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Abstract For reconstructing sparse volumes of 3D ob-

jects from projection images taken from different view-

ing directions, several volumetric reconstruction tech-

niques are available. Most popular volume reconstruc-

tion methods are algebraic algorithms (e.g. the mul-

tiplicative algebraic reconstruction technique, MART).

These methods which belong to voxel-oriented class,

allows volume to be reconstructed by computing each

voxel intensity. A new class of tomographic reconstruc-

tion methods, called “object-oriented” approach, has

recently emerged and was used in the Tomographic Par-

ticle Image Velocimetry technique (Tomo-PIV). In this

paper, we propose an object-oriented approach, called

IOD-OVRMPP (Iterative Object Detection - Object

Volume Reconstruction based on Marked Point Pro-

cess), to reconstruct the volume of 3D objects from pro-

jection images of 2D objects. Our approach allows the
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problem to be solved in a parsimonious way by min-

imizing an energy function based on a least squares

criterion. Each object belonging to 2D or 3D space is

identified by its continuous position and a set of fea-

tures (marks). In order to optimize the population of

objects, we use a simulated annealing algorithm which

provides a “Maximum A Posteriori” (MAP) estimation.

To test our approach, we apply it to the field of Tomo-

PIV where the volume reconstruction process is one of

the most important steps in the analysis of volumet-

ric flow. Finally, using synthetic data, we show that the

proposed approach is able to reconstruct densely seeded

flows.

Keywords 3D Object Reconstruction · Stochastic

Models ·Marked Point Processes ·Metropolis-Hastings-

Green (MHG) algorithm · Simulated annealing ·
Tomographic PIV

1 Introduction and Motivation

In the 80s, tomographic reconstruction methods were

generally classified into two categories: analytical meth-

ods [14] and algebraic methods [38]. Analytical methods

are fast and simple to implement. They give high qual-

ity reconstruction results only if the trajectory acquisi-

tion is full with a good sampling of projection images.

However, with a limited number of views or noisy im-

ages, these methods perform poorly. In this case, it is

better to use algebraic methods which adopt a discrete

approach to the problem. Algebraic methods assume

that the physical volume to reconstruct is sampled on

a regular 3d grid. Thus, the volume is formed of voxels

with unknown values. The assumption is that each de-

tected value in a pixel from projection images is a linear

combination of voxel values. This physically means that
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each voxel contributes (possibly with a zero coefficient)

to each line of sight.

The estimation of the volume intersection can be

readily performed assuming voxels as cubes or spheres.

In this formulation, the problem involves solving the

system P = Rf , where P is a vector containing the set

of projection images, f is a vector containing the voxel

values of the volume to reconstruct and R is a matrix of

coefficients of intersection that links P to f . An attemp

could be made to solve the system using the generalized

inverse of R: f = (RtR)
−1
RtP . However, this inverse

problem admits no solution because P is noisy (mea-

surement noise, gap between the model and the data,

etc.). The resolution of this “ill-posed problem” [31] can

be achieved by using iterative tomographic reconstruc-

tion methods like algebraic approaches.

Algebraic methods were introduced by Kaczmarz

[35]. The leader of this family of algorithms is the ART

method (Algebraic Reconstruction Technique) [29]. Ma-

ny other algebraic methods were proposed like MART

(Multiplicative ART) [32], AART (Adaptive ART) [40],

SIRT (Simultaneous Iterative Reconstruction Techni-

que) [12], SART (Simultaneous ART) [3] and SMART

(Simultaneous MART) [19,53]. Later, methods based

on reconstruction by blocks, such as BIMART (Block

Iterative MART), were introduced by Charles Byrne

[13].

Algebraic methods allow the introduction of some

constraints on the solution like the geometry of the ac-

quisition system. Unfortunately, they converge, most

of the time, to least squares solutions, which suppose

Gaussian noise on the data. To tackle these problems,

statistical methods were proposed. They consider P ,

and sometimes f , as random variables, to which a prob-

ability distribution reflecting uncertainty in the data

(noise, modeling error) and f (in the case of Bayesian

methods) are assigned [49]. The best known statisti-

cal method is called MLEM (Maximum Likelihood Ex-

pectation Maximization) and was developed in 1982 by

Shepp and Vardi [54]. The MLEM method is a spe-

cial case of the more general approach called Expec-

tation Maximization (EM) [21]. An accelerated version

of MLEM, called OSEM (Ordered Subsets Expectation

Maximization) [34], was also proposed. Many other sta-

tistical methods were also developed like GC (Conju-

gate Gradient) [36], MENT (Maximum Entropy) [44]

and MEM (Maximum Entropy on the Mean) [51,27].

Both statistical and algebraic methods are discrete to-

mographic reconstruction methods.

Recently, existent tomographic reconstruction meth-

ods were applied in the fluid mechanics domain to re-

construct 3D particle volumes from a set of particle im-

ages. The images are acquired with a 3D tomographic

optical system called Tomographic Particle Image Ve-

locimetry (Tomo-PIV) which was introduced by Elsinga

et al [26].

The principle of the Tomo-PIV is based on the com-

putation of the velocity vector field of a flow from the

displacement of the particles recorded on several im-

ages. Particles are seeded in the flow and are illumi-

nated by a thick laser sheet which defines the volume of

interest. The light scattered by the particles is captured

by several high-resolution digital cameras from different

viewing angles (usually 4 - see Fig.1). The information

on the line of sight of each pixel in a camera, through

out the examined volume, is described by a polynomial

approximation made from a 3D calibration procedure.

Thus, the projection images set captured at a given

time is supplied to a 3D tomographic reconstruction

algorithm to reconstruct a volume of 3D particles.

Fig. 1 Tomo-PIV principle.

Finally, the sequences of 3D particle volumes are

used to estimate the sequences of velocity fields using

advanced cross-correlation techniques. The problem of

tomographic reconstruction in the Tomo-PIV field is

different than in other domains for the following rea-

sons:

– The volume of interest is composed of 3D particles

with a high density level (up to 800,000 particles);

– The presence of ghost particles (artifacts) in recon-

structed volumes due to the limited number of views

(usually 4 cameras);

– The experimental projection image size can reach

4000×4000 pixels (volume size of 4000×4000×400

voxels for example);

– Noisy data due to the complex installation and vi-

bration of the acquisition system.
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In such a context, the discrete tomographic recon-

struction methods proposed to solve the specific prob-

lem of TomoPIV can be divided into two classes. The

first class is called fast methods and it covers algorithms

designed to reduce the computational costs and acceler-

ate the convergence to a solution by estimating the ini-

tial volume intensity distribution. The study conducted

by Worth and Nickels [65] which yielded an approach

named MFG (Multiplicative First Guess) can be men-

tioned. Atkinson and Soria [4] developed the MLOS

(Multiplicative Line Of Sight) method to accelerate the

MART method which is the most widely used algebraic

technique in the Tomo-PIV field [20,58]. Maas & al.

[42] proposed the MinLOS (Minimum Line Of Sight)

method which is a variant of MLOS. In the same con-

text, other methods were developed like SAPIV (Syn-

thetic Aperture Particle Image Velocimetry) [7], MG

(Multi-Grid) [23] and VS-TPIV (Volume Segmentation

- Tomographic Particle Image Velocimetry) [66]. The

second class is based on sparse models. In this class,

the problem of tomographic reconstruction was treated

in a framework exploiting the sparsity of the volume as

in methods based on the L1 norm [24] and others based

on basis-pursuit algorithms [48,33].

