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Abstract

We propose a novel fingerprint descriptor, namely Möbius moduli,
measuring local deviation of orientation fields (OF) of fingerprints from
conformal fields, and we propose a method to robustly measure them,
based on tetraquadrilaterals to approximate a conformal modulus lo-
cally with one due to a Möbius transformation. Conformal fields arise
by the approximation of fingerprint OFs given by zero pole models,
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which are determined by the singular points and a rotation. This ap-
proximation is very coarse, e.g. for fingerprints with no singular points
(arch type), the zero-pole model’s OF has parallel lines. Quadratic
differential (QD) models, which are obtained from zero-pole models
by adding suitable singularities outside the observation window, ap-
proximate real fingerprints much better. For example, for arch type
fingerprints, parallel lines along the distal joint change slowly into cir-
cular lines around the nail furrow. Still, QD models are not fully
realistic because, for example along the central axis of arch type fin-
gerprints, ridge line curvatures usually first increase and then decrease
again. It is impossible to model this with QDs, which, due to complex
analyticity, also produce conformal fields only. In fact, as one of many
applications of the new descriptor, we show, using histograms of cur-
vature and conformality index (log of the absolute value of the Möbius
modulus), that local deviation from conformality in fingerprints oc-
curs systematically at high curvature which is not reflected by state of
the art fingerprint models as are used, for instance, in the well known
synthetic fingerprint generation tool SFinGe and these differences ro-
bustely discriminate real prints from SFinGe’s synthetic prints.
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conformal modulus, quadratic differentials, zero-pole model, Riemann map-
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1 Introduction

Fingerprints are usually described by features at several levels. At the first
level there is the orientation field, at the second there are minutiae and
ridge frequencies and at the third there are pores etc., for an overview see
for instance Maltoni et al. (2009). In this paper we introduce a new feature
at the second level which has previously not been studied. It is a local
feature of the orientation field and we call it the Möbius modulus. The log
of its absolute value is the conformality index. These terms are motivated
from the theory of complex functions and in particular from the Riemann
mapping theorem.

Informally, our new feature can be understood as follows. Fix two points
p1 and p2 on a common fingerprint ridge, uniformly heat up this ridge seg-
ment and follow the diffusion of heat orthogonal to the orientation field.
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If heat level curves agree with neighboring ridge lines (as in Figure 1), we
say that the field is locally conformal, and indeed, it turns out that fin-
gerprints are locally conformal to large extent. If the ridge lines no longer
agree with heat level curves (as in Figure 2), we say that the field is locally
non-conformal. In this paper we make these concepts precise and propose
a method to locally measure the degree of conformality of fingerprint orien-
tation fields outside neighborhoods of the singular points. At this point we
note that in view of application and audience, we resort to the lean notion
of conformal and non-conformal fields, where in the language of Riemann
surfaces (e.g. Strebel (1984)) we refer to a conformal structure equivalent or
not equivalent to that induced by the conformal structure of the Riemann
sphere.

This new feature, the conformality index, has several applications. In
this paper we show that curvature combined with this new feature is highly
discriminatory for distinguishing real fingerprints from fingerprints synthet-
ically generated by SFinGe1.

There are other applications of Möbius moduli and the conformality in-
dex of which we mention the following. In Huckemann et al. (2008) we have
introduced quadratic differentials as global models for orientation fields of
fingerprints. They are generalizations of zero pole models from Sherlock and
Monro (1993), and such models yield conformal fields, by their very defini-
tion via meromorphic functions. Since orientation fields of real fingerprints
also feature non-conformality, in order to obtain an asymptotically perfectly
fitting orientation field, in the low parameter representation of Gottschlich
et al. (2017), one may precisely feed in the loci of highest deviation from
conformality. This gives a natural low dimensional feature vector, which can
be used for fast indexing. As another application, e.g. to latent fingerprint
matching, knowledge about the joint curvature and conformality index dis-
tribution may be used to enhance the orientation field of bad quality latents
and infer on the orientation field at bad quality or unobserved locations, e.g
Huckemann et al. (2008); Bart̊uněk et al. (2013). Further potential appli-
cations lie in aiding matching and alignment of fingerprints. In conclusion
we remark that correlation between curvature and non-conformality may
add essential understanding to embryonic growth models, e.g. Kücken and
Champod (2013), which are to date not fully satisfactory.

