Moreover,
we were able to relate the approach to Bregman
iterations and inverse scale space methods.

From the numerical experiments we observe
that the debiasing scheme improves the results
for a wide range of regularization parameters,
which includes the ones providing optimal re-
sults. Surprisingly, we often find visually opti-
mal choices of the regularization parameters in
the range where bias and standard deviation of
the debiased solution are approximately of the
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Original image Noisy image

TV denoising Bregman debiasing ICB debiasing

α
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0.
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PSNR = 25.07 PSNR = 18.82 PSNR = 18.44

α
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PSNR = 23.57 PSNR = 24.19 PSNR = 23.95

α
=

0.
6

PSNR = 21.20 PSNR = 22.29 PSNR = 22.29

Figure 13: Denoising of the Parrot image for different values of the regularization parameter α.
First column: TV denoising. Second column: Debiasing on the Bregman manifold. Third column:
Debiasing on the infimal convolution subspace.
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same size.
Various questions remain open for future

studies: one might study the generalization to
other regularization schemes such as total gener-
alized variation [3], spatially adaptive methods
that would further reduce the model bias [21] or
nonlocal methods for improved results on natu-
ral images. As already indicated in the introduc-
tion, the method is theoretically not restricted
to squared Hilbert-space norms. Instead, it can
be carried out for any suitable data fidelity H
and we expect it to improve the results. From
a theoretical, and in particular from a statisti-
cal viewpoint, the question is then how to relate
the method to actual bias reduction, and how to
properly motivate and define bias in this setting.

Another further improvement might be
achieved by only approximating the model
manifold by tuning the parameter γ without let-
ting it tend to infinity.

We acknowledge a very recent and related
work on the topic from another perspective,
which has been developed in parallel to this
work [17]. It will be interesting to investigate
the connections in future work.

8 Appendix

We have included some examples and proofs
in the Appendix in order not to interrupt the
flow of the paper. These are in particular
the proof for shrinkage and the calculation of
the corresponding derivatives for isotropic and
anisotropic shrinkage in Example 4.7, and the
calculation of the infimal convolution of two `1-
Bregman distances in Example 4.11.

8.1 Shrinkage

Let f ∈ `2(Rd) be a vector-valued signal for d ∈
N. Then the solution of the isotropic shrinkage
problem

uα(f) ∈ arg min
u∈`1(Rd)

1

2
‖u− f‖2`2(Rd) + α‖u‖`1(Rd)

is given by the isotropic soft-thresholding

[uα(f)]i =

{
(1− α

|fi| )fi, |fi| > α,

0, |fi| ≤ α.

Proof. We first point out, that the objective
allows to exploit strong duality. Following [2,

Theorem 4.4.3 and Lemma 4.3.1], strong dual-
ity holds if

dom(‖ · ‖`1(Rd)) ∩ cont

(
1

2
‖ · −f‖2`2(Rd)

)
6= ∅.

Since the `1(Rd)-norm has full domain and the
`2(Rd)-norm is continuous everywhere, this is
trivially fulfilled. Hence, by the dual definition
of the `1(Rd)-norm we find

min
u∈`1(Rd)

1

2
‖u− f‖2`2(Rd) + α‖u‖`1(Rd)

= min
u∈`1(Rd)

sup
r∈`∞(Rd)
‖r‖

`∞(Rd)≤α

1

2
‖u− f‖2`2(Rd) + 〈r, u〉

= sup
‖r‖

`∞(Rd)≤α
min

u∈`1(Rd)

1

2
‖u− f‖2`2(Rd) + 〈r, u〉,

where we used strong duality to interchange the
infimum and the supremum. We can explicitely
compute the minimizer for u as u = f − r and
hence

sup
‖r‖

`∞(Rd)≤α
min

u∈`1(Rd)

1

2
‖u− f‖2`2(Rd) + 〈r, u〉

= sup
‖r‖

`∞(Rd)≤α
−1

2
‖r‖2`2(Rd) + 〈r, f〉.

This supremum can be computed explicitely
pointwise with the corresponding Lagrangian

L(ri, λ) = −1

2
|ri|2 + ri · fi + λ(|ri|2 − α2)

with λ ≤ 0. Note that both the objective func-
tion and the constraints are continuously differ-
entiable and that Slater’s condition holds. Op-
timality with respect to ri yields

fi − ri + 2λri = 0

and hence

ri =
fi

1− 2λ
.

