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Abstract Automatic estimation of skinning transformations
is a popular way to deform a single reference shape into a
new pose by providing a small number of control parame-
ters. We generalize this approach by efficiently enabling the
use of multiple exemplar shapes. Using a small set of rep-
resentative natural poses, we propose to express an unseen
appearance by a low-dimensional linear subspace, specified
by a redundant dictionary of weighted vertex positions. Min-
imizing a nonlinear functional that regulates the example
manifold, the suggested approach supports local-rigid de-
formations of articulated objects, as well as nearly isometric
embeddings of smooth shapes. A real-time non-rigid defor-
mation system is demonstrated, and a shape completion and
partial registration framework is introduced. These applica-
tions can recover a target pose and implicit inverse kinemat-
ics from a small number of examples and just a few vertex
positions. The result reconstruction is more accurate com-
pared to state-of-the-art reduced deformable models.
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Fig. 1: A shape obtained by blended transformation using ten posi-
tional constraints and four reference shapes.

1 Introduction

The construction of an efficient automatic procedure that de-
forms one shape into another in a natural manner is a fun-
damental and well-studied challenge in computer graphics.
Professional animators design deformable models for manu-
ally editing facial expressions, controlling postures and mus-
cles of shapes, and creating sequences of gestures and mo-
tions of animated objects. Such models also play a key role
in the field of shape analysis. For example, elastic surface
registration techniques try to iteratively warp given shapes
so as to establish an optimal alignment between them.

A major challenge in automatic shape deformation is
preserving the expressiveness of the model while reducing
its complexity. This can be accomplished by exploiting the
potential redundancy in natural motions. For instance, in
non-rigid articulated objects as hands, the bending of a sin-
gle finger mainly influences the movement of nearby skin.
The stiffness of the limbs restricts them to move freely and
therefore the deformation of a shape as a whole can often
be well approximated as a blend of a small number of affine
transformations. One such skeletal deformation technique,
the Linear Blend Skinning (LBS) [31], has been widely adopted
by the gaming and the film industries due to its simplicity
and efficiency.
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More recently, Jacobson et al. [17] suggested to deform
a single shape by looking for transformations that minimize
the nonlinear As-Rigid-As-Possible (ARAP) energy [2,37].
This energy penalizes deviations from rigidity of the un-
derlying structural skeleton. The optimization process al-
ternates between finding the minimal affine transformations
and projecting them onto the group of rigid ones. The algo-
rithm converges after a few iterations and provides realistic
deformations with a low computational effort. The method
was designed for modifying a single reference shape. As
such, it does not effectively incorporate the nature of plau-
sible non-rigid deformations that can be well captured by a
few examples. Therefore, this method requires a manually
tailored pre-computation of biharmonically smooth blend-
ing functions, and relies on an initial pose of the shape that
is usually selected as the previous frame in the motion se-
quence.

In many situations, while analyzing or synthesizing shapes,
neither manual input nor the temporal state of the shape at
the previous frame is available. In these circumstances, ob-
taining a natural initial pose for the nonlinear optimization
procedure becomes a challenge. Nevertheless, in many of
these events, static poses of the same shape might be avail-
able, such as in [6] where several human bodies in vari-
ous postures were captured and reconstructed using range
scanners. In this paper, we present an efficient generaliza-
tion of the LBS model for the case where multiple exem-
plar shapes are available. To that end, the proposed frame-
work uses the reference shapes to infer an expressive yet low
dimensional model, which is computationally efficient and
produces natural looking poses. The proposed method con-
structs a dictionary that contains prototype signal-atoms of
weighted vertex coordinates, that effectively span the space
of deformations represented by the exemplar shapes. We re-
fer to [13], for applications of overcomplete dictionaries for
sparse and redundant data representations in other domains.

The proposed algorithm is mainly motivated by the non-
rigid 3D partial registration problem. This problem is con-
sidered a key challenge in the field of shape analysis. One of
the most efficient approaches to solve this challenge is using
deformation-driven correspondences [45]. A good deforma-
tion method for this purpose should efficiently produce plau-
sible deformations that fits some known constraints. In our
setting we use several example shapes and a few known ver-
tex positions. Although some example-based methods pro-
duce excellent deformations, in this context of partial reg-
istration, they usually carry three major drawbacks. First,
most of these methods have high complexity. Second, they
depend strongly on a good initial shape alignment. Third,
they require many examples for constructing a model which
plausibly captures various poses. The proposed method tries
to overcome these difficulties by using a redundant dictio-
nary that spans a linear deformation subspace. The advan-

tages of using a linear subspace are evident. Acceleration in
this case is well established using the ARAP energy func-
tional. Additionally, well known regularization techniques,
such as L1 and L2 penalty terms, can easily be deployed
in conjunction with the linear model to find a robust sparse
representation for the initial shape alignment. Moreover, the
simplicity and flexibility of using the linear representation
enables the proposed algorithm to refine this initial shape
deformation by gradually expanding the deformation space
while simultaneously introducing more accurate model con-
straints.

The key contributions of the proposed approach include
the following features.