2 Conformal Maps and Quadratic Differentials

The following can be found in any standard textbook on complex analysis,
e.g. Ahlfors (1966), and on quadratic differentials, e.g. Strebel (1984). A
complex mapping x + iy = z 7→ f(z) is conformal if it is partially differen-

1http://biolab.csr.unibo.it/research.asp?organize=Activities&select=&selObj=12&
pathSubj=111%7C%7C12&
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tiable with

f ′(z) =
∂f

∂z
=

1

2

(
∂f(x+ iy)

∂x
− i∂f(x+ iy)

∂y

)
6= 0

and if it satisfies the Cauchy-Riemann differential equations

∂f

∂z̄
=

1

2

(
∂f(x+ iy)

∂x
+ i

∂f(x+ iy)

∂y

)
= 0 .

The Riemann Mapping Theorem asserts that every simply connected
open set G that is a proper subset of the complex plane C can be mapped
conformally onto any open rectangle Rτ = {w ∈ C : 0 < Re(w) < 1, 0 <
Im(w) < τ}. More precisely, for every selection of four distinct points
p1, . . . , p4 ∈ ∂G on the boundary of G in positive cyclic positive order,
there is a unique τ > 0 and a unique conformal map f : G→ Rτ such that

p1 7→ 0, p2 7→ 1, p3 7→ 1 + iτ and p4 7→ iτ . (1)

The simply connected open set G with these four points is a quadrilateral
and τ = τ(G) is its modulus, cf. Figures 1 and 2. In order to obtain the
conformal mapping f we introduce quadratic differentials.

A quadratic differential (QD) σ on a subset D of the Riemann sphere
Ĉ = C ∪ {∞} is a mapping from the tangent bundle TD into Ĉ such that

σ(z, dz) = Q(z) dz2

with a function Q meromorphic in D, i.e. complex analytic except for
possible isolated poles. A trajectory of σ is a curve t 7→ γ(t) on which
σ
(
γ(t), γ̇(t)

)
> 0, on an orthogonal trajectory, σ < 0.

If G is a quadrilateral defined by four boundary points p1, . . . , p4 with
modulus τ , and if σ(z, dz) = Q(z) dz2 is a quadratic differential, with Q
holomorphic in G, and trajectories on the boundary of G between p1 and
p2 as well as between p3 and p4, and with orthogonal trajectories on the
boundary of G between p2 and p3 as well as between p4 and p0, then the
above conformal map f : G → Rτ with boundary correspondence (1) is
given by

f(z) =

∫ z

p1

√
Q(ζ) dζ , (2)

with a suitable branch of the root, cf. Figure 1. This results from the
differential equation

dw2 =
(
df(z)

)2
= Q(z) dz2

and the fact that all vertical lines are trajectories of dw2, and that horizontal
lines are orthogonal trajectories, cf. Figure 1.
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z −→ w

Figure 1: Conformally mapping a quadrilateral with conformal OF from the
z plane (left) onto a rectangle in the w plane (right). Trajectories of dw2 > 0
and their pre-images are depicted by solid lines, orthogonal trajectories by
dashed lines.

Circles and Möbius transformations. A specific class of conformal
mappings is given by Möbius transformation which have the form

z 7→ f(z) =
az + b

cz + d
, (3)

with suitable parameters a, b, c, d ∈ C satisfying ad− bc 6= 0. These map Ĉ
conformally onto itself so that in particular, circles are mapped to circles.
Here, a circle in Ĉ is either a proper circle in C or a straight line which is
then viewed as a circle through z =∞.