We distinguish two cases:
If |ri| = α, then α(1− 2λ) = |fi| and

ui = fi − ri = fi −
fi

1− 2λ
= (1− α

|fi|
)fi.

The nonpositivity of λ implies that |fi| ≥ α. In
case |ri| < α, we obtain that λ = 0 and hence
ri = fi and ui = 0 when |fi| < α. Note that
since f ∈ `2(Rd) there exists a finite N such
that |fi| ≤ α for all i > N . Hence trivially
uα(f) ∈ `1(Rd) as

∑
i∈N | [uα(f)]i | is a finite

sum. This yields the assertion. �
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Remark: For d = 1 and a square-summable
sequence f ∈ `2 we immediately obtain the
anisotropic case: The solution to

uα ∈ arg min
u∈`1

1

2
‖u− f‖2`2 + α‖u‖`1 (8.1)

for α > 0 is given by

[uα(f)]i =

{
fi − α sign(fi), |fi| ≥ α
0, |fi| < α.

Directional derivative: The computation of
the directional derivative requires a little more
work. At first, let us compute the directional
derivative of the function F : Rd\{0} → R,
x 7→ 1

|x| into the direction g ∈ Rd. We define

G : Rd\{0} → R, x 7→ 1
|x|2 and calculate

dG(x; g) = lim
t→0+

G(x+ tg)−G(x)

t

= lim
t→0+

1

t

(
1

|x+ tg|2
− 1

|x|2

)
= lim
t→0+

1

t

(
|x|2 − |x+ tg|2

|x|2|x+ tg|2

)
= lim
t→0+

1

t

(
−2tx · g − t2|g|2

|x|2|x+ tg|2

)
= −2

x · g
|x|4

.

Then by the chain rule we obtain

dF (x; g) = d
√
G(x; g) =

dG(x; g)

2
√
G(x)

= −2
x · g
|x|4
|x|
2

= −x · g
|x|3

.

Let us further define the projection of a vector
x ∈ Rd onto another vector y ∈ Rd\{0} as

Πy(x) =
y · x
|y|2

y.

We now have to compute

[duα(f ; g)]i = lim
t→0+

1

t

(
[uα(f + tg)]i − [uα(f)]i

)
and we can distinguish four cases:
Let at first |fi| > α. Then for t small enough

we have |fi + tgi| > α and hence

lim
t→0+

1

t

(
[uα(f + tg)]i − [uα(f)]i

)
= lim
t→0+

1

t

((
1− α

|fi + tgi|

)
(fi + tgi)

−
(

1− α

|fi|

)
fi

)
= lim
t→0+

1

t

(
fi + tgi − α

fi + tgi
|fi + tgi|

− fi + α
fi
|fi|

)
= lim
t→0+

1

t

(
tgi −

αtgi
|fi + tgi|

−αfi
(

1

|fi + tgi|
− 1

|fi|

))
= gi − α

gi
|fi|

+ αfi
fi · gi
|fi|3

= gi +
α

|fi|
(Πfi(gi)− gi) .

For |fi| < α and t small enough we easily find
|fi + tgi| < α and hence

[duα(f ; g)]i = 0.

In case |fi| = α we need to distinguish whether
|fi + tgi| > α or |fi + tgi| ≤ α for arbitrarily
small t. We hence compute

|fi + tgi| > α

⇔ |fi + tgi|2 > α2

⇔ |fi|2 + 2tfi · gi + t2|gi|2 > α2

⇔ 2fi · gi + t|gi|2 > 0,

which for arbitrarily small t is true only if fi·gi ≥
0. Analogously we find that |fi + tgi| < α for
small t is only true if fi · gi < 0.
Hence let now |fi| = α and fi · gi ≥ 0. Then we
obtain

[duα(f ; g)]i = lim
t→0+

1

t

(
[uα(f + tg)]i

)
= lim
t→0+

1

t

((
1− α

|fi + tgi|

)
(fi + tgi)

)
.

Using α = |fi|, we find

lim
t→0+

|fi|fi
t

(
1

|fi|
-

1

|fi + tgi|

)
+ gi -

|fi|gi
|fi + tgi|

= |fi|fi
fi · gi
|fi|3

= Πfi(gi).
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In the last case |fi| = α and fi · gi < 0, we find

[duα(f ; g)]i = lim
t→0+

1

t

(
[uα(f + tg)]i

)
= 0.