Analytical and discrete tomographic reconstruction

methods called “voxel oriented” methods are based on

the calculation of the intensity of each voxel in the vol-

ume [8]. They take up a lot in memory storage and do

not take sufficiently into account the particular shape

of the objects to be reconstructed.

To tackle these problems, “object-oriented” meth-

ods, have emerged [64,15,8]. Methods belonging to this

category were developed in the fluid mechanics domain.
The proposed solutions are based on the parsimony of

volumes: they consider the volume as a set of 3D ob-

jects. The objects represent 3D particles which are iden-

tified by their positions and features. In 2012, Wieneke

[64] proposed an algorithm called IPR (Iterative Parti-

cle Reconstruction) to reconstruct 3D-particle locations

by comparing the recorded images with generated ones

calculated from the particle distribution in the volume.

In 2014, Champagnat et al. proposed the PVR (Particle

Volume Reconstruction) method [15]. This approach is

a combination between an “object-oriented” approach

and algebraic methods (MART, SMART). The results

obtained with numerical simulations showed that the

proposed methods give equivalent reconstruction qual-

ity to the MART method for very high particle seeding

density. However, proposed “object-oriented” methods

are very specific to Tomo-PIV problems and cannot be

exploited in other fields using sparse volumes.

In this paper, we present a general “object-oriented”

approach to reconstruct volumes of 3D objects. The

proposed approach can be used in several areas and

meets the following criteria:

– It exploits the parsimony of the volumes using an

appropriate mathematical formalism;

– It allows a priori information to be easily intro-

duced;

– It works with real-space coordinates in order to lo-

cate the objects with high accuracy;

– It solves an ill-posed problem even in the case of

very high densities of objects;

– It improves the reconstruction quality with respect

to state-of-the-art ART methods and reduces mem-

ory usage as well as the artifact rate by using a

formalism suited to the problem addressed.

This paper focuses on the reconstruction of volumes

of 3D objects in large configuration spaces, formulated

in a marked point process reconstruction framework.

Stochastic models based on marked point processes

have been used in various application domains, from 3D

reconstruction to texture modeling such as the recon-

struction of buildings [45] or vascular trees [57], and the

detection of tree crowns [46], populations of birds [22]

or road networks [59]. These models have proved their

efficiency for object extraction in large sample spaces.

Considering previously published papers [9,10], it

provides additional details and newer contributions:

– We introduce a general framework in order to make

geometrical object reconstruction based on marked

point processes using a minimum mean square error

estimation criterion.

– As one of the main objectives of Tomo-PIV is to re-

construct a velocity field using two consecutive vol-

umes, a comparison is made on this topic between

the proposed method and an optimized MinLOS-

MART (Minimum Line-Of-Sight, Multiplicative Al-

gebraic Reconstruction Technique) algorithm [58]

for synthetic data.

It should be noted that we have not provided our

results on experimental data but these can be found in

[11].

This paper is organized as follows: in section 2, af-

ter a quick introduction on marked point processes,

we present the general formalism of the reconstruc-

tion method, called IOD-OVRMPP (Iterative Object

Detection - Object Volume Reconstruction based on

Marked Point Process) and we show how to simulate it.

In section 3, we present an application of our approach

to reconstruct a population of 3D particles. We com-

pare it to the reference algebraic reconstruction tech-

nique, MinLOS-MART, using synthetic data with dif-

ferent seeding densities. Finally in section 4, the ma-
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jor findings are summarized, some concluding remarks

made and some perspectives given.

2 Object reconstruction based on marked point

processes

2.1 Definitions

In this section, the basic ideas of point processes (PP)

and marked PP (MPP) are recalled [61,18]. A MPP

provides a naturally sparse representation of configura-

tions of geometrical objects of interest which are inside

a considered continuous space. They allow the physical

process to be better approximated by a disconnection

from the numerical model induced by a regular sam-

pling grid (pixels in image or voxels in volume).

Let K ⊂ Rd (d = 2 or 3 in this paper) be a compact

subset with 0 < ν(K) <∞, ν a Borel measure. A real-

ization of a PP on K is a finite configuration of points

{ki ∈ K, i = 1, ..., N} as ki 6= kj for i 6= j. To form more

complex objects, a geometrical mark can be attached to

each point, like a radius for example. In that case, a con-

figuration of circles whose points {ki, i = 1, ..., N} are

the centers is obtained. Let (M,M, PM ) be the proba-

bility space which describes the marks (M ⊂ R+ for a

radius). A finite random configuration of marked points

(or objects) is a sample of a MPP if only the position

process of objects is a PP. Based on this definition, vol-

ume or image geometrical features are viewed as a set of

objects identified jointly by their positions in the image

and their geometrical characteristics (the marks).

The simplest MPP is the homogeneous Poisson MPP.

That is to say, the number of points in each A ⊂ K has

a Poisson distribution with mean ν(A) = βµ(A), with

µ the Lebesgue measure, and the points representing

the positions of the objects are uniformly and indepen-

dently distributed in K. The marks are chosen inde-

pendently in M for each point. For a more complete

presentation of MPP, the reader is referred to [55,16].

Let us define a configuration of marked points by

y = {(k1,m1), ..., (kN ,mn(y))}, where ki ∈ K and mi ∈
M , i = 1, . . . , n(y) denote the object positions and the

object marks respectively. n(y) is the number of marked

points in the configuration y. A configuration of a MPP

is classically viewed as a sample issued from an unnor-

malized probability density f (as the normalizing con-

stant is intractable) which is a Gibbs distribution:

f(y|θ) ∝ exp(−U(y|θ)) (1)

with θ a set of parameters. The energy U(y|θ) allows

the properties of configuration y to be modeled and is

composed of the sum of two terms: 1) a data-driven

energy or external energy denoted Uext(y|θext) that re-

flects the adequacy between configurations of objects

and the observed data and 2) an internal energy de-

noted Uint(y|θint) that reflects an a priori on such con-

figurations. This leads to the following expression:

U(y|θ) = Uext(y|θext) + Uint(y|θint) (2)

and θ = θext ∪ θint. Thus, for a given value of θ, the

most likely configurations correspond to the ones that

have the global minimum of the total energy:

ŷ = argmin
y

U(y|θ) (3)

The computation of the global minimum of the en-

ergy is classically performed by a simulated annealing

which is a stochastic method of optimization (see [28,

5] and section 2.3).

An appropriate definition of the data energy allows

marked points (objects) that are consistent with respect

to a given observation to be obtained. For Tomo-PIV,

the process must converge to an appropriate configura-

tion of 2D or 3D objects with respect to the projection

images.

2.2 Energy of marked point process

2.2.1 Data-driven energy

Fig. 2 Overlapping of two 2D objects issued from the pro-
jection of two separate 3D objects, located on the same line
of sight.

This section presents our main theoretical contribu-

tion in object reconstruction based on MPP: a data-

driven energy derived from a minimum mean square

error (MMSE) criterion. In this paper, the data-driven

energy will be used to search 2D objects in projection

images (K ⊂ R2) or to reconstruct 3D objects in a vol-

ume (K ⊂ R3), from projection images. In both cases,

it is computed thanks to the intensity of 2D objects in

projection images. Its definition takes into account a
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possible interaction of objects when associated geomet-

rical marks overlap (see Fig. 2). Let us notice that pre-

viously defined MPP in a context of image processing

never introduce an interaction in the data-driven term:

the interactions between objects are defined inside the

internal term [55,56,16,2]. In [43], the MMSE is already

used to define the data-driven energy of the proposed

MPP but the contribution of each marked point and

their interaction terms are not developed.