In this terminology, the trajectories of dw2 are then circles passing par-
allel through ∞. Also the orthogonal trajectories of dw2 are circles passing
parallel through ∞ but orthogonal to the trajectories.

3 Deviation from Conformality

Definition. Suppose that we are given an orientation field (OF), arising
from a fingerprint, say, in a simply connected domain G. This means that
its singular points are isolated in G and every non-singular point z ∈ G
carries a unique orientation dz2 ∈ C \ {0}. A trajectory of the OF is a
maximal, differentiable curve t 7→ γ(t) = z through non-singular points
such that (γ̇(t)/dz)2 > 0. Similarly, for an orthogonal trajectory we have
(γ̇(t)/dz)2 < 0.

For such OFs in G we say that a quadrilateral Gp1,p2,p3,p4 ⊂ G is a
subquadrilateral if

• its closure comprises non-singular points only,
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Figure 2: Mapping a quadrilateral with a non-conformal OF conformally
onto a rectangle.

• its boundary comprises arcs of trajectories between p1, p2 as well as
between p3, p4 and arcs on orthogonal trajectories between p2, p3 as
well as between p4, p1,

• p1, p2, p3, p4 are in cyclic positive order w.r.t. Gp1,p2,p3,p4 .

Under the mapping f from (2) this subquadrilateral is mapped onto a rect-
angle with suitable modulus τ . As elaborated in the preceding section, if
the OF stems from a QD, under f all trajectories of the OF are mapped to
horizontal lines. If this is not the case, we say that the OF deviates from
conformality, cf. Figure 2.

Measuring. In order to measure deviation from conformality several meth-
ods come to mind. One could measure, say, in the w-plane,

• maximal vertical aberration of trajectory images from horizontal lines,

• or maximal curvature of trajectory images.

These and similar method require in particular the numerical computation
of the integral in (2), a numerically highly challenging problem.

In a first approximation, one might replace the trajectory arcs of the
OF with circular arc segments giving a circular arc rectangle. Then the
integral in (2) could be analytically solved by taking recourse to the circular
version of the Schwarz-Christoffel Formula. This formula, however, as is
well known, is numerically highly unstable, cf. Trefethen (2002).

The Möbius approximation. In a second approximation we replace the
trajectory and orthogonal trajectory arcs on the boundary of Gp1,p2,p3,p4
with specific circular arc segments, mimicking the trajectory and orthogonal
trajectory structure of dw2 as discussed above, such that the corresponding
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circles intersect at a common point in Ĉ where the circles determined by
p1, p2 and p3, p4 are parallel and orthogonal to the circles determined by
p2, p3 and p4, p1, which are also parallel there. Then the conformal mapping
f from (2) is simply a Möbius transformation given by (3). In this case the
modulus of Gp1,p2,p3,p4 is given by the double cross-ratio

τ(Gp1,p2,p3,p4) =
p1 − p2
p1 − p4

p3 − p4
p3 − p2

. (4)

For general subquadrilaterals Gp1,p2,p3,p4 denote the right hand side of (4)
by

M(Gp1,p2,p3,p4) :=
p1 − p2
p1 − p4

p3 − p4
p3 − p2

. (5)

Figure 3 shows the general case of a circular arc rectangle and its Möbius
approximation.

