Skip to main content
Log in

An Application of Quadratic Measure Filters to the Segmentation of Chorio-Retinal OCT Data

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

As an application of Walther’s convergence theorem for quadratic measure filters, a novel approach for the approximate detection of the jump set of functions \(x \in BV (\Omega , \mathbbm {R}^{})\,\cap \,{{ PC }}^{1}_{} (\Omega , \mathbbm {R}^{})\) has been established. The method has been successfully applied to the segmentation of medical image data which have been generated by optical coherence tomography of the human retina and choroid. There is an excellent correspondence between the automated segmentations and manual delineations, while standard edge detectors fail completely in the recognition of the low-contrasted outer choroid boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. To the best of the author’s knowledge, the only attempts of numerical application of Walther’s theorem were made in [7] and [53].

  2. See, for example, [4, 46] and [48] .

  3. We mention exemplarily [3] and [5], pp. 65 ff., [41] (variational methods), [12, 13] (level-set methods), [19] and [45] (graph-theoretical methods).

  4. We refer to [22] .

  5. See the literature cited in Sect. 3.

  6. The following summary is based on [18] , pp. 166 ff.

  7. [23] , p. 9, Remark 1.12.

  8. [18] , p. 189, Theorem 1, (i).

  9. Ibid., p. 183, Theorem 1.

  10. [18], p. 210, Lemma 1.

  11. Ibid., p. 211, Theorem 2.

  12. Ibid., p. 210.

  13. Ibid., p. 210, Theorem 1.

  14. Ibid., p. 213, Theorem 3, (ii).

  15. [2] , p. 129 f., Theorem 1.

  16. [47], p. 36, Lemma 6.2.

  17. [52], p. 2, Theorem 1; independently proven in [21], p. 701 f., Theorem 3.1. (\(p=2\), \(G(\nu ) = { const.}\,\)).

  18. [28].

  19. For more details, see [26], pp. 26–31, and [51].

  20. Cf. [31], pp. 3–18, as well as [15], p. 104, Fig. 3–37.

  21. Structure and function of the choroid are summarized in [38].

  22. See [17], p. 17, Fig. 11, and [25].

  23. [44], p. 1208.

  24. [31], pp. 121 ff. and 137.

  25. Cf. [42] and [43].

  26. [20] .

  27. [37].

  28. [36] .

  29. See e.g., [14, 17] and [32].

  30. [49].

  31. [29].

  32. [50], p. 025004-15, Table 3.6.

  33. We mention [1, 27, 54] and [55]. In [30], the statistical segmentation method from [29] has been extended to the OCB detection.

  34. [33] and [34].

  35. For more details, see [40].

  36. The plot has been realized using a HSI color model where every color is represented by the three coordinates hue, saturation and intensity, cf. [10], p. 1197 and [39], pp. 25 ff. Since we need only two coordinates for the visualization of the normalized gradient field, the saturation has been left constant.

  37. [24] , p. 11.

  38. [11].

  39. Cf. [35]. The edge sketches have been created using the following parameters: grad win. 3; min. length 10; nonmaxima suppr.: arc/0.95/0.85; hysteresis thresh. low: arc/0.8/0.8; hysteresis thresh. high: box/0.9/0.9.

  40. See [3] and [5], pp. 166–173.

  41. [6], p. 205 f., Theorem 2.1., for \(p=2\).

  42. Cf. [8].

References

  1. Alonso-Caneiro, D., Read, S.A., Collins, M.J.: Automatic segmentation of choroidal thickness in optical coherence tomography. Biomed. Opt. Express 4, 2795–2812 (2013)

    Article  Google Scholar 

  2. Ambrosio, L.: A new proof of the SBV compactness theorem. Calc. Var. Partial Differ. Equ. 3, 127–137 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Tortorelli, V .M.: On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B 7 6, 105–123 (1992)

    MathSciNet  MATH  Google Scholar 

  4. Aubert, G., Aujol, J.-F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68, 925–946 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  6. Bellettini, G., Coscia, A.: Discrete approximation of a free discontinuity problem. Numer. Funct. Anal. Optim. 15, 201–224 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boll, I.: Quadratische Kantenfilter zur Segmentierung von Bohrlogs. Diploma thesis. Rheinische Friedrich-Wilhelms-Universität Bonn (1998) (in German)

  8. Bourdin, B.: Image segmentation with a finite element method. M2AN Math. Model. Numer. Anal. 33, 229–244 (1999)

  9. Bronstein, I. N., Semendjajew, K. A.: Taschenbuch der Mathematik. Herausgegeben von G. Grosche, V. Ziegler and D. Ziegler. Nauka/BSB B. G. Teubner Verlagsgesellschaft, Moskva/Leipzig 1989, 24th edn. (in German)

  10. Brune, C., Maurer, H., Wagner, M.: Detection of intensity and motion edges within optical flow via multidimensional control. SIAM J. Imag. Sci. 2, 1190–1210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)