Summing up we have

[duα(f ;g)]i

=


gi + α

|fi| (Πfi(gi)− gi) , |fi| > α,

0, |fi| < α,
Πfi(gi), |fi| = α, fi · gi > 0,
0, |fi| = α, fi · gi ≤ 0.

It remains to show that∥∥∥uα(f + tg)− uα(f)

t
− duα(f ; g)

∥∥∥
`1(Rd)

→ 0

for t → 0+. Again, since f ∈ `2(Rd), there
exists N ∈ N such that |fi| < α and hence
[duα(f ; g)]i = 0 for all i > N . The difference
quotient as well vanishes for all i > N , hence
the above `1 norm is a finite sum and thus we
trivially obtain convergence in `1(Rd).

Remark: For d = 1 and f ∈ `2 we obtain the
anisotropic result:

[duα(f ; g)]i

=


gi, |fi| > α

0, |fi| < α

gi, |fi| = α, sign(fi) = sign(gi)

0, |fi| = α, sign(fi) 6= sign(gi),

where we mention that here Πfi(gi) = gi.
Model manifold: The corresponding

(isotropic) model manifold is given by

u ∈MG
f ⇔ ui =


v ∈ Rd, |fi| > α,

0, |fi| < α,

λfi, λ ≥ 0, |fi| = α.

Analogously to the anisotropic case discussed in
Example 4.7, the model manifold allows for ar-
bitrary elements, here even including the direc-
tion, if the magnitude |fi| of the signal is strictly
above the threshold parameter α. As already
discussed in Example 4.7, |fi| = α is the odd
case of the three, since in contrast to |fi| > α it
only allows for changes into the direction of the
signal fi. If we exclude that case, we again find
a linear derivative, hence a Gâteaux derivative
and even a Fréchet derivative. Accordingly the
isotropic shrinkage is the immediate generaliza-
tion of the anisotropic shrinkage, which we can
find as a special case for d = 1.

Summing up, the debiasing procedure on
this manifold again yields the solution of hard
thresholding:

[û(f)]i =

{
fi, |fi| ≥ α,
0, |fi| < α.

Note that we again maintain the signal directly
on the threshold.

8.2 Infimal convolution of `1 Breg-
man distances

Theorem 8.1. Let Γ: `2(Rn)→ `1(Rm) be lin-
ear and bounded and J(u) = ‖Γu‖`1(Rm) for
m,n ∈ N. Let further qα ∈ ∂‖ · ‖`1(Rm)(Γuα)
such that pα = Γ∗qα. Then

ICBqα`1(Rm)(Γu,Γuα) ≤ ICBpαJ (u, uα).

Proof.

ICBpαJ (u, uα)

= inf
z∈`2(Rn)

Dpα
J (u− z, uα) +D−pαJ (z,−uα)

= inf
z∈`2(Rn)

‖Γ(u− z)‖`1(Rm) − 〈pα, u− z〉

+ ‖Γz‖`1(Rm) + 〈pα, z〉
= inf
z∈`2(Rn)

‖Γ(u− z)‖`1(Rm) − 〈qα,Γ(u− z)〉

+ ‖Γz‖`1(Rm) + 〈qα,Γz〉
= inf

Γz∈`1(Rm)
‖Γ(u− z)‖`1(Rm) − 〈qα,Γ(u− z)〉

+ ‖Γz‖`1(Rm) + 〈qα,Γz〉
≥ inf
w∈`1(Rm)

‖Γu− w‖`1(Rm) − 〈qα,Γu− w〉

+ ‖w‖`1(Rm) + 〈qα, w〉
= inf
w∈`1(Rm)

Dqα
`1(Rm)(Γu− w,Γuα)

+D−qα`1(Rm)(w,−Γuα)

= ICBqα`1(Rm)(Γu,Γuα).

�

Note that we get equality for surjective Γ in
Theorem 8.1.

Theorem 8.2. Let v, u ∈ `1(Rm) and q ∈
∂‖v‖`1(Rm). Then

ICBq`1(Rm)(u, v) =
∑
i∈N

G(ui, qi)
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with G : Rm × Rm → R defined as

G(ui, qi)

=

{
|ui|(1− | cos(ϕi)||qi|), |qi| < | cos(ϕi)|,
|ui|| sin(ϕi)|

√
1− |qi|2, |qi| ≥ | cos(ϕi)|.

where ϕi denotes the angle between ui and qi,
i.e. cos(ϕi)|ui||qi| = ui · qi with ϕi := 0 for
qi = 0 or ui = 0.