Tetraquadrilaterals and Möbius moduli. In order to propose a simple
measure for the degree of conformality, we subdivide a given subquadrilat-
eral Gp1,p2,p3,p4 of an OF into four smaller subquadrilaterals, determined
by picking an arbitrary but fixed point q0 ∈ Gp1,p2,p3,p4 . Then the OF’s
trajectory through q0 intersects the orthogonal trajectories between p1, p4
in a point q1 and between p2, p3 in a point q3, respectively and the OF’s
orthogonal trajectory through q0 intersects the trajectories between p1, p2
in a point q2 and between p3, p4 in a point q4, respectively, cf. Figure 4. We
call this subdivision into four subquadrilaterals a tetraquadrilateral (TQL)
centered at q0. We apply the Möbius approximation jointly to each of the
four subquadrilaterals, i.e. we assume that all trajectories are on circles that
touch at a common point in Ĉ with tangent orthogonal to the tangent of
the circles on which the orthogonal trajectories lie, that touch at the same
point. Then the cross-ratio of moduli – we take the approximation M given
by (5) – gives rise to the Möbius modulus

M(Gp1,p2,p3,p4 , q0) =
M(Gp1,q2,q0,q1)

M(Gq2,p2,q3,q0)

M(Gq0,q3,p3,q4)

M(Gq1,q0,q4,p4)

=
p1 − q2
q2 − p2

p2 − q3
q3 − p3

p3 − q4
q4 − p4

p4 − q1
q1 − p1

. (6)

This is a complex number that only vanishes in degenerate scenarios which
we have excluded by definition. If the Möbius approximation holds true and
if the OF is conformal, then M(Gp1,p2,p3,p4 , q0) = 1. Otherwise, logM gives
in approximation the deviation from conformality.

Simulations with OFs stemming from QDs show that the Möbius approx-
imation is quite good. In fact, below it serves surprisingly well to identify
areas of deviation from conformality of real and synthetic fingerprints.
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p1 p2

p4

p3

Figure 3: A circular arc rectangle (black) formed by two intersecting lines
and two concentric circles and its Möbius approximation (blue) formed by
two pairs of circles, each pair is tangential at a common point and inter-
secting the other pair orthogonally there. Both circular arc rectangles have
the same vertex points p1, p2, p3, p4 where the corresponding circles intersect
orthogonally.

Visualizing Möbius moduli of tetraquadrilaterals. From equation
(6) we see that the Möbius modulus M = meiφ of a TQL is determined by
the ratios of subsequent boundary segments. The logarithm of its absolute
value, logm, called the conformality index, reflects the ratio of the lengths
and its argument φ reflects the sum and differences of the angles, cf. Figure
5. In the application of this contribution we only consider the conformality
index.
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Figure 4: A tetraquadrilateral obtained from choosing the point q0 within a
subquadrilateral.

Figure 5: Visualizing the Moebius modulus M = meiφ of a TQL. Under
conformality M = 1, if the Möbius approximation is exact. Left: Positive
logm and φ ∈ (−π, 0). Right: Negative logm and φ ∈ (0, π).
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Figure 6: Stepwise building a TQL: First an equal sided cross aligned with the
OF about the central point (grey), then traversing along trajectories (red) and
orthogonal trajectories (light blue), respectively, from the endpoints, until
intersection points are reached. These intersection points, with the crosses
endpoints and the central point give the TQL (dark blue).

4 Estimating Möbius Moduli in Fingerprints

Fingerprint segmentation Thai et al. (2016); Thai and Gottschlich (2016)
into foreground, the region of interest (ROI), and background, as well as
orientation field estimation by a combination of the line sensor Gottschlich
et al. (2009) and gradient based method as described in Gottschlich and
Schönlieb (2012), say, are the first two typical processing steps in finger-
print algorithms. For a given fingerprint image with estimated ROI and
orientation field, in order to define TQLs, we use the curved regions of
Gottschlich (2012): A TQL centered at q0 in the ROI can be obtained as
follows. From q0 traverse the OF in either direction with a fixed length
c = 40 pixels (approximately 3 ridge distances) and the orthogonal OF also
in either direction with same lengths c. This gives the black cross in Figure
6. From the endpoints of that cross, traverse the OF in either direction (red
in Figure 6), or the orthogonal OF in either direction (light blue in Figure
6), respectively, until the corresponding curves meet. The four intersection
points together with the four crosses’ endpoints and q0 form the TQL. We
compute TQLs centered at every pixel locus q0 over the entire ROI.