– Given a few reference shapes, we construct a redundant,
yet compact, dictionary of weighted positional-atoms that
spans a rich space of deformations. A new deformation
is represented as a linear combination of these atom-
signals.

– Stable transformations are established by using sparse
modeling over a limited subspace of deformations. The
suggested framework ensures the use of only a few dic-
tionary atoms relating a few given poses to a target one.

– The As-Rigid-As-Possible energy is reformulated to sup-
port multiple reference shapes and automatic global scale
detection.

– Smooth deformations are realized by an additional bi-
harmonic energy term that is computationally efficient
to minimize when the skinning weights are set to be the
eigenfunctions of the Laplace-Beltrami operator.

To demonstrate the fast blended transformations approach,
animation sequences were generated given just a few refer-
ence shapes and a handful of point constraints that define
each target frame. Quantitative evaluation indicates that the
advantages of the proposed approach are fully realized when
plugged into a shape completion and registration applica-
tion that achieves low correspondence errors and deforma-
tion distortions.

2 Related efforts

Example-based deformation techniques attempt to establish
a compact representation of shape deformations while try-
ing to satisfy desirable properties. Forming these represen-
tations generally requires the processing of sets of poses,
expressions, or identities of the same class of shapes. To ful-
fill this task, various methods have been proposed. Roughly
speaking, they all share the following taxonomy.

Displacement field interpolation. This technique com-
putes the pointwise difference between each example shape
and a reference one at a resting pose, see for example [27,
36,24]. More recent methods include statistical [14] and ro-
tational regressions [41].
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Deformation gradient. These methods interpolate the
example poses using the gradient fields of the coordinate
functions, and construct the deformed surface by solving a
Poisson equation. In [44,39] the deformation is estimated
for each triangle of the given mesh. Example based defor-
mation gradients and its variants, like the Green strain ten-
sor, are also used for static or dynamic simulation of elastic
materials [32,23,7,35,46]. For lowering the computational
cost, Der et al. [11] proposed to cluster triangles that are
subject to a similar rigid rotation with respect to a single ref-
erence shape. It allowed reformulating the problem in terms
of transformations of a representative proxy point for each
group of vertices.

Edge lengths and dihedral angles interpolation. In-
spired by discrete shells [16], local properties were used
for mesh interpolation [43], that naturally fits with the dis-
crete shell energy for combined physics-based and example-
driven mesh deformations [15].

Transformation blending. This approach describes the
deformation by a set of affine transformations that are blended
together to represent the deformed shape. In this case, the
example shapes are used to find the skinning weights as well
as the transformations by using non-linear optimization al-
gorithms [19,21,25,26].

Linear subspace. Similar in its spirit to the proposed
approach is Tycowicz et al. [40]. Their method computes
an example-based reduced linear model for representing the
high dimensional shape space using deformation energy deriva-
tives and Krylov sequences. However, their framework and
reduced linear subspace are specifically designed and re-
stricted to the nonlinear shape interpolation problem.

The fast blended transformations method is affiliated with
the class of transformation blending inspired by [17,42].
The deformation is performed by minimizing a nonlinear
energy functional over the linear subspace of skinning trans-
formations. Unlike previous efforts, we suggest to simulta-
neously blend affine transformations of several given poses
of the same subject. The proposed framework allows us to
learn the example manifold without estimating the explicit
connections between the reference shapes. With these refer-
ence shapes, we construct an overcomplete dictionary that
spans the space of allowed deformations up to a small tol-
erance. The nonlinear energy functional guides the transfor-
mations to achieve a physically-plausible deformation. Pro-
jecting a small set of constraints to the examples manifold,
which is assumed to be of low dimensions, we obtain an
efficient and accurate blending procedure for real time ani-
mation and for the partial shape registration task.

3 Notations and problem formulation

3.1 Linear blend skinning

Here, we follow the blend skinning model as described by
Jacobson et al. in [17]. Let v1, . . . ,vn ∈ Rd (d = 3) be
the vertex positions of the input reference meshM with f
triangles and n vertices. Denote the deformed vertex posi-
tions of a new target mesh M̃ by ṽ1, . . . , ṽn ∈ Rd. The
target vertex positions relate to the given reference vertices
through m affine transformation matrices Mj ∈ Rd×(d+1),
j = {1, . . . ,m} and real-valued skinning weight functions
wj , that measure the influence of each affine transformation
on each point of the shape. For a discrete mesh, we denote
wj(vi) by wj,i, and readily have

ṽi =

m∑
j=1

wj,iMj

(
vi

1

)
. (1)

Equation (1) can be rewritten in a matrix form as

Ṽ =DLBSTLBS,

where Ṽ ∈ Rn×d is the matrix whose rows are the positions
of the target vertices, and the matrices TLBS ∈ R(d+1)m×d

and DLBS ∈ Rn×(d+1)m are created by stacking the skinning
parameters in the following fashion

DLBS =

w1,1

(
vT
1 , 1
)
. . . wm,1

(
vT
1 , 1
)

...
. . .