Proof. Let

f1(u) = Dq
`1(Rm)(u, v) = ‖u‖`1(Rm) − 〈q, u〉,

f2(u) = D−q`1(Rm)(u,−v)= ‖u‖`1(Rm) + 〈q, u〉.

Since (f12f2)∗ = f∗1 + f∗2 and by the definition
of the biconjugate, we know that

f12f2 ≥ (f∗1 + f∗2 )∗.

(1) We shall first compute the right-hand side.
We have

f∗1 (w) = ιB∞(1)(w + q),

f∗2 (w) = ιB∞(1)(w − q),

where ιB∞(1) denotes the characteristic function
of the `∞(Rm)-ball

B∞(1) =
{
w ∈ `∞(Rm) | ‖w‖`∞(Rm) ≤ 1

}
.

Thus

(f∗1 + f∗2 )∗(u) = sup
w∈`∞(Rm)

〈u,w〉

s.t. ‖w + q‖`∞(Rm) ≤ 1, ‖w − q‖`∞(Rm) ≤ 1.

Taking into account the specific form of these
constraints, we can carry out the computation
pointwise, i.e.

sup
wi∈Rm

ui · wi s.t. |wi + qi| ≤ 1, |wi − qi| ≤ 1.

From now on we drop the dependence on i for
simplicity.
• Let us first consider the case |q| = 1. We

immediately deduce that w = 0 and u · w = 0.
• Hence we assume |q| < 1 from now on, and

set up the corresponding Lagrangian

L(w, λ, µ) = −w · u+ λ(|w − q|2 − 1)

+ µ(|w + q|2 − 1). (8.2)

Both the objective functional and the con-
straints are differentiable, so every optimal point

of (8.2) has to fulfill the four Karush-Kuhn-
Tucker conditions, namely

∂

∂w
L(w, λ, µ) = 0, λ(|w − q|2 − 1) = 0,

λ, µ ≥ 0, µ(|w + q|2 − 1) = 0,

Slater’s condition implies the existence of La-
grange multipliers for a KKT-point of (8.2). The
first KKT-condition yields

−u+ 2λ(w − q) + 2µ(w + q) = 0. (8.3)

∗ Let us first remark that the case u = 0
causes the objective function to vanish anyway,
hence in the following u 6= 0.
∗ Then let us address the case q = 0 in which

(8.3) yields

u = 2(λ+ µ)w.

In case |w| = 1 we find that 2(λ+µ) = |u|, hence
w = u

|u| . We infer

w · u =
u · u
|u|

= |u|.

Note that for |w| < 1, we find that λ = µ = 0
and hence u = 0.

∗ If q 6= 0, we can distinguish four cases:
1st case: |w − q|2 < 1, |w + q|2 = 1.
Thus λ = 0 and (8.3) yields

u = 2µ(w + q).

Since |w + q|2 = 1, we deduce µ = |u|/2, so

w =
u

|u|
− q

and finally for the value of the objective function

w · u =

(
u

|u|
− q
)
· u = |u| − q · u.

2nd case: |w + q|2 < 1, |w − q|2 = 1.
We analogously find

w · u = |u|+ q · u.

The first two cases thus occur whenever (insert
w into the conditions)∣∣∣∣ u|u| − 2q

∣∣∣∣ < 1 or

∣∣∣∣ u|u| + 2q

∣∣∣∣ < 1.
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We calculate ∣∣∣∣ u|u| − 2q

∣∣∣∣2 < 1

⇔ |q|2 < q · u
|u|

⇔ |q| < cos(ϕ).

Hence q · u > 0 and

|u| − q · u = |u| − |q · u|.

In the second case we analogously find

|q| < − cos(ϕ),

hence q · u < 0 and

|u|+ q · u = |u| − |q · u|,

so we may summarize the first two cases as

w · u = |u| − |q · u| = |u|(1− | cos(ϕ)||q|),

whenever |q| < | cos(ϕ)|.

3rd case: |w − q|2 = 1, |w + q|2 = 1.
At first we observe that from

|w + q|2 = |w − q|2

we may deduce that w · q = 0. Therefore we
have

|w + q|2 = 1⇒ |w| =
√

1− |q|2.

We multiply the optimality condition (8.3) by q
and obtain

u · q = 2λ(w − q) · q + 2µ(w + q) · q
⇔ u · q = 2(µ− λ) |q|2

⇔ (µ− λ) =
u

2
· q

|q|2
.