If in the process of the above routine, trajectories or orthogonal trajecto-
ries leave the ROI, no TQL is computed. Moreover, two problems can occur,
when attempting to determine TQLs close to singular points, and also in
these cases, no TQLs are computed. First, it may happen that orthogonal
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Figure 7: Building a TQL close to a singular point may fail if trajectories
turn away from one another, near a delta (left), or self intersect, near a core
(right).

and non-orthogonal trajectories turn away from one another, and hence,
have no intersection points, as depicted in Figure 7 (left panel). Secondly,
high curvature can lead to self intersecting lines, say, of the central cross in
Figure 7 (right panel), so that no meaningful TQL can be defined.

5 Synthetic Fingerprint Generation

The generation of synthetic fingerprints is of great interest to the biometric
and forensic community. Fingerprint databases are required for evaluat-
ing and comparing the performance of algorithms for minutiae extraction,
fingerprint verification, fingerprint indexing and identification. In the follow-
ing, we focus on artificially generated fingerprint images. A very related but
different topic is fingerprint liveness detection, the discrimination between
images of real, alive fingers and images of spoof fingers made from material
like gelatin, wood glue or silicone (see Gottschlich (2016) for a recent survey
on fingerprint liveness detection).

Major advantages of synthetic fingerprints are given by the fact that
millions of prints can be created at virtually no cost and their generation
is not hindered by national laws and legal constraints concerning data pro-
tection and privacy. However, artificial fingerprints have to be ’realistic’, or
otherwise the validity of results obtained on databases of synthetic prints
can be called into question. In 2014, a study showed that the methods
for fingerprint generation at that time produced prints with an unrealis-
tic minutiae distributions Gottschlich and Huckemann (2014): Distances
between minutiae locations and angles between minutiae directions, sum-
marized in minutiae histograms (MHs) Gottschlich and Huckemann (2014)
for minutiae pairs had been compared by the earth movers’ distance (EMD)
Gottschlich and Schuhmacher (2014).
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Methods for creating artificial fingerprint include SFinGe by Cappelli et
al. Cappelli et al. (2000) and Araque et al. Araque et al. (2002). Both
algorithms utilize a global orientation field model by Vizcaya and Gerhardt
Vizcaya and Gerhardt (1996). Images created by SFinGe are part of the
widely used FVC databases.

While previously minutiae have been used to separate real from synthetic
fingerprints Gottschlich and Huckemann (2014), the experiments and results
described in the next section are based on the orientation field only.

SFinGe has also been used in comparison of fingerprint classification
methods by Galar et al. Galar et al. (2015a,b). Most classification methods
utilize the orientation field, and hence, these results are based on unrealistic
OFs as will be shown in the next section.

Recently, a novel method for fingerprint generation has been proposed
Imdahl et al. (2015) which overcomes the aforementioned problems. The
realistic fingerprint creator (RFC) Imdahl et al. (2015) utilizes orientation
fields from real fingerprints and templates are checked whether they pass
the ’test of realness’ Gottschlich and Huckemann (2014) for minutiae distri-
bution.

6 Discriminating Real from Synthetic Prints by
Histograms of Möbius Moduli and Curvatures

Möbius moduli and curvature Gottschlich (2012) are computed as described
in Section 4. Then a 2D histogram summarizes the joint distribution of cur-
vature and conformality indices (logs of absolute values of Möbius moduli)
for every foreground pixel for which a TQL was computed.

These 2D histograms with 10 bins, and with 20 bins, for each dimension,
are considered as feature vectors with 100 and 400 entries, respectively, and
these feature vectors are used for training by a support vector machine with
a linear kernel (C = 1.0). Experimental results listed in Table 1 have been
obtained using the software package LIBSVM Chang and Lin (2011).