...
w1,n

(
vT
n , 1
)
. . . wm,n

(
vT
n , 1
)
 ,

TLBS =
(
M1 . . . Mm

)T
.

3.2 Fast automatic skinning transformations

The most general form of representing the position of a new
target vertex by a linear transformation of some dictionary
(such as the linear blend skinning formulation) can be ex-
pressed by

Ṽ =DT,

where D ∈ Rn×b is a dictionary of size b (in case of stan-
dard linear blend skinning b = (d+ 1)m), and T ∈ Rb×d is
a matrix of unknown coefficients that represents the vertex
positions in terms of the dictionary.

Jacobson et al. [17] introduced a method for automati-
cally finding the skinning transformations T by minimizing
the ARAP energy [37,30,10] between the reference shape
M and the target one M̃. Let R1,R2, . . . ,Rr ∈ SO(d) and
E1, E2, . . . , Er be r local rotations and their corresponding
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edge sets, respectively. The ARAP energy, which measures
local deviation from rigidity, can be expressed as

E(V, Ṽ) =
1

2

r∑
k=1

∑
(i,j)∈Ek

cijk‖(ṽi − ṽj)−Rk(vi − vj)‖2,

where cijk ∈ R are the cotangent weighting coefficients
[34]. As indicated in [17], it is unnecessary to estimate the
local rotation for each edge separately since vertices under-
going similar deformations can be clustered together into a
small number of rotation clusters.

The ARAP energy can be expressed in a simple matrix
form. Denote Ak ∈ Rn×|Ek| as the directed incidence ma-
trix corresponding to edges Ek, and let Ck ∈ R|Ek|×|Ek| be a
diagonal matrix with weights cijk. Then, the ARAP energy
can be written in matrix form as

2E(V, Ṽ) = tr(ṼTLṼ)− 2 tr(RKṼ) + tr(VTLV),

where R = (R1, . . . ,Rr), K ∈ Rdr×n stacks the matri-
ces VTAkCkAT

k , and L ∈ Rn×n is the cotangent-weights
Laplacian up to a constant scale factor. Plugging in the linear
blend skinning formula Ṽ = DT we obtain

2E(V, Ṽ) = tr(TTL̃T)− 2 tr(RK̃T) + tr(VTLV), (2)

where L̃ = DTLD and K̃ = KD. For more details about
the above derivation, we refer the reader to [17].

4 Example-based blended transformations

Overview. We now extend the framework described in the
previous section for the case where multiple poses of the
same shape are available. We begin by expressing the de-
formed shape as a combination of atoms from a dictionary
that is constructed from the linear blend skinning matrices
of the given examples. Then, we provide the details of var-
ious energy terms to be minimized with respect to the un-
known transformations T using the proposed model. Next,
we describe the nonlinear optimization process and its ini-
tialization, and conclude by discussing optional extensions
that can be incorporated into the algorithm.

4.1 Dictionary Construction

Suppose we are given q reference meshesM1,M2, . . . ,Mq .
Let v`

1, . . . ,v
`
n ∈ Rd be the positions of vertices belonging

to the reference mesh M`, ` = 1, . . . , q, and let V1,V2,

. . . ,Vq ∈ Rn×d be the matrices whose rows denote the po-
sitions of the corresponding vertices. We are also given some
h linear constraints represented by the matrix H ∈ Rh×n,
such that HṼ ≈ Y, where Y ∈ Rh×d is the value of these
constraints for the target shape. We can define the linear con-
straints to be simply the coordinates of points on the mesh

or use more refined measures such as the Laplacian coor-
dinates [1,29], or a weighted average of some vertex posi-
tions, to constrain our non-rigid blended shape deformation.
Using this setup, we are interested in finding the positions
of the target vertices as a result of a smooth transformation
of the input meshes such that it approximately preserves lo-
cal rigidity and satisfies the linear constraints up to a small
error.

Example-based dictionary. Givenm real-valued weight func-

tions wj , j = 1, . . . ,m, we propose the example-based rep-
resentation of the positions of the target vertices to be a com-
bination of the linear blend skinning deformations of each
given reference mesh

ṽi =

q∑
`=1

ṽ`
i ,

where

ṽ`
i =

m∑
j=1

wj,iM
`
j

(
v`
i

1

)
. (3)

We can explicitly write the new vertex positions as

ṽi =

q∑
`=1

m∑
j=1

wj,iM
`
j

(
v`
i

1

)

=

q∑
`=1

m∑
j=1

wj,iM̂
`
jv

`
i +

m∑
j=1

q∑
`=1

wj,iM̄
`
j , (4)

where M̂`
j ∈ Rd×d and M̄`

j ∈ Rd×1 are sub-matrices of

M`
j , such that M`

j =
(
M̂`

j , M̄`
j

)
. This formula can be

equivalently expressed in the standard matrix form by

Ṽ =DT,

where D ∈ Rn×(1+qd)m is the proposed dictionary of size
b = (1 + qd)m, that multiplies the examples’ vertex posi-
tions v`

i with the vertex weightswj(vi), and T ∈ R(1+qd)m×d

stacks the matrices M̂m
j and M̄m

j in the following way

D =
(
D̄, D̂1 . . . D̂q

)
,

T =
(
T̄T, T̂T

1 . . . T̂T
q

)T
,

where

D̂` =


w1,1v

`
1
T
. . . wm,1v

`
1
T

...
. . .