The mean square error (MSE) of a configuration y

knowing an observation set o = {os}s∈S can be written

as follows:

MSE(y |o ) =
∑
s∈S

(os − ps)2 (4)

S represents the set of sites and ps the reconstructed

value in s by the configuration y:

ps =
∑

yj ,yj→s
pyj→s (5)

Thus, ps is the sum of the contributions of each

object yj ∈ y which has a non-zero intensity at site

s. This property will be denoted yj → s and pyj→s is

the intensity generated by yj at site s (see Sections 1

and 3.1 for discretization procedure and objects used in

Tomo-PIV). Equation 5 also implies that objects have

a finite extension (associated to the chosen geometrical

marks) and they do not therefore provide intensity all

over the sites.

In view of these considerations, a neighboring rela-

tionship between two objects can be defined as follows:

yj
o∼ yk if ∃s ∈ S s.t. yj → s and yk → s (6)

The development of MSE(y |o ) (Eq. 4) and the

deletion of constant terms (computation details can be

found in Appendix A) allow the expression of a data-

driven energy in the form of a sum of two energies

Uext,1(y|θext) + Uext,2(y|θext) to be obtained:

Uext,1(y|θext) =
∑
yj∈y

φext,1(yj) (7)

where

φext,1(yj) =
∑

s∈S,yj→s
pyj→s

(
pyj→s − 2os

)
(8)

and

Uext,2(y|θext) =
∑

yj
o∼yk,j<k

φext,2(yj , yk) (9)

where

φext,2(yj , yk) =
∑

s∈S,yj→s & yk→s

2pyj→spyk→s (10)

By considering Equations (8) and (10), the data-

driven energy can be written:

Uext(y) =
∑
yj∈y

φext,1(yj) +
∑

yj ,yk,j<k

yj
o∼yk

φext,2(yj , yk) (11)

The first-order term, φext,1, contains a correlation

operator between the values generated by an object and

the values at its corresponding locations in the observed

data. If φext,1(yj) < 0, the object yj is attractive and

its presence allows the global energy of the system to

be minimized. Conversely, if φext,1(yj) > 0, the object

yj will be penalized. Then, Uext,1 allows the creation of

objects in regions with high intensities in observed im-

ages. Note that since some objects are attractive, it is

necessary to have an exclusionary term to avoid the ac-

cumulation of objects in the final configuration. It is the

role of the second-order term Uext,2. Thus, this energy

is based on the neighborhood relationship
o∼ (see Eq. 6)

that occurs between two objects when their projections

overlap (Fig. 2): function φext,2 acts as a correlation

operator on the intersection of objects. It is important

to note that its computation depends on the spatial ex-

tension of the projections of objects and their non-zero

overlaps.

To sum up, for a given object yj , φext,1(yj) is high

when the values in the observed images are low, causing

an increase in the Uext value. Conversely, when the val-

ues in the observed images are high, φext,1(yj) is nega-

tive which favors the corresponding position of the asso-

ciated object. φext,2(yj , yk) penalizes two objects which

intersect in an image. The data-driven energy will then

have low values for a set of correctly positioned objects

which do not have too many similar projections. By

minimization, it seems to lead to a desired configura-

tion of objects.

Now, the second term of the energy is presented: the

internal energy.

2.2.2 Internal energy

In the proposed model, the internal energy function is

divided into a sum of two terms and can be written as

follows:

Uint(y|θint) = Ue(y|β) + Us(y|γa) (12)

The first term Ue(y|β) = −n(y) log(β) is an energy

associated with the intensity of the process in terms

of the number of objects n(y) in a configuration. It is

defined by the β parameter, which represents the mean

number of points by unity of volume in an homogeneous

Poisson PP (see section 2.1).
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The second term Us(y|γa) = −na(y) log(γa) allows

a Strauss point process which belongs to the family

of Markov point processes to be defined [61,2]. When

0 ≤ γa < 1, this component penalizes the aggregation

of objects and to go further in its definition, we need

to briefly describe the objects used for tomo-PIV re-

construction. The objects are Gaussian intensity distri-

bution with limited spatial extension defined by a fixed

energy percentage (see Eq. 27 & 28 and section 3.1.1 for

more details): in 2D, the spatial shape of an object is

a circle; in 3D, it is a sphere. In both cases, the spatial

extension of the Gaussian intensity distribution is char-

acterized by a radius. If the geometrical mark does not

have such a shape, some other choices could be made

for the definition of Us (see [55] for example).

na(y) represents the number of neighbor relation-

ships between objects in the following sense: yi
S∼ yj if

||ki − kj ||2 ≤ ri+ rj where ri and rj are the radiuses of

yi and yj respectively. The value of the hyper-parameter

γa ∈ [0, 1] controls the outcome of the potential func-

tion. If γa = 1, the process defined by Uint behaves as a

homogeneous Poisson PP with intensity β. If γa ∈]0, 1[,

pairs of objects with a distance less than ri+ rj are pe-

nalized. If γa = 0, the process forbids that two objects

exist within a distance ri + rj . The process is then said

to be hard core.

The proposed model is then parametrized by θ =

θext ∪ θint with θint = {β, γa}. θext is mainly defined by

the way objects are projected and discretized on images

(see Section 1 & 3.1).

2.2.3 OVRMPP - Object Volume Reconstruction based

on Marked Point Process

This section describes the MPP dedicated to the re-

construction of 3D objects in Tomo-PIV which rep-

resents a particular implementation of the previously

proposed MPP. Our aim is to reconstruct a volume of

3D objects based on a set of projection images. Un-

like classical tomographic reconstruction methods, the

proposed tomographic reconstruction approach, called

OVRMPP, allows 3D objects that belong to a contin-

uous 3D space to be obtained (see Fig. 2). In view of the

elements recalled in section 2.1, points are center posi-

tions of 3D objects and marks provide the set of features

that characterize each object in the volume: a radius of

a sphere and a central intensity (see section 3.1.1). For

a configuration, y = {(k1,m1), ..., (kN ,mn(y))}, with

ki ∈ K and mi = {ri, Ei} ∈ M , i = 1, . . . , n(y), we

have

– K ⊂ R3.

– M ⊂ R+2 and minimum and maximum values for

intensities (Imin and Imax) and radiuses (rmin and

rmax) need to be fixed in order to completely define

M .

– The observation data is the set of the N projection

images {Ii, i = 1, . . . , N} with Ii = {oi,s}s∈Si , Si
the set of pixels of Ii.

– The overlapping of 3D objects must be strongly pe-

nalized. Then γa (see Section 2.2.2) needs to be

taken close to 0 (see Section 3.2 for the values used).

Equation 4 becomes:

MSE(y |{Ii, i = 1, ..., N} ) =

N∑
i=1

∑
s∈Si

(oi,s − pi,s)2 (13)

and equations 8, 9 and 10

φext,1(yj) =

N∑
i=1

∑
s∈Si,yj→s

pyj→s
(
pyj→s − 2oi,s

)
(14)

Uext,2(y|θext) =

N∑
i=1

∑
yj
oi∼yk,j<k

φiext,2(yj , yk) (15)

where

φiext,2(yj , yk) =
∑
s∈Si

2pyj→spyk→s (16)

and yj
oi∼ yk means that 2D projections of 3D objects yj

and yk intersect in projection image Ii. The projection

values pyj→s of object yj are computed using the central

energy Ej and equations 25 and 26. The radius that

defines the finite extension of yj is given in equation

27.