Each FVC database contains images from 110 fingers with 8 impressions
per finger. Each competition in 2000, 2002 and 2004 contains one synthetic
database (DB 4) which we have paired with one real database (DB 1) from
the same year. From 110 available fingers, 60 real and 60 synthetic are
assigned into the training set and the remaining 50 real and 50 synthetic
into the test set.

7 Discussion

In Figure 8 we see that for real fingerprints (top row), extremal conformality
indices (first and last histogram columns) strongly peak at high curvature
(bottom histogram rows), whereas for synthetic prints, these peaks are far
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10 bins, one impression 20 bins, one impression

FVC 2000 2002 2004 2000 2002 2004

Training set 96.7% 98.3% 97.5% 100% 100% 100%
Test set 76% 73% 70% 74% 80% 75%

10 bins, eight impressions 20 bins, eight impressions

FVC 2000 2002 2004 2000 2002 2004

Training 100% 100% 100% 100% 100% 100%
Test set 100% 100% 100% 100% 100% 100%

Table 1: SVM classification accuracy of 2D histograms using 10 (left) and 20
bins (right) for each of the two dimensions, Möbius moduli and curvature.
The results in the upper half summarize histograms per one impression, in
the lower half, histograms per eight impressions.

Figure 8: Averaged histograms of conformality indices (horizontal, zero in
the middle and ±0.33, and beyond, at the ends) vs. curvature (vertical,
zero on top, 2.6, and beyond, at the bottom) for FVC 2000 (left column),
FVC 2002 (middle column) and FVC 2004 (right column). Top row: Real
fingerprints. Bottom row: Synthetic fingerprints.

less pronounced. These systematic differences are also visible in Figure 9.
Upon closer inspection note that high curvature regions form similar clusters
for both types of prints, these clusters, however, split into two extremal
non-conformality clusters, only for real prints, like rabbit ears. These rabbit
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Figure 9: Exemplary fingerprints (top row) with conformality index field
(2nd row), curvature field (3rd row) and joint histograms (bottom row, axes
as in Fig, 8). The left three column are from real fingers, the right three
columns from synthetic prints.

ears indicate that above cores and above and below whorls, real fingerprints
are locally more bent or distorted than as predicted by the corresponding
zero-pole model part in a quadratic differential model. In real prints, high
curvature and extremal non-conformality occur both on the right and left
above cores and above and below whorles. In synthetic prints, high curvature
occurs at similar locations, but extremal non-conformality is usually not
present there.

Results in Table 1 underline the high discriminability which the proposed
2D histogram of curvature and conformality indices provides. Both proposed
features are computed using the estimated orientation field of a fingerprint.
This confirms the conclusion that there are systematic differences between
the orientation fields of real fingerprints and those created from models in the
biometrics literature like the Vizcaya-Gerhardt model Vizcaya and Gerhardt
(1996) used in SFinGe et al. Cappelli et al. (2000). The proposed feature
encodes this systematic difference in a 2D histogram.

Considering the results for 20 bins per dimension and histograms based
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on one impression in Table 1, we observe classification accuracies on the
training set of 100% and accuracies on the test set between 74 and 80%. We
believe that the limiting factor for the accuracy is the very small number of
training examples (60 real and 60 synthetic images) which could be resolved
by larger databases.

Interestingly, histograms which summarize eight instead of just one im-
pression achieve a perfect classification accuracy on both training and test
set despite the small number of training examples. Computing an average
histogram which captures the average joint distribution of curvature and
Möbius moduli over several (eight) impressions seems to be robust under
fluctuations in histograms between different impressions of the same finger.

In conclusion we remark that new algorithms for generating realistic syn-
thetic orientation fields have to be developed. The recently proposed XQD
model Gottschlich et al. (2017) could be used for this purpose, realistically
linking curvature with conformality indeces. Until their arrival, one may
rely on orientation fields from real fingerprints (as implemented by RFC
Imdahl et al. (2015)).
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