...
w1,nv`

n
T
. . . wm,nv`

n
T

 ,

T̂` =
(
M̂`

1 . . . M̂`
m

)T
,
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Fig. 2: Deformation using the example-based LBO dictionary. The left portion of the figure shows the cat and centaur ground-truth target shapes
(colored in gray). On the right we show the near perfect representation of these target shapes by a linear combination of the dictionary’s atoms.
In this case, the weighting functions are the eigenfunctions of the Laplace-Beltrami operator that correspond to the lowest 15 eigenvalues. The
exemplar shapes that are used to extract the example-based LBO dictionaries for representing the shapes are shown inside the box.

and

D̄ =

w1,1 . . . wm,1

...
. . .

...
w1,n . . . wm,n

 ,

T̄ =

(
q∑̀
=1

M̄`
1 . . .

q∑̀
=1

M̄`
m

)T

.

Weighting functions. There are many ways to choose weight-
ing functions. One is to consider the weights of bones like
in the standard linear blend skinning model. In that case,
we name the constructed dictionary as the example-based
skeleton dictionary. When there is no significant underly-
ing skeletal structure, we suggest to use the first m eigen-
functions of the Laplace-Beltrami operator (LBO) [12,8].
This choice of a dictionary is useful, for example, when
handling facial expressions, for analyzing internal organs
in volumetric medical imaging applications, or for deform-
ing non-rigid objects such as an octopus. The eigendecom-
position of the LBO consists of non-negative eigenvalues
0 = λ0 < λ1 < · · · < λi < . . . , with corresponding eigen-
functions Φ ≡ {φ0, φ1, . . . , φi, . . . }, that can be considered
as an orthonormal basis. We refer to this dictionary as the
example-based LBO dictionary.

4.2 Nonlinear Energy Terms

Linear constraints. The energy of the h linear constraints

can be calculated by

2Elc(Ṽ) =
∥∥∥HṼ −Y

∥∥∥2
2
= ‖HDT−Y‖22 = ‖XT−Y‖22

=tr (TTXTXT)− 2 tr (YTXT) + tr (YTY),

(5)

where X = HD.

Smoothness energy. Let vi,k, k ∈ {1, . . . , d} be the kth co-
ordinate of the vertex position vi. Notice from Equation (4),
that the amount of influence of v`

i,k on ṽi,k̃ is some linear
combination of wj(vi), j = 1, . . . ,m. Following the same
reasoning as in [18], we search for a smooth variation of this
influence, for example, one that minimizes the Laplacian en-

ergy
1

2

∫
M∆(·)2da of this linear combination, where da is

an area element on the surfaceM of our shape. For the spe-
cial case where the weights are the LBO eigenfunctions, the
sum of all smoothness energy terms can be expressed as

Esm =
1

2
tr(TTΛT), (6)

where Λ is a diagonal matrix. The values of the diagonal are
the squares of the eigenvalues of the respective eignefunc-
tions. Thus, in this case, the smoothness energy amounts
to a simple quadratic regularization term. Note, that when
the weighting functions are chosen in a different way, the
smoothness energy expression is a bit more involved.

Scaling. In some applications, there is a scale difference
between the example shapes and the linear constraints. To
compensate for such a discrepancy, we introduce a scaling
factor α into the ARAP energy. It reflects the ratio between
the reference shape and the deformed one, in the following
manner,

Esc(V, Ṽ) =
1

2

r∑
k=1

∑
(i,j)∈Ek

cijk ‖(ṽi − ṽj)− αRk(vi − vj)‖2 .

(7)

Hence, the ARAP energy with the global scale factor reads

2Esc(V, Ṽ) = tr(TTL̃T)− 2α tr(RK̃T) + α2 tr(VTLV).

(8)

Average ARAP energy. One way to define an example-
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based energy functional is by taking the average between
all as-rigid-as-possible energies, namely,

Eav =
1

q

q∑
`=1

Esc(V`, Ṽ), (9)

with the additional linear constraints and the smoothness en-
ergies,

Etotal(Ṽ) =Eav(Ṽ) + βlcElc(Ṽ) + βsmEsm(Ṽ), (10)

where βlc, βsm, are some tuning parameters that control the
importance of the linear constraints and the smoothness term.
We can simplify this expression, plugging in Equations (6),
(5) and (8)

2Etotal(Ṽ) = tr(TTL̃T)

−
1

q

q∑
`=1

(2α tr(R`K̃`T) + α2 tr(VT
` LV`))

+ βlc tr (T
TXTXT)− 2βlc tr (Y

TXT)

+ βlc tr (Y
TY) + βsm tr(TTΛT). (11)

Minimal ARAP energy. Another way to define an example-

based energy functional is to find the minimal ARAP energy
between the deformed mesh and each of the input meshes
separately,