In section 2.4, the 2D case used to obtain a con-

figuration of 2D objects for each projection image will

quickly be described.

2.3 Simulation of MPP and simulated annealing

2.3.1 Metropolis-Hastings-Green algorithm

PP and MPP are classically simulated using the Re-

versible Jump Markov Chain Monte Carlo method (RJM-

CMC) exploiting a Metropolis-Hastings-Green (MHG)

dynamics (or algorithm) [30,55,47,62]. This method al-

lows the simulation of a process with varying sampling

spaces. In our case, these sampling spaces are associated

with configurations with different numbers of objects.

The basic moves of RJMCMC for MPP are the birth

and death moves [50,6,39]: during theses moves, one

object is proposed to be either added to or removed

from the current configuration.

In addition to these basic moves, supplementary

moves can be used: a configuration can be changed by
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moving positions of objects or by modifying the mark.

To obtain a better position, an object inside the config-

uration is randomly chosen and new positions are ran-

domly sampled using a uniform probability inside an

area around the original position. In case of the use of

multiple propositions, the proposed position is the one

that gives the minimal value of data-driven energies.

Then, the proposed state for a population y contain-

ing d-dimensional objects, is y′ = y ∪ {yp} for a birth

move, where yp is a randomly proposed object using

a continuous uniform distribution in K and M , if no

other prior distribution exists. For the death move, the

proposed state is y′ = y \ {yi}, where y is uniformly

chosen inside y. For the translation move, the proposed

state can then be written as y′ = y \ {yi} ∪ {yp} where

yi, i ∈ {1, . . . , n(y)} is a chosen object inside y and kp
is randomly chosen near ki.

The different propositions are accepted with prob-

ability min {1, τi}, i = B,D or TR (for Birth, Death

and Translation), with τi the MHG acceptance ratio

(see Eq. 17, 18 and 19): if τi ≥ 1, the proposition is

accepted; otherwise, u ∼ U[0,1] is sampled; if u ≤ τi the

proposition is accepted otherwise it is rejected.

Let us denote fb the probability of selecting the

birth move and fd the probability of choosing a death

move. In the case of a birth move, the position of the

new object y is chosen randomly following a uniform

distribution on the volume K. Therefore, the MHG ra-

tio can be written as follows when the mark is fixed:

τB =
fd
fb

f(y′|θ)
f(y|θ)

ν(K)

n(y) + 1
(17)

and when the mark is not fixed and a uniform law is

assumed, τB is multiplied by (rmax−rmin)(Imax−Imin)

[55].

In the case of a death move, the point to be removed

is chosen with a uniform probability on the existing

points in the configuration. The following MHG ratio

is obtained when the mark is fixed:

τD =
fb
fd

f(y′|θ)
f(y|θ)

n(y)

ν(K)
(18)

and when the mark is not fixed and a uniform law is

assumed, τD is divided by (rmax − rmin)(Imax − Imin).

In the case of a translation move, The following

MHG ratio is obtained:

τTR =
f(y′|θ)
f(y|θ)

(19)

(see Sec. 2.1 for ν(K) and f(y|θ) is defined in Eq.(1)).

The different propositions are accepted with proba-

bility min {1, τi}, i = B, D or TR. In each case, the ra-

tio f(y′|θ)
f(y|θ) = exp {−∆U}, with ∆U = U(y′|θ)−U(y|θ),

only depends on the terms associated to the added,

deleted or translated object. For example, in the case

of a birth:

∆UB = φd,1(yp) +
∑

yj∈y,yp
o∼yj

φd,2(yp, yj)− log
(
βγ

nyp
a

)
(20)

where nyp is the number of neighbors of yp in y following

the
S∼ neighbor relationship (see Sec. 2.2.2).

2.3.2 MAP estimation based on simulated annealing

As previously stated, the MHG algorithm allows con-

figurations of points to be sampled depending on the

defined probability density functions. In order to ob-

tain a configuration that minimizes the energy (see Eq.

3), we need to perform a stochastic method of optimiza-

tion like simulated annealing. This technique is based

on the simulation of a non-homogeneous Markov Chain

(see [56,2] for examples with MPP). Simulated anneal-

ing needs the definition of a new energy which contains

a term T which can be viewed as a temperature (see

Eq. 11 and 12):

UT (y |θ ) = Ue(y |β ) +
Uext(y |θext ) + Us(y |γa )

T
(21)

and is done by simulating the modified process from a

high temperature T0 to a low temperature Tf .

Ue is not divided by T in order to keep constant

the prior about the mean number of objects by volume

unity during the iterations. Indeed, if Ue is divided by

T , it means that β becomes β
1
T and when T goes down

to zero, β
1
T will decrease to zero if β < 1 or increase to

the infinite if β > 1 which is not suitable.

One of the main interests of simulated annealing

is that it is supposed to converge whatever the initial

configuration which can be the empty configuration for

example. But, in our case, we need the convergence of

configurations with more than 50,000 3D particles: the

dimension of the space to explore is huge. By decreasing

the temperature slowly (the optimal decreasing scheme

is also intractable), the algorithm will need a huge com-

putation time. Our objective is therefore to obtain an

“accurate” configuration in a reasonable time. To this

purpose, we propose an initialization method in order

to obtain a first configuration of 3D objects.

Let us note that the simulated annealing provides us

with a Maximum A Posteriori (MAP) estimation of the

3D objects: the external energy can be used to define

the likelihood function and the internal energy the prior

about the solution.
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The complete algorithm (called IOD-OVRMPP)

contains the following two steps (see Fig. 3): 1) the

IOD method (see next section) that provides a set of

2D detected objects for each projection, i = 1, . . . , N

and the initial 3D object set computed from the 2D

object set; 2) OVRMPP method that provides the final

3D object configuration based on a simulated annealing

procedure.

2.4 IOD - Initialization method based on Object

Detection

In the tomographic reconstruction field where data size

is very high, the initialization process is a very impor-

tant step that can speed up the convergence of the

reconstruction methods and enhance the reconstruc-

tion quality. To compute a first estimation of the re-

constructed volume, we propose an “Object Oriented”

method called IOD (Initialization by Object Detection)

which was inspired by a 3D position reconstruction

technique named “triangulation” often used in the com-

puter vision field. This initialization procedure will be

used before the 3D object reconstruction process, whose

aim is to obtain a 3D object set with high position ac-

curacy. The operating mode of this 3D object volume

initialization method is applied to N acquired projec-

tion images and can be carried out in three main steps

(Fig. 3): 1) detection of 2D objects in each projection

image; 2) identification of epipolar 2D objects; 3) recon-

struction of 3D objects from 2D epipolar objects marks.

Fig. 3 Main steps of the proposed method.

2.4.1 1st step: 2D object detection

To detect 2D objects in the projection images, a MPP

for each projection image is used. In view of the ele-

ments recalled in section 2.1, points are now center po-

sitions of 2D objects and marks provide the set of fea-

tures that characterize each object in a projection im-

age: a radius of a circle and a central intensity (see sec-

tion 3.1.1). For a configuration of 2D objects of the ith

MPP, i ∈ {1, . . . , N}, y = {(k1,m1), ..., (kN ,mn(y))},
with kj ∈ K and mj = {rj , Ij} ∈ M , j = 1, . . . , n(y),

we have:

– K ⊂ R2.

– M ⊂ R+2 and minimum and maximum values for

intensities and radiuses need to be fixed in order to

completely define M .