    Article  Google Scholar 

  12. Chan, T.F., Esedo\(\bar{\text{g}}\)lu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66, 1632–1648 (2006)

  13. Chan, T.F., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  14. Chiu, S.J., Li, X.T., Nicholas, P., Toth, C.A., Izatt, J.A., Farsiu, S.: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt. Express 18(18), 19413–19428 (2010)

    Article  Google Scholar 

  15. Deetjen, P., Speckmann, E.-J., Hescheler, J. (Eds.): Physiologie. Urban and Fischer; München–Jena, 4th ed. (2005) (in German)

  16. De Giorgi, E.: Su una teoria generale della misura \((r-1)\)-dimensionale in uno spazio ad \(r\) dimensioni. Ann. Mat. Pura Appl. 36, 191–213 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ehnes, A.: Entwicklung eines Schichtsegmentierungsalgorithmus zur automatischen Analyse von individuellen Netzhautschichten in optischen Kohärenztomographie-B-Scans. PhD thesis; Justus-Liebig-Universität Gießen (2014) (in German)

  18. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  19. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59, 167–181 (2004)

    Article  Google Scholar 

  20. Fernández, D.C., Salinas, H.M., Puliafito, C.A.: Automated detection of retinal layer structures on optical coherence tomography images. Opt. Express 13(25), 10200–10216 (2005)

    Article  Google Scholar 

  21. Firoozye, N.B., Šverák, V.: Measure filters: an extension of Wiener’s theorem. Indiana Math. J. 45, 695–707 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Franek, L., Franek, M., Maurer, H., Wagner, M.: A discretization method for the numerical solution of Dieudonné-Rashevsky type problems with application to edge detection within noisy image data. Opt. Control Appl. Meth. 33, 276–301 (2012)

    Article  MATH  Google Scholar 

  23. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston–Basel–Stuttgart (1984)

  24. Spectralis Viewing Module. Software Version 4.0. Special Function: Exporting Raw Data. Document Revision 4.0-1E. Heidelberg Engineering GmbH, Heidelberg (2008)

  25. Electronically published under http://www.heidelbergengineering.com/media/e-learning/Totara/Dateien/pdf-tutorials/210025-001_General_Academy%20Material_Handout%20Retinal%20Layers_EN.pdf (2017). Last Accessed 29 June 2017

  26. Heimann, H., Kellner, U. (eds.): Atlas des Augenhintergrundes. Georg Thieme Verlag, Stuttgart (2010). (in German)

    Google Scholar 

  27. Hu, Z., Wu, X., Ouyang, Y., Ouyang, Y., Sadda, S.R.: Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans. Invest. Ophthalmol. Vis. Sci. 54, 1722–1729 (2013)

    Article  Google Scholar 

  28. Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., Hee, M.R., Flotte, T., Gregory, K., Puliafito, C.A., Fujimoto, J.G.: Optical coherence tomography. Science 254, 1178–1181 (1991)

    Article  Google Scholar 

  29. Kajić, V., Považay, B., Hermann, B., Hofer, B., Marshall, D., Rosin, P.L., Drexler, W.: Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis. Opt. Express 18(14), 14730–14744 (2010)

    Article  Google Scholar 

  30. Kajić, V., Esmaeelpour, M., Považay, B., Marshall, D., Rosin, P.L., Drexler, W.: Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model. Biomed. Opt. Express 3, 86–103 (2012)

    Article  Google Scholar 

  31. Kellner, U., Wachtlin, J. (eds.): Retina. Diagnostik und Therapie der Erkrankungen des hinteren Augenabschnitts. Georg Thieme Verlag, Stuttgart (2008). (in German)

  32. Li, K., Wu, X., Chen, D.Z., Sonka, M.: Optimal surface segmentation in volumetric images—a graph-theoretic approach. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006)

    Article  Google Scholar 

  33. Luengo, C.: Gaussian filtering. Electronically self-published under www.crisluengo.net/index.php/archives/22; s.l. (2008). Last Accessed 29 June 2017

  34. Luengo, C.: Gaussian filtering with the Image Processing Toolbox. Electronically self-published under www.crisluengo.net/index.php/archives/150; s.l. (2009). Last Accessed 29 June 2017

  35. Meer, P., Georgescu, B.: Edge detection with embedded confidence. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1351–1365 (2001)

    Article  Google Scholar 

  36. Mishra, A., Wong, A., Bizheva, K., Clausi, D.A.: Intra-retinal layer segmentation in optical coherence tomography images. Opt. Express 17(26), 23719–23728 (2009)

    Article  Google Scholar 

  37. Mujat, M., Chan, R.C., Cense, B., Park, B.H., Joo, C., Akkin, T., Chen, T.C., de Boer, J.F.: Retinal nerve fiber layer thickness map determined from optical coherence tomography images. Opt. Express 13(23), 9480–9491 (2005)