Emn(Ṽ) =min
`
E`(Ṽ,T`), (12)

where

E`(Ṽ,T`) =Esc(V`, Ṽ) + βlcElc(Ṽ) + βsmEsm(Ṽ). (13)

This can be expressed as

2E`(Ṽ,T`) = tr(TT
` L̃T`)− 2α` tr(R`K̃`T`)

+ α2
` tr(V

T
` LV`) + βlc tr (T

T
` XTXT`)

− 2βlc tr (Y
TXT`) + βlc tr (Y

TY)

+ βsm tr(TT
` ΛT`). (14)

4.3 Optimization

To minimize the energyEtotal(Ṽ) and find the local rotations
R`, ` = 1, . . . , q, the global scale factor α and the trans-
formations T, we follow the local-global approach of [37]
with an additional step to find the global scale α. First we fix
Tand α and solve for R` (local step). Then, we find α by fix-
ing T, R` (scale step). Finally, we fix R` and α, and solve
for T (global step). Local step. For fixed α and T, maximiz-

ing tr(R`S`), ` = 1, . . . , q, where S` = K̃`T` is constant,

amounts to maximizing tr (R`,kS`,k), k = 1, . . . , r, which
is obtained by taking R`,k = ΨT

`,kΦT
`,k, where

S`,k = Φ`,kΣ`,kΨ`,k

is given by the singular value decomposition of S`,k.

Scale step. For fixed T and R`, ` = 1, . . . , q, we can
differentiate by α

∂Etotal

∂α
=− 1

q

q∑
`=1

(tr(R`K̃`T)) + α tr(VT
` LV`). (15)

Setting the derivative to zero, we get

α =
1

q

q∑
`=1

(tr(R`K̃`T))/ tr(VT
` LV`). (16)

Global step. For fixed α and R`, ` = 1, . . . , q, we dif-
ferentiate Etotal

∂Etotal

∂T
=
1

q

q∑
`=1

(L̃T− αK̃T
` RT

` )

+ βlc(X
TXT−XTY) + βsmΛT

=(L̃ + βlcX
TX + βsmΛ)T− βlcX

TY

− α

q

q∑
`=1

K̃T
` RT

` . (17)

Setting these derivatives to zero, we obtain

(L̃ + βlcX
TX + βsmΛ)T = βlcX

TY +
α

q

q∑
`=1

K̃T
` RT

` .

(18)

Let us define Γ = (L̃ + βlcX
TX + βsmΛ). Then, we can

solve for T by precomputing the Cholesky factorization of
Γ

T =Γ−1
(
βlcX

TY +
α

q

q∑
`=1

K̃T
` RT

`

)
. (19)

As for optimizing the minimal ARAP energy Emn(Ṽ),
in the local step we find each set of rotations R` by max-
imizing tr(R`S`), where S` = K̃`T`. We then find the
global scale factor relative to each reference shape

α` =tr(R`K̃`T`)/ tr(V
T
` LV`).

In the global step we calculate the respective blended trans-
formations T`, by

T` =Γ−1
(
βlcX

TY + α`K̃
T
` RT

`

)
.

Then, we calculate the minimal energyE`(Ṽ,T`), ` = 1, . . . , q

of Equation (13).

Initial transformations. In the first global step, there are no
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Fig. 3: Automatic feature point correspondence and shape interpolation. The four examples of a horse (top middle) and the two sets of vertex
positions (top left, top right) were used to generate a sequence of frames. Correspondence of the points on the four legs (circled in blue) was
detected by minimizing the example-based deformation energy for all permissible correspondences. The example-based deformations (bottom left
and right) were then interpolated at four times the original frame rate to produce the movie sequence (bottom).

rotation matrices that can be used. Hence, the energy that we
need to minimize is

2Einit(Ṽ) =βlc ‖XT−Y‖2 + βsmTTΛT

=βlc tr(T
TXTXT)− 2βlc tr(Y

TXT)

+ βlc tr(Y
TY) + βsm tr(TTΛT). (20)

We readily have,

∂Einit

∂T
=βlc(X

TXT−XTY) + βsmΛT

=(βlcX
TX + βsmΛ)T− βlcX

TY. (21)

Setting these derivatives to zero, we obtain

T =(βlcX
TX + βsmΛ)−1(βlcX

TY). (22)

Sparse initial transformations. A more robust initial trans-
formation can be achieved by adding an L1 penalty to the
energy given in Equation (20)

Esp(Ṽ) = Einit(Ṽ) + βsp ‖T‖L1
. (23)

The effect of this additional penalty is that it makes the ini-
tial transformations sparse, which results in a deformation
with less artifacts. The parameter βsp controls the amount
of sparsity in the initial solution of T. Equation (23) can
be solved efficiently using the elastic net regression method
[47].

4.4 Extensions

Updating constraints. It may happen that some of the h
linear constraints are unavailable due to noise or occlusions.
This can be easily solved by deleting the appropriate rows
of X and Y and efficiently updating the Cholesky factoriza-
tion.