Multiplying (8.3) by w yields

u · w = 2(λ+ µ)|w|2

and another multiplication of (8.3) by u yields

|u|2 = 2(λ+ µ)w · u+ 2(µ− λ)q · u

= 4(λ+ µ)2|w|2 +

(
u · q
|q|

)2

,

where we inserted the previous results in the last
two steps. We rearrange and find

2(λ+ µ) =

√
|u|2 −

(
u · q
|q|

)2

|w|−1.

Note that |w| > 0 since |q| < 1. This finally
leads us to

u · w = 2(λ+ µ)|w|2

=

√
|u|2 −

(
u · q
|q|

)2

|w|

= |u|

√√√√(1−
(
u

|u|
· q
|q|

)2
)

(1− |q|2)

= |u|
√

(1− | cos(ϕ)|2) (1− |q|2)

= |u|| sin(ϕ)|
√

(1− |q|2).

4th case: |w − q|2 < 1, |w + q|2 < 1.
Here the first KKT-condition yields u = 0,
which can only occur if the objective function
w · u vanishes anyway. Summing up, we have

(f∗1 + f∗2 )∗(u) =
∑
i∈N

G(ui, qi) ≤ ‖u‖`1(Rm).

(2) It remains to show that

(f12f2)(u) = inf
z∈`1(Rm)

∑
i∈N

gi(zi)

≤ (f∗1 + f∗2 )∗(u),

where

gi(zi) = |ui − zi|+ |zi| − qi · (ui − 2zi) ≥ 0.

Again we need to distinguish four cases.

1st case: If |qi| < cos(ϕi), we have qi · ui > 0
and we can choose zi = 0 to obtain

gi(zi) = |ui| − qi · ui = |ui| − |qi · ui|.

2nd case: Analogously if |qi| < − cos(ϕi), we
have qi · ui < 0 and choose zi = ui, thus

gi(zi) = |ui|+ qi · ui = |ui| − |qi · ui|.

3rd case: If |qi| = 1, we compute for zi =
ui
2 −

c
2qi , c > 0,

gi(zi) =
∣∣∣ui

2
+
c

2
qi

∣∣∣+
∣∣∣ui

2
− c

2
qi

∣∣∣− c|qi|2
=
c

2

(∣∣∣qi +
ui
c

∣∣∣+
∣∣∣qi − ui

c

∣∣∣− 2
)
.

Using a Taylor expansion around q we obtain∣∣∣qi +
ui
c

∣∣∣ = |qi|+
qi
|qi|
· ui
c

+O(c−2),∣∣∣qi − ui
c

∣∣∣ = |qi| −
qi
|qi|
· ui
c

+O(c−2).
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Hence with |qi| = 1 we find

gi(zi) =
c

2
(2|qi|+O(c−2)− 2) = O(c−1)→ 0

for c → ∞. Hence for every ε there exists a
ci > 0 such that gi(zi) ≤ ε/2i.

4th case: Finally, if |qi| ≥ | cos(ϕi)| and |qi| <
1, we pick zi = 2λi(wi−qi), with λi and wi being
the Lagrange multiplier and the dual variable
from the above computation of (f∗1 + f∗2 )∗. It is
easy to see that

gi(zi) = |ui|| sin(ϕi)|
√

1− |qi|2.

Hence we define z := (zi)i such that

zi =



0, if |qi| < cos(ϕi),

ui, if |qi| < − cos(ϕi),
ui
2 −

ci
2 qi, if |qi| = 1,

λi(wi − qi) if |qi| ≥ | cos(ϕi)|,
|qi| < 1.

Let zN denote z truncated at index N ∈ N, i.e.

zNi =

{
zi, if i ≤ N,
0, else.

Then trivially zN ∈ `1(Rm) and we compute

(f12f2)(u) ≤
∑
i∈N

gi(z
N
i )

≤
N∑
i=1

(
G(ui, qi) +

ε

2i
)

+

∞∑
i=N+1

gi(0)

=

∞∑
i=1

G(ui, qi) +

N∑
i=1

ε

2i

+

∞∑
i=N+1

(
|ui| − qi · ui −G(ui, qi)

)
≤
∞∑
i=1

G(ui, qi) +

N∑
i=1

ε

2i
+ 3

∞∑
i=N+1

|ui|

→
∞∑
i=1

G(ui, qi) + ε

as N →∞. This completes the proof. �
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