    Article  Google Scholar 

  38. Nickla, D.L., Wallman, J.: The multifunctional choroid. Prog. Retin. Eye Res. 29, 144–168 (2010)

    Article  Google Scholar 

  39. Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image Processing and Applications. Springer, Berlin (2000)

    Book  Google Scholar 

  40. Poulain, T., Baber, R., Vogel, M., Pietzner, D., Kirsten, T., Jurkutat, A., Hiemisch, A., Hilbert, A., Kratzsch, J., Thiery, J., Fuchs, M., Hirsch, C., Rauscher, F.G., Löffler, M., Körner, A., Nüchter, M., Kiess, W., the LIFE Child study team: The LIFE Child study: a population-based perinatal and pediatric cohort in Germany. Eur. J. Epidemiol. 32, 145–158 (2017)

  41. Sawatzky, A., Tenbrinck, D., Jiang, X., Burger, M.: A variational framework for region-based segmentation incorporating physical noise models. J. Math. Imaging Vis. 47, 179–209 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Scheibe, P., Lazareva, A., Braumann, U.-D., Reichenbach, A., Wiedemann, P., Francke, M., Rauscher, F.G.: Parametric model for the 3D reconstruction of individual fovea shape from OCT data. Exp. Eye Res. 119, 19–26 (2014)

    Article  Google Scholar 

  43. Scheibe, P., Zocher, M.T., Francke, M., Rauscher, F.G.: Analysis of foveal characteristics and their asymmetries in the normal population. Exp. Eye Res. 148, 1–11 (2016)

    Article  Google Scholar 

  44. Schmitt, J.M.: Optical coherence tomography (OCT): a review. IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999)

    Article  Google Scholar 

  45. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  46. Shi, J., Osher, S.: A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM J. Imag. Sci. 1, 294–321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Simon, L. M.: Lectures on Geometric Measure Theory. Australian National University, Proceedings of the Centre for Mathematical Analysis, Vol. 3 (1983)

  48. Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas-Rachford splitting methods. J. Math. Imaging Vision 36, 168–184 (2010)

  49. Vermeer, K.A., van der Schoot, J., Lemij, H.G., de Boer, J.F.: Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images. Biomed. Opt. Express 2, 1743–1756 (2011)

    Article  Google Scholar 

  50. Wagner, M., Scheibe, P., Francke, M., Zimmerling, B., Frey, K., Vogel, M., Luckhaus, S., Wiedemann, P., Kiess, W., Rauscher, F.G.: Automated detection of the choroid boundary within OCT image data using quadratic measure filters. J. Biomed. Optics 22, 025004-1–025004-22 (2017)

  51. Wakabayashi, T., Oshima, Y., Gomi, F., Tano, Y.: Principles and applications of optical coherence tomography. In: Coscas, G., Coscas, F., Vismara, S., Zourdani, A., Calzi, C .I .L. (eds.) Optical Coherence Tomography in Age-Related Macular Degeneration, pp. 67–84. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  52. Walther, H.: Quadratische Kantenfilter. Diploma thesis. Rheinische Friedrich-Wilhelms-Universität Bonn (1994) (in German)

  53. Walther, H.: Rekonstruktion von Funktionen beschränkter Variation. PhD thesis. Rheinische Friedrich-Wilhelms-Universität Bonn (1997) (in German)

  54. Zhang, L., Lee, K., Niemeijer, M., Mullins, R.F., Sonka, M., Abràmoff, M.D.: Automated segmentation of the choroid from clinical SD-OCT. Invest. Ophthalmol. Vis. Sci. 53, 7510–7519 (2012)

    Article  Google Scholar 

  55. Zhang, L., Buitendijk, G.H., Lee, K., Sonka, M., Springelkamp, H., Hofman, A., Vingerling, J.R., Mullins, R.F., Klaver, C.C., Abràmoff, M.D.: Validity of automated choroidal segmentation in SS-OCT and SD-OCT. Invest. Ophthalmol. Vis. Sci. 56, 3202–3211 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to express sincere thanks to Prof. S. Luckhaus (Leipzig) for bringing to his attention Walther’s theses and pointing out the possible application of quadratic measure filters in ophthalmology. Further, he thanks Prof. W. Kiess (Leipzig) for granting the use of OCT data from the LIFE Child study, Dr. F. Rauscher (Leipzig) and P. Scheibe (Leipzig) for introduction into the medical and technical background of OCT imaging and many helpful discussions, A. X. Bestehorn (Münster), Dr. M. Francke (Leipzig), S. Scheibe (Leipzig), A. Schirmer (Berlin) and B. Zimmerling (Leipzig) for carrying out manual segmentations. The work has been supported by the Max-Planck-Gesellschaft granting a stay at the MPI for Mathematics in the Sciences, Leipzig, in 2015 and 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Wagner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, M. An Application of Quadratic Measure Filters to the Segmentation of Chorio-Retinal OCT Data. J Math Imaging Vis 60, 216–231 (2018). https://doi.org/10.1007/s10851-017-0752-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0752-2

Keywords

Mathematics Subject Classification

Navigation