– The observation data is a projection image: Ii =

{oi,s}s∈Si , Si the set of pixels of Ii.

– The overlapping of 2D objects often occurs. Then

γa (see Section 2.2.2) needs to be taken close to 1

(see Section 3.2 and 3.2 for values used).

For the equations of the MPP, see section 2.2 and

equation 25 for the computation of the data-driven en-

ergy.

To limit the number of iterations and speed up the

convergence of the simulated annealing, we develop a

simple initialization procedure, called IRW (Iterative

Random Walk), in order to propose a first distribution

of 2D objects. To this purpose, one iteration of this

procedure is performed in three steps: a simple peak

detection is applied to the image which gives a set of

detected 2D positions ; each position of this set will be

transformed into a 2D object by randomly moving the

corresponding position in a short range, in order to en-

hance its data-driven energy; only a finite number of

positions is tested, without the optimization procedure

here. A residual image which will be used in the next

iteration, is computed between the image used for peak

detection and the one generated from the 2D object set.

In section 3.2, the number of iterations is fixed equal to

two. After this initialization procedure, a simulated an-

nealing optimizes the 2D objects distribution (see Sec.

2.3.2).

2.4.2 2nd step: 2D epipolar object identification

Once the detection of 2D objects is completed, a search

algorithm to identify 2D epipolar objects is applied. To

do that, a geometric correspondence between a point

X0 in physical space and a point xi0 in the projection

image Ii is determined by the camera optical arrange-

ment. It is described by a projection function ψi defined
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as follows:

ψi(X0) = xi0 (22)

It is considered that the projection of a point in the

volume onto a given image is unique. A back-projection

function can also be defined; however, for a point xi0
in the image Ii, there is not one unique corresponding

point X0 in the volume but a set of points. This set

of points, in the volume whose projection is xi0, is a

curve called the line-of-sight (LOS)i(x
i
0). All the lines-

of-sight can be parameterized using the Z variable [58].

For a given Z, the back-projection function is defined

as follows:

ψ−1i (xi0, Z) = (X,Y, Z) (23)

In practice, the projection and back-projection func-

tions are obtained through a rigorous calibration pro-

cedure [63]. The camera model used is a pinhole model

but other models could be used.

In a perfect case, a set ofN 2D objects, which belong

to their respective projections, are considered epipolar

neighbors if their lines-of-sight intersect in one point. In

reality, there is always some noise in the 2D object po-

sitions and the lines-of-sight do not intersect. In order

to identify epipolar neighbors, the volume where the in-

tersections can be found is decomposed into 3D boxes,

placed on a list. For each box, and for each projection,

a list of 2D objects whose lines-of-sight cross the box

is identified. When in a given box, the list contains one

and only one 2D object the procedure is stopped for

this box. If one of the 2D object lists is empty, the box

is removed from the list. Otherwise, the box is cut into

eight boxes which are added to the list. The algorithm

goes on like this until it reaches the end of the list. At

the end, the box list contains only boxes with epipo-

lar neighbors candidates. Their “intersection” can be

defined as the point which minimizes the average dis-

tance with all the lines-of-sight. Some of them are false

candidates. Two criteria are used to eliminate them:

– their “intersection” must be inside the box

– the intersection error (minimal average distance be-

tween the lines-of-sight) must be lower than a given

threshold.

If the noise is too strong, wrong epipolar candidates are

identified and there is no way of separating false from

true candidates. In this case, it is probably not possible

to get a good volume reconstruction. And the higher

the particle density, the higher the noise influence is. A

box list example is shown in figure 4.

Fig. 4 Example of a box list. The colored lines represent the
lines-of-sight, the black spheres, the theoretical particles and
the orange circles, the lines-of-sight “intersection” from noisy
data.

2.4.3 3rd step: 3D objects initialization

The position of the 3D objects is obtained as the “inter-

section” of the lines-of-sight of the epipolar neighbors.

The mark is chosen such as the average projection size

on all images is the same as the average 2D objects

size. The link between the 2D and 3D object marks is

detailed in section 3.1.1.

In the next section, the application of the proposed

“object oriented” approach to Tomo-PIV field is devel-

oped.

3 Application to fluid mechanics field

In this section, the formalism presented above is ap-

plied in the field of fluid mechanics to reconstruct the

volumes of 3D particles from a set of projection images.
For the sake of brevity, only the experiments made on

synthetic data are presented here. We will present some

additional results we have obtained studying a turbu-

lent channel flow [25] in a further paper.

3.1 Tomo-PIV technique

As mentioned in the introduction, during the last decade,

a lot of developments has been proposed for improv-

ing the reconstruction accuracy and for accelerating the

calculation. Part of these results has been obtained in

the collaborative European framework AFDAR (Ad-

vanced Flow Diagnostics for Aeronautical Research [1]).

The objective of AFDAR was to focus on new three-

dimensional methods based on Particle Image Velocime-

try (PIV) for measurement in more industrial applica-

tions.

The size of the measurement volume within the laser

sheet is fully flexible and can be adapted to measure
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small volumes of a few mm3 as well as large volumes if

the light power is sufficient. However, the depth of focus

remains a limiting factor. Flow-tracing particles have a

real diameter of the order of 5− 80 µm and a spherical

shape. Pixel intensities in images constitute spots that

represent 2D particles. 2D structures within images are

assumed coming from Mie scattering phenomenon [17].

In fact, the diffraction of the laser beams from spherical

3D particles enables its energy to be spread to get 2D

projected particles using different viewing angles.

3.1.1 Data description and objects of interest

The projection images (Fig.5) used to reconstruct vol-

umes are characterized by their high resolution and

high 2D particle density (overlapping of particles phe-

nomenon). The density of particles in the images is mea-

sured in particles per pixel (ppp). Intensities of pixels

in the images are presented in gray level with parti-

cles uniformly distributed on a black noisy background

(Fig.5).

Fig. 5 Real image of 2D particles with 1200×1600 pixel size
and an estimated seeding density of 0.035 ppp.

The image of a particle in the flow is a spot. The

intensity in the image is maximum where the proba-

bility of finding the particle position projection is the

highest. The spot is characteristic of the uncertainty

about the particle position. In real experiments, the dis-

tance between the cameras and the measurement vol-

ume is quite large, which allows the light beams com-

ing onto the sensors of the cameras to be considered

quasi-parallel. Under these assumptions, the model can

be simplified and the uncertainty about the position of

the 2D particles can be considered isotropic. It is also

assumed that it follows a normal distribution.

Volumes to be reconstructed are characterized by

their large size and their high density of 3D particles.

The density of particles in the discrete volume is mea-

sured in particles per voxel (ppv).

The main philosophy of the proposed approach is

to reconstruct only objects of interest hence the name

“object-oriented” method.

In section 2, we presented MPP based on 2D or

3D objects, each one defined by a mark containing an

intensity and a radius. This mark is used to compute

data-driven and internal energies (see Sections 2.2.1 and

2.2.2). The radius represents the uncertainty about the

position of the object. In the next sections, we provide

more details about the marks for 2D and 3D objects

and the relationship between them.

3.1.2 3D particle

As explained previously, rather than reconstruct the

“real” particles, their position and the uncertainty about

their position, which is the mark of the objects, are ob-

tained. This approach is linked to our objective to be

close to classical methods in order to cross-correlate vol-

umes of particles in order to obtain the most probable

displacement.