Dictionary reduction. When the input meshes are similar to
each other, the proposed example-based dictionary becomes
redundant. The dictionary can be reduced considerably by
clustering similar dictionary atoms. For this purpose, we use
the k-medoids clustering algorithm [20]. The advantage of
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k-medoids over k-means clustering is that each cluster cen-
ter of the k-medoids procedure is represented by one of the
original dictionary atoms. This makes the appearance of the
deformed shape more plausible compared to using k-means
clustering for dimensionality reduction.

Change of dictionaries. It is sometimes useful to work with
two different dictionaries. In that case, the representations
of the mesh in these two subspaces can be converted from
one to the other in a simple way. Suppose we are given the
dictionaries D1, D2 and a good approximation of the trans-
formation T1. Then, the transformation T2 can be set to

T2 =(DT
2 D2)

−1DT
1 T1. (24)

This is particularly useful when one wants to initialize the
transformations using a low dimensional dictionary by ap-
plying Equation (23), and then change to a richer dictionary
for obtaining more refined transformations.

Fig. 4: The four dog shapes are used as examples for our method (left).
The deformed shape (right) is found from the vertex positions (middle).
In this case the deformed shape is 50% larger than the reference ones.

Fig. 5: Example-based deformed shapes from few vertex positions of
a hand shape.

Table 1: Model parameters and performance (in millisec-
onds).

Input mesh Model Performance
class n f r b q 1-iter full

woman 45659 91208 30 178 5 1.3 16.7
centaur 15768 31532 31 166 5 1.2 16.3

wolf 4344 8684 14 82 2 0.7 10.3
dog 25290 50528 25 136 4 1.0 13.9
man 52565 105028 31 235 9 1.9 23.2
cat 27894 55712 22 148 6 1.2 15.3

hand 2224 4424 18 163 7 1.2 15.5
horse 16843 8431 26 139 4 1.1 14.7

5 Experimental results

Table 2: Example-based dictionary. Maximal relative distor-
tion (in percent) of the deformed shapes.

dict. example-based example-based one
q size LBO dict. skeleton dict. example

1 94 2.18 3.59 2.39
2 139 1.97 2.50 2.10
3 184 1.82 2.16 1.95
4 218 1.72 1.89 1.88
5 258 1.63 1.78 1.83
6 293 1.56 1.68 1.77
7 339 1.52 1.60 1.71
8 382 1.51 1.50 1.65

Implementation Considerations. In our implementation we
use m ≤ 15 eigenfunctions as the weighting functions for
the example-based LBO dictionary. To support natural artic-
ulated shapes deformation, we construct the example-based
skeleton dictionary. Its weights are generated using an auto-
matic example-based skinning software package [25]. These
skeleton weights are also used to define the rotation clusters.
After constructing the dictionary from our mesh examples,
we decrease the size of the dictionary using the k-medoids
clustering algorithm. This step typically reduces the size of
the dictionary in half.

The transformations are found in several steps. We be-
gin by estimating the sparse initial transformations using
Equation (23). Typically, we start with m ≤ 4 eigenfunc-
tions as the weighting functions. Then, we apply a two stage
optimization procedure. In the first step we minimize the
average ARAP energy of Equation (11). This energy, al-
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Fig. 6: Nonrigid ICP. Left to right: The three exemplar shapes, the uncorrupted and complete target shape, the acquired partial shape with eight
known feature points (marked as red dots), the initial deformation using the feature points and the final deformation after applying the nonrigid
ICP.

though robust, tends to smooth out some of the details of the
shape. Therefore, in the second step we optimize the mini-
mal ARAP energy of Equation (12), that effectively selects
one example pose which seems to be closest to the target
pose. After a few iterations, we apply Equation (24), and
change to a richer dictionary that can reflect finer details of
the shape. We construct this richer dictionary according to
the properties of the subject we want to deform. For artic-
ulated shapes, we use the example-based skeleton dictio-
nary. For non-articulated objects, we increase the number
of eigenfunctions used to construct the example-based LBO
dictionary.

The algorithm was implemented in MATLAB with some
optimizations in C++. We use the SVD routines provided by
McAdams et al. [33]. All the experiments were executed on
a 3.00 GHz Intel Core i7 machine with 32GB RAM. In Table
1 we give the settings for different mesh classes [9,38] and
typical performance of the algorithm. For these settings the
algorithm takes between 10 and 25 milliseconds.

Example-based dictionary. The example-based dictionary
spans natural deformations of a given shape with a small er-
ror. In Figure 2 we show some examples of deformations
created using the example-based LBO dictionary with 15

eigenfunctions. The mesh parameters and number of exam-
ple shapes used is as in Table 1. Observe, that there are no
noticeable artifacts in these deformations.