A 3D particle1 ξ can be identified by a 3D continu-

ous position X0 = (X0, Y0, Z0)
T ∈ K and characterized

by its marks mξ containing its maximum value E0 and

its radius R. These two parameters define completely

the uncertainty about the 3D particle position. It is

assumed to be an isotropic multivariate Gaussian law

and can be computed using the following equation at

X = (X,Y, Z)
T ∈ [−R,R]3:

Eξ(X) = E0 exp

[
− (X−X0)T (X−X0)

2σ2
ξ

]
(24)

where σξ is the standard deviation of the 3D Gaussian

distribution. Outside a sphere of radius R, Eξ(X) is

supposed equal to zero. R is defined with respect to

σξ and E0 (see Eq. 27) through a coverage factor. R

defines the confidence radius.

The projection of the 3D particle uncertainty is sup-

posed to be conservative, in the sense that the uncer-

tainty about the particle projection position is the pro-

jection of the 3D probability distribution on the image.

So, for small uncertainties, the 3D isotropic Gaussian

distribution modeling the presence probability density

is projected onto a 2D isotropic Gaussian distribution,

that represents the uncertainty about the projection

position.

1 If the mathematical notations of section 2 which are given
for a generic population of objects are considered, ξ belongs
to a population of 3D objects (see Section 2.2.3) and ξ =
yi for example. Then, we have the following correspondence:
ki = X0, ri = R and Ei = E0
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3.1.3 2D particle

Let us define ζ a 2D object obtained by the projection

of the 3D object ξ. ζ has the position x0 = (x0, y0)T

which belongs to a subset of R2. We assume that a 2D

particle2 ζ is characterized by a confidence circle of ra-

dius r associated to an isotropic Gaussian intensity dis-

tribution with intensity I0: mζ = (r, I0). The coverage

factor is the same as for the 3D particles. Therefore,

the intensity distribution can be computed using the

2D isotropic Gaussian function defined at x = (x, y)
T

such as (x− x0)2 + (y − y0)2 ≤ r2 as follows:

Iζ(x) = I0 exp

[
−
(

(x− x0)2 + (y − y0)2

2σζ2

)]
(25)

where I0 is the center intensity and σζ the standard

deviation of the 2D Gaussian probability distribution.

Outside the confidence sphere, Iζ(x) is neglected. r is

defined with respect to σζ and I0 (see Eq. 28) with the

coverage factor.

3.1.4 Projection/Back-projection process

Data driven energy used in our reconstruction approach

is computed between images and projection of 3D parti-

cles. To do this, functions that allow 2D particles to be

obtained from a 3D particle and vice versa are needed.

These functions are called the projection and back-

projection process. Projection of a 3D particle on N

projection images gives N 2D epipolar particles. Back-

projection of N epipolar 2D particles gives one 3D par-

ticle.

Let ξ be a 3D particle with an isotropic Gaussian

probability distribution, identified by its 3D position

X0 and characterized by a central intensity E0 and a

confidence radius R. Let ζ be a 2D particle with an

isotropic Gaussian probability distribution, identified

by its 2D position x0 and characterized by a central

intensity I0 and a confidence radius r. Projection and

back-projection processes are performed by finding the

correspondence between 3D and 2D marks.To get a 2D

particle from a 3D particle in the projection image Ii, its

2D position xi0 should firstly be computed using equa-

tion (22).

Once the central position xi0 of a 2D particle is ob-

tained, its radius and its central probability density can

be searched for by evaluating the projection of a 3D

particle with isotropic Gaussian distribution profile on

2 If the mathematical notations of section 2 which are given
for a generic population of objects are considered, ζ belongs
to a population of 2D objects (see Section 2.4.1) and ζ =
yi for example. Then, we have the following correspondence:
ki = x0, ri = r and Ei = I0

a plane.The relation between 2D and 3D central prob-

ability density is given by the following equation:

I0 = E0

√
2π σξ (26)

σζ is proportional to σξ. The proportionality con-

stant depends only on the camera model. The standard

deviation σξ is used to compute a discrete map of a 3D

particle to discretize the volume of particles after re-

construction. The discrete maps are generated so that

the probability of the particle of being inside a sphere

of radius R reaches a confidence level δ. The radius is

given by equation (27) where k3D(δ) is the 3D coverage

factor:

R = k3D(δ)σξ (27)

For example, for δ = 90% we have k3D(δ) = 2.55.

After the completion of the projection process of a 3D

particle, a discrete map is also computed for each 2D

particle using the same confidence level δ as for an

isotropic Gaussian distribution. Discrete maps related

to 2D particles are used to compute the data-driven en-

ergy (see Eq. 8 and 10). To get the discrete map, the

standard deviation σζ of the Gaussian should firstly be

computed. In the same way as above, σζ is given by:

r = k2D(δ)σζ (28)

where k2D(δ) is the 2D coverage factor.

To study the performance of the proposed approach,

tests were conducted on simulated data (results on real

data are given in [11]). Our approach was adapted to

the measurement of flows and called IOD-PVRMPP

(Iterative Object Detection - Particle Volume Recon-

struction based on Marked Point Process) since it was

used to reconstruct the population of 3D particles. A

comparison between IOD, IOD-PVRMPP and MinLOS-

MART which is a reference algebraic reconstruction

method in Tomo-PIV will be presented in the follow-

ing sections. The comparison is performed using several

evaluation criteria.

3.2 Results on synthetic data

A set of synthetic volumes with associated projected

images are generated using an image generator devel-

oped in C++ using the SLIP library [60] and inspired

by Lecordier and Westerweel [37]. The synthetic volume

size is 500×500×150. Four projections of size 500×500,

with image seeding density varying from 0.0004 to 0.2

ppp (Fig. 6), are then computed knowing that 0.05 ppp

is the required seeding density level for Tomo-PIV field

[26]. 2D and 3D particles are characterized by marks as

described in section 3.1 and [9,10]. The number of 3D
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particles Np in synthetic volumes, generated for each

seeding density level, vary from 100 up to 50000 parti-

cles.

Fig. 6 Bands extracted from simulated images with different
concentrations of particles. The density of particles of each
band is indicated in particles per pixel (ppp).

For this experimental study, the intensity center and

the radius of all particles are fixed: the diameter size is

5 voxels for 3D particles and 3 pixels for 2D particles;

the distribution of intensities around all center posi-

tions of particles is modeled as a multivariate isotropic

Gaussian density. The calibration model is a pinhole

model, without distortions. The acquisition system is

simulated with 4 cameras (N = 4): two cameras on one

side with a 30◦ viewing angle; two other cameras on the

other side of the volume, on the same plane (Fig. 7).

Fig. 7 Camera positions for the simulated cases.

For IOD and PVRMPP, a set of parameters is cho-

sen for each seeding density in order to get a good re-

construction of 3D particle volumes (see tables 1 and

2). These parameter choices were adopted after several

simulations, trying to find the best trade-off between

reconstruction quality, ghost particle rate and compu-

tation time. In tables 1 and 2, ftr corresponds to the

probability of selecting the translation move. Birth and

death moves are chosen with the probability 1−ftr, and,

in a second random selection, with the probabilities fb

and fd respectively (fd = 1 − fb). γa is fixed to 0.05

(see Section 2.2.3). The simulated annealing algorithm

is configured with an initial temperature T0 and with

a fixed final temperature Tf equal to 0.02. A classical

cooling scheme is chosen: Tt = T0 q
t with t the current

iteration, q =
(
Tf
T0

) 1
Nit

the parameter of the cooling

scheme and Nit the number of iterations. Each iteration

consists in one proposed “Birth”/“Death”/“Translation”

move of MHG algorithm, which may be accepted or not

(see Section 2.3).

ppp Np γa β fb ftr Nit T0
0,0004 100 0,6 0,0004 0,5 0,5 1.5 104 0,025

0,0008 200 0,6 0,0008 0,5 0,5 1.8 104 0,025

0,0020 500 0,9 0,002 0,5 0,5 4 104 0,025

0,0040 1000 0,9 0,004 0,5 0,5 1 105 0,025

0,0080 2000 0,9 0,008 0,5 0,5 1.5 105 0,025

0,0200 5000 0,9 0,02 0,6 0,5 5.5 105 0,025

0,0500 12500 0,9 0,05 0,75 0,4 5 106 0,035

0,1000 25000 0,95 0,1 0,75 0,4 1 107 0,035

0,2000 50000 0,95 0,2 0,75 0,4 1.5 107 0,035

Table 1 Sets of parameters used for the IOD method applied
to synthetic data.

ppp Np β fb ftr Nit T0
0.0004 100 2.66 10−6 0.50 0.50 1.5 104 0.025

0.0008 200 5.33 10−6 0.50 0.50 1.8 104 0.025

0.0020 500 1.33 10−5 0.50 0.50 2.4 104 0.035

0.0040 1000 2.66 10−5 0.50 0.50 5 104 0.045

0.0080 2000 5.33 10−5 0.50 0.50 1.3 105 0.045

0.0200 5000 1.33 10−4 0.60 0.50 5.5 105 0.048

0.0500 12500 3.33 10−4 0.75 0.40 8.1 106 0.850

0.1000 25000 6.66 10−4 0.75 0.40 2.5 107 0.850

0.2000 50000 1.33 10−3 0.75 0.40 3.2 107 0.850

Table 2 Sets of parameters used for the PVRMPP recon-
struction method applied to synthetic data.

To evaluate the performances of IOD-PVRMPP me-

thod, some quantitative measurements are computed

and compared to those obtained with MinLOS-MART

[58], with a fixed number of iterations equal to 5, which

can be considered as a reference algorithm within our

application. The results of IOD method are also given

to show the improvement obtained between initial and

final populations of points. All measures are computed

by taking 10 reconstructed samples (volumes) for the

IOD-PVRMPP method given the random nature of the

algorithm.

First, two examples of evolutions of the cumulative

mean of the number of 3D objects (Np) in the popu-

lation during PVRMPP are presented, with an initial

population obtained with IOD (Fig. 8). These curves

are truncated showing about the first half of the itera-

tions. Two main types of evolution are observed: for ppp

lower than 0.05, Np globally increases before reaching

a value close to the true number of particles. For ppp

higher than 0.1, IOD provides a population with a lot

of generated ghost 3D objects. Then, many 3D objects

are deleted at high temperature (during the first itera-
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Fig. 8 Cumulative means of the number of particles inside
the volume during two PVRMPP runs. top: ppp = 0.05; true
number = 12500; initial number after IOD = 7925; estimated
number = 12491. bottom: ppp = 0.1; true number = 25000;
initial number after IOD = 25704; estimated number = 24448.

tions). After this phase, Np increases and converges to

the true number of particles.

To evaluate the reconstruction quality, the cross-

correlations (Qv) between the reconstructed volumes

and the reference volumes are computed:

Qv =

∑Nv
i=0

(
Vr(i)− V r

) (
Vref (i)− V ref

)√
(Vr − V r)2

√
(Vref − V ref )2

(29)

with Nv the number of voxels, Vr the reconstructed vol-

ume and Vref the reference volume. Figure 9 shows that

IOD-PVRMPP provides better results than MinLOS-

MART for seeding densities up to 0.1 ppp. The re-

construction quality of the IOD-PVRMPP method de-

creases when the overlapping between 2D particles in

images increases.

Fig. 9 Evolution of the volume reconstruction quality Qv as
a function of the density of particles.

To evaluate the accuracy of the IOD-PVRMPP me-

thod, error positions (Ev) between 3D particle positions

in reconstructed volumes and the reference volumes are

computed. Results show a very high level of accuracy

with error average varying between 0.01 to 0.043 voxels

for seeding densities up to 0.05 ppp (Fig.10). Curves

in (Fig.11) show very low rates of detected ghost par-

ticles with IOD-PVRMPP which vary between 0 and

0.098% for seeding density up to 0.05 ppp against 2.92

to 47.74% with MinLOS-MART.

Fig. 10 Evolution of the mean error position inside the vol-
ume as a function of the density of particles.

Fig. 11 Evolution of percentage of number of ghost particles
as a function of the density of particles

Some samples of projections after volume recon-

struction are presented in figure (12) in order to provide

some qualitative results.

(a) MinLOS-MART (b) Reference (c) IOD-PVRMPP

Fig. 12 Comparison of the projections (region with size
64×64) of a reconstructed volume of particles onto a camera
for (a) MinLOS-MART, (b) Reference (c) IOD-PVRMPP for
a 0.05 ppp seeding density level. The images are originally en-
coded with 16 bits unsigned integers and differences between
the images (b) and (c) are difficult to observe.

The results obtained above can be visually observed

in a slice of the reconstructed volumes. In order to

view 3D particles inside volumes and visually compare

the results, Y -axis slices of volumes reconstructed with

0.05 ppp image density using MinLOS-MART and IOD-

PVRMPP methods are extracted. A slice of the recon-

structed volume using MinLOS-MART method shows

several particle position errors like ghost 3D particles
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(red circles) and false-negative 3D particles (blue cir-

cles) as opposed to the IOD-PVRMPP reconstructed

slice that is very close to the reference slice (Fig. 13).

MinLOS-MART (0.05 ppp)

Reference (0.05 ppp)

IOD-PVRMPP (0.05 ppp)

Fig. 13 Y -axis slices issued from volumes reconstructed with
MinLOS-MART and IOD-PVRMPP methods using 0.05 ppp
image density. Green circles represent true particles, red cir-
cles represent ghost particles and blue circles represent non-
reconstructed particles (false-negative particles). The ma-
genta color is derived from the superposition of red and blue
circles.

The features of 3D particles located in the recon-

structed volumes have a direct influence on the quality

of the reconstruction and the cross-correlation to gen-

erate 3D velocity field. In order to see the influence

of the reconstruction quality on the quality of velocity

fields without considering correlation algorithm errors,

the measurement criterion Qc named correlation qual-

ity is used [58]. This criterion is defined as follows:

Qc =

√√√√∑Nvf
i=0 ‖uref (i)− ua(i)‖2∑Nvf
i ‖ur(i)− ua(i)‖2

(30)

where Nvf is the number of positions where the veloc-

ity field is computed, uref the velocity field generated

from the reference volumes (synthetic), ua the analyt-

ical velocity field, and ur the velocity field computed

from the reconstructed volumes.

To do this, data with 0.05 ppp level density is used.

Particles belonging to each pair of successive volumes

follow a simulated sinusoidal movement. The 3D coordi-

nates (xd, yd, zd) of a particle after displacement depend

on its initial coordinates (x, y, z) and are calculated us-

ing the equations xd = A sin(ω z) + C cos(ω y), yd =

B sin(ω x) +A cos(ω z) et zd = C sin(ω y) +B cos(ω x)

with A =
√

3, B =
√

2, C = 1 and ω = 1/20. The

coordinates (U, V,W ) at each position of the velocity

field depend on the coordinates of the particles after

the motion and are calculated as follows:

(U, V,W ) =

(
xd − x
∆t

,
yd − y
∆t

,
zd − z
∆t

)
(31)

with ∆t the temporal step fixed at one voxel.