We note that the experiments indicate that the accuracy
of the proposed model increases with the number of exam-
ple shapes. For each shape in the database [5], we found
the closest deformed shape in the L2 sense. We calculated
the maximal Euclidean distortion between the deformed and
the original shape and normalized it by the square root of the
original shape’s area. Then, we average this maximal distor-
tion for all shapes. We notice, that the maximal distortion
decreases as the number of example shapes grows. We also
compare the example-based LBO and the skeleton dictionar-

ies. Although quantitatively, the example-based LBO dictio-
nary seems to perform better, our experience suggests that
for shapes that have a well-defined skeleton, the example-
based skeleton dictionary is more pleasing to the eye, as it
captures the stiffness of the bones. Another conclusion is
that using many examples improves the deformation accu-
racy. This can be seen by calculating the distortion of the
deformed shape when the example-based LBO dictionary is
constructed using one shape only, while keeping the num-
ber of dictionary atoms the same and without applying the
dictionary reduction step. Table 2 summarizes the results.

Example-based deformation from few vertex positions.
Perhaps, the most powerful application of our example-based
framework is finding a naturally deformed shape from just
a couple of vertex positions. In this scenario, we are given
the positions of just a few points of a single depth image of
a target shape. Given prior example shapes in different pos-
tures, we are able to faithfully and reliably reconstruct the
target shape. In Figures 4 and 5, we show reconstructed dog
and hand, shapes from a small number of feature points. In
these examples, the feature points were sampled in a scale
different than that of the example-shapes by a factor of 1.5
(dog), and 0.7 (hand).

Automatic feature point correspondence. The example-
based deformation energy can be used to find correspon-
dence between the example shapes and the given feature
points [45]. Because our method does not rely on good ini-
tialization nor on many input points, it is ideal for such a
purpose. For example, in Figure 3, we are given four refer-
ence shapes and eight feature points. In this demonstration,
the correspondences of the four feature points that belong to
each leg (circled in blue) are difficult to find. We can resolve
this ambiguity by running our optimization algorithm for all
24 options of permissible correspondences, and calculate the
example based energy of Equation (12) for each. Then, the
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Fig. 7: Evaluation of the shape completion and registration procedure applied to shapes from the TOSCA database.

correspondence can be found by choosing the option that
gave the minimal deformation energy.

Shape interpolation. A nice application that can easily be
performed, is to interpolate between two deformed shapes.
In our setting, we are given two instances of positional con-
straints. From these constraints we find two deformed shapes
and their rotations. Then, we are able to interpolate between
these rotations. To produce the new transformations, we ap-
ply one additional global-step. Figure 3 demonstrates an in-
terpolation between two deformed shapes of a galloping horse.
Four example meshes are used as an input. In the supple-
mentary material we add a video of a galloping horse recon-
structed from few feature points. The video frames are in-
terpolated by a factor of eight. Based on the proposed ideas,
we developed a computer program that automatically finds
a natural deformed shape from a user’s specified vertex lo-
cations and interpolates between the start pose and the final
deformation of the shape, creating a smooth and intuitive
motion of the shape. We provide a video that shows how
this software is used to make an animation sequence of a
moving person.

Nonrigid ICP. The blended transformations can be plugged
into a simple nonrigid ICP framework [3,4,28]. Nonrigid
ICP registration alternates between finding pointwise corre-
spondences and deforming one shape to best fit the other.
Hence, we propose the following strategy. To find corre-
spondences compare the vertex positions of all points and
their surface normal vectors. In each iteration, we set new
linear constraints according to the vertex positions of the ob-
tained point-to-point correspondences, and apply our blended
transformations method to wrap the nonrigid shapes while
keeping the deformed shape inside the example manifold.
We note that because the representation space is defined by
the blended transformations it is suffice to match only a sub-
set of points on the two shapes.

Shape completion and registration. In many depth data ac-
quisition scenarios, the acquired data consists of an incom-
plete, occluded and disconnected parts of a shape. Given
some known feature points in those parts of the shape, we
want to find the deformation that best fits the partial data
and detect the pointwise mapping between acquired partial
shape and the reference shapes. To this end, we propose a
two step procedure. In the first step, the feature points are
used to find an initial deformation. In the second step, the de-
formation is refined by applying a nonrigid ICP procedure.
Since our deformation technique is able to find a good ap-
proximation from just a few vertex positions it is ideal to be
plugged into this procedure. Figure 6 shows an example of
partial data of a cat shape (middle) with some known feature
points (marked in red). The initial deformation was found
by applying the proposed Fast Blended Transformation al-
gorithm using the known feature points (second from left).
The final deformation was attained by applying the nonrigid
ICP algorithm in conjunction with our blended transforma-
tions approach (left). Notice that the nonrigid ICP algorithm
corrected the tilt of the cat’s head.

We tested the proposed shape completion and registra-
tion procedure on shapes represented by triangulated meshes
from the TOSCA database [9]. We performed 50 random ex-
periments with different example and target shapes. For each
experiment, we were given eight reference shapes and one
target shape for which some of its vertices were removed.
We assume that the remaining shape includes some prede-
fined parts that amount to more than 50% of the shape’s area.
We farther assume that in these parts there are a number of
identifiable feature points and that around each feature point,
within a certain geodesic circle, no vertices were removed.
In the test we performed the number of feature points was
set to eight and the radius of the geodesic circle about each
point was 15% of the square-root of the shape’s area.