The IOD-PVRMPP method provides a velocity field

of quality equal to Qc = 0.99 compared to Qc = 0.89

for the MinLOS-MART method. To generate velocity

fields, a multi-pass cross-correlation algorithm devel-

oped in the context of the French VIVE3D project us-

ing the SLIP library is used [60]. The cross-correlation

results were obtained using search windows with dimen-

sion 32×32×32 voxels and an overlap of 75%. Vector

fields were validated by a 5×5×5 voxel local median

filter size. False vectors were replaced by the median

value.

In order to assess the results obtained by calculat-

ing the quality correlation criteria Qc, L2 distance map

D between the velocity field and the reference one were

computed for MinLOS-MART and IOD-PVRMPP. The

results are shown on Fig. 14. They confirm the numer-

ical result obtained with the Qc criterion.

DMinLOS-MART DIOD-PVRMPP

Fig. 14 L2 Distance map D (mm/s) on XY plane, to assess
IOD-PVRMPP and MinLOS-MART methods for 0.05 ppp

level density particles.

Representation of particles via marks takes up very

little space compared to representation inside a 3D ar-

ray volume. Indeed, if, as in our implantation only six

parameter values are associated to a particle, the mem-

ory size of a set of marks characterizing a 3D particle is

equal to 496 bytes. Consequently populations of parti-

cles varying from 100 to 50000 elements used in our ex-

periments need only 0.05 to 24.80 MB storage. In com-

parison, for the MinLOS-MART method, the required

memory is linked to the dimensions 500×500×150 vox-

els of the discrete volume which corresponds to 286 MB

storage. Gain in memory storage for IOD-PVRMPP in-

creases as the size of the volume increases.
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4 Conclusion

In this paper, we have presented a new approach called

IOD-OVRMPP for the reconstruction of a population

of 3D objects, including an initialization procedure, us-

ing the Marked Point Process framework. Rather than

a “voxel-oriented” approach, our work uses an “object-

oriented” approach. It allows the problem to be solved

in a parsimonious way and provides a MAP estima-

tion: the reconstruction of a 3D object set is obtained

by minimizing an energy function thanks to a simu-

lated annealing based on an MHG algorithm. To speed

up the convergence of the simulated annealing, an ini-

tialization method has been developed. It provides the

initial distribution of 3D objects based on the detection

of 2D objects located in projection images. The IOD-

OVRMPP approach works in a continuous space where

2D and 3D objects are identified by real positions. This

mathematical formalism is very suitable for the recon-

struction of sparse solutions since it reconstructs only

objects, unlike voxel-oriented methods of tomographic

reconstruction which use all the voxels to finally provide

a discrete volume.

The proposed approach is applied to the Tomo-PIV

field to reconstruct volumes of 3D particles. The method

is validated on synthetic data. Results show the rele-

vance of the proposed data-driven energy for the recon-

struction of a volume of 3D particles. The method is

compared to an algebraic reconstruction method called

MinLOS-MART. The IOD-PVRMPP method improves

the quality of reconstruction even for high particle den-

sities (up to and even more than 0.05 ppp). The position

error and ghost particle rate are greatly reduced with

IOD-PVRMPP: 3D position error is equal to 0.043 vox-

els, compared to 0.25 voxels with MinLOS-MART for

0.05 ppp particle density. For the same particle density,

the number of ghost particles is approximately 0.1%,

against 47.7% with MinLOS-MART. IOD-PVRMPP al-

so provides a better memory usage: the amount of RAM

used to run the method is less compared to classical vol-

umetric memory usage.

Future work will include the optimization of the

IOD-PVRMPP algorithm to speed up the reconstruc-

tion as well as a full comparison with the Shake the Box

method [52] or the SMTE method for time resolved ac-

quisitions [41]. Then the IOD-PVRMPP method will

be improved in order to handle particle blurring due to

a small depth of field and astigmatism due to imaging

optics. This approach will also be tested in other do-

mains such as digital holography for example, to see its

capacity to reconstruct 3D object volumes using differ-

ent data.

Appendix A Data Driven Energy calculation

details

If the square of equation (4) is developed, the following

result is obtained:

MSE(y |o ) =
∑
s∈S

o2s + p2s − 2osps (32)

The first term of the addition in equation (32) is con-

stant. The data-driven energy defining the likelihood

between the projection of a configuration y and the ob-

served data o = {os}{s∈S} can be written:

Uext(y) =
∑
s∈S

p2s − 2osps (33)

Uext defines the quality of a configuration compared to

the data: the closer the projection of a population of

objects is to the reference image, the lower its energy

value. We show below that this energy can be written

as a sum of first-order and second-order neighborhood

energy terms.

Using equation (5), equation (33) can be written:

Uext(y) =
∑
s∈S


 ∑
yj ,yj→s

pyj→s

2

−2 os

 ∑
yj ,yj→s

pyj→s


(34)

Uext(y) =
∑
s∈S

 ∑
yj ,yj→s

p2yj→s

+2
∑

yj ,yk,j<k
yj→s,yk→s

pyj→s pyk→s


−2 os

 ∑
yj ,yj→s

pyj→s


(35)

Uext(y) =
∑
s∈S

∑
yj ,yj→s

pyj→s
(
pyj→s − 2 os

)
+
∑
s∈S

2
∑

yj ,yk,j<k
yj→s,yk→s

pyj→s pyk→s
(36)

Uext(y) =
∑
yj∈y

∑
s∈S
yj→s

pyj→s
(
pyj→s − 2 os

)
︸ ︷︷ ︸

first−order term

+
∑

yj ,yk,j<k

yj
o∼yk

∑
s∈S

yj→s & yk→s

2pyj→s pyk→s

︸ ︷︷ ︸
second−order term

(37)



16 Riadh Ben Salah et al.

Acknowledgements The current work has been conducted
as part of the AFDAR project, Advanced Flow Diagnostics
for Aeronautical research, funded by the European Commis-
sion program FP7, Grant No. 265695 and also the FEDER
project No. 34754.

References

1. AFDAR: Advanced flow diagnostics for aeronautical re-
search. URL www.afdar.eu

2. Alata, O., Burg, S., Dupas, A.: Grouping/degrouping
point process, a point process driven by geometrical and
topological properties of a partition in regions. Computer
Vision and Image Understanding 115, 1324–1339 (2011)

3. Andersen, A.H., Kak, A.C.: Simultaneous algebraic re-
construction technique (SART): a superior implementa-
tion of the ART algorithms. Ultrasonic imaging 6(1),
81–94 (1984)

4. Atkinson, C.H., Soria, J.: An efficient simultaneous re-
construction technique for tomographic particle image
velocimetry. Experiments in Fluids 47(4-5), 553–568
(2009). DOI 10.1007/s00348-009-0728-0

5. Azencott, R.: Simulated annealing: Parallelization tech-
niques. Springer-Verlag, NY (1992)

6. Baddeley, A.J., Lieshout, M.N.M.V.: Stochastic geom-
etry models in high-level vision. Journal of Ap-
plied Statistics 20(5-6), 231–256 (1993). DOI
10.1080/02664769300000065

7. Belden, J., Truscott, T.T., Axiak, M.C., Techet, A.H.:
Three-dimensional synthetic aperture particle image ve-
locimetry. Measurement Science and Technology 21(12),
125,403 (2010)
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