We studied the performance of our approach with dif-
ferent number of example shapes. In our implementation,
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we set the initial linear constraints to be the weighted av-
erage of the vertex positions in 10 different geodesic cir-
cles around each feature point. The weights of each vertex
were proportional to its voronoi area. Using these linear con-
straints, we found an initial guess of the deformation. Then,
we employed the nonrigid ICP algorithm for the rest of the
mesh. We also compared our results with the ones obtained
by plugging in the deformation method proposed by Der et
al. [11] into our shape completion procedure, using the same
skeleton structure. This method applies an example-based
deformation gradient model on the problem, and is compu-
tationally comparable to the proposed fast blended transfor-
mations algorithm. To achieve better results, we used a mod-
ified version of the deformation gradient model that supports
soft constraints. For leveling the playing field, the automatic
skeleton structure was found in the same way for all meth-
ods [25].

Figure 7 (left) compares the accuracy of the achieved de-
formations. The distortion curves describe the percentage of
surface points falling within a relative distance from the tar-
get mesh. For each shape, the Euclidean distance is normal-
ized by the square root of the shape’s area. As for the partial
registration, the distortion curves shown in Figure 7 (right)
describe the percentage of correspondences that fall within a
relative Euclidean distance from what is assumed to be their
true locations, similar to the protocol of [22]. We see, that
both the deformation quality and the correspondence accu-
racy increase with the number of reference shapes. This is
expected, since as more example poses are introduced, the
example-based dictionary better spans the space of natural
deformations and we have more poses to compare against.
We also notice that for these experiments, our deformation
approach (even with one reference shape as in [17]) signif-
icantly outperforms the inverse kinematics method of Der
et al. [11]. This can be explained by the fact that the re-
duced deformable model of Der et al. is based on explicit
interpolation between the reference poses using deformation
gradients. Apparently, this model needs a large number of
reference poses to cover all the allowed isometric transfor-
mations. In contrast, our model implicitly finds the example
manifold by a linear combination of the dictionary atoms
and the ARAP energy. Hence, it needs far fewer examples.

(A) (B) (C)

(A) (B) (C)

Fig. 8: Deformed shapes constructed by omitting some of the steps in
the proposed example-based framework.

(A) Restricting the example-based dictionary to use one example.
(B) Comparing the deformed shape to only one reference shape.
(C) Skipping the scale-step, by setting α = 1.
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Table 3: List of Mathematical Symbols

Symbol Description

M, M̃ reference and deformed meshes

d dimension of the shape

n number of vertices

f number of faces

m number of blending weight functions

q number of example shapes

r number of rotation clusters

v`
i ith vertex of the `th shape

wj,i jth blending weight function at the ith vertex

φj jth eigenfunction of the Laplace-Beltrami operator

λj jth eigenvalue of the Laplace-Beltrami operator

M`
j jth transformation of the `th shape

V,Ṽ set of reference and deformed vertices

D example-based dictionary

T transformation matrix

R`
k kth rotation of the `th shape

Ek set of vertices of the kth rotation cluster

cijk cotangent weight of the edge (i, j) in the

kth rotation cluster

H constraint sampling matrix

Y constraint matrix

Λ diagonal eigenvalue matrix

Esm smoothness term

Elc linear constraint term

Esc scaled as-rigid-as-possible term

Eav averaged as-rigid-as-possible term

βlc linear constraint weight

βsm smoothness weight

α` scaling parameter of the `th shape

6 Discussion

We tested some deficient versions of our example-based de-
formation framework. In Figure 8 we show several examples
of how these partial versions of the algorithm behave. For
comparison to the complete method see Figures 4 and 5. We
notice that the most important part of the proposed frame-
work is the construction of the dictionary from multiple ex-
amples. If only one example is used (A), as in [17], the de-
formation algorithm fails when the shape has many degrees
of freedom.

Although the method is robust and usually performs very
well, some limitations and failures in particular cases do ex-
ist. Despite the usually pleasing to the eye deformations of
the proposed example-based approach, sometimes undesir-
able artifacts might occur. This is the result of the collinear-
ity between different dictionary atoms. As for the perfor-
mance of the algorithm, the deformation can be produced in
real time but the algorithm cannot accommodate for video
applications with many objects that need to be simultane-
ously deformed. This problem can be solved by using the
proposed algorithm only for objects for which a previous
pose cannot be used for the initialization of the current one.
Another drawback is that if the example shapes do not incor-
porate enough information for extracting the right rotation
clusters, then, the algorithm will ultimately fail. Also, the
current evaluation system does not prevent self-intersections.

7 Conclusions

We applied the concept of overcomplete dictionary repre-
sentation to the problem of shape deformation. The pro-
posed example-based deformation approach extends the sub-
space of physically-plausible deformations, while control-
ling the smoothness of the reconstructed mesh. The blended
transformations enable us to find a new pose from a small
number of known feature points without any additional in-
formation. It is well-suited for real-time applications as well
as offline animation and analysis systems. In the future, we
plan to apply the proposed framework to various problems
from the field of shape understanding, such as gesture recog-
nition, registration of MRI images, and prior based object
reconstruction from depth images.
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