Skip to main content
Log in

A Nonparametric Statistical Snake Model Using the Gradient Flow of Minimum Probability Density Integration

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Nonparametric statistical snakes, constructed under the independent and identically distributed assumption, are an important class of methods for cluttered image segmentation. However, in application, when object or background contains more than one subregions with different intensity distributions, some state-of-the-art nonparametric statistical snakes often converge to boundaries of some subregions and give a false segmentation. In this paper, we formulate the integration of the minimum of the probability densities inside and outside the active contour as an energy functional and seek to minimize it with our active contour model. The independent and identically distributed assumption is also needed here. However, our presented theoretical analysis and various experimental results demonstrate that the proposed model overcomes the problem of existing ones associated with converging to subregion boundary. In addition, the proposed model requires an explicit and uniform initial condition, and so is more convenient for application. Finally, it does not have the so-called numerical conditioning problem which arises with some existing active contour models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  2. Xu, C., Yezzi, A., Prince, J.L.: On the relationship between parametric and geometric active contours. In: Proceedings of of 34th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Oct, pp. 483–489 (2000)

  3. Chan, T.F., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. Society for Industrial and Applied Mathematics, Philadelphia (2005)

    Book  MATH  Google Scholar 

  4. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  5. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Paragios, N., Mellina-Gottardo, O., Ramesh, V.: Gradient vector flow fast geometric active contours. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 402–407 (2004)

    Article  Google Scholar 

  7. Tang, J., Acton, S.T.: Vessel boundary tracking for intravital microscopy via multiscale gradient vector flow snakes. IEEE Trans. Image Process. 51(2), 316–324 (2004)

    Google Scholar 

  8. Jaouen, V., Gonzalez, P., Stute, S., Guillotean, D., Chalon, S., Buvat, I., Tauber, C.: Variational segmentation of vector-valued image with gradient vector flow. IEEE Trans. Image Process. 23(11), 4773–4785 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, B., Acton, S.T.: Active contour external force using vector field convolution for image segmentation. IEEE Trans. Image Process. 16(8), 2096–2106 (2007)

    Article  MathSciNet  Google Scholar 

  10. Xie, X., Mirmehdi, M.: MAC: magnetostatic active contour model. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 632–647 (2008)

    Article  Google Scholar 

  11. Ghosh, P., Bertelli, L., Sumengen, B., Manjunath, B.S.: A nonconservative flow field for robust variational image segmentation. IEEE Trans. Image Process. 19(2), 478–490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jalba, A.C., Wilkinson, M.H.F., Roerdink, J.B.T.M.: CPM: a deformable model for shape recovery and segmentation based on charged particles. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1320–1335 (2004)

    Article  Google Scholar 

  13. Yang, L., Meer, P., Foran, D.J.: Unsupervised segmentation based on robust estimation and color active contour models. IEEE Trans. Inf. Technol. Biomed. 9(3), 475–486 (2005)

    Article  Google Scholar 

  14. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–684 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chan, T.F., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  16. Wang, B., Gao, X., Tao, D., Li, X.: A unified tensor level set for image segmentation. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40(3), 857–867 (2010)

    Article  Google Scholar 

  17. Zhu, S., Yuille, A.: Region competition: unifying snakes, region growing and bayes/MDL for multiband image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 8(9), 884–900 (1996)

    Google Scholar 

  18. Yezzi, A., Tsai, A., Willsky, A.: A fully global approach to image segmentation via coupled curve evolution equations. J. Vis. Commun. Image Represent. 13, 195–216 (2002)

    Article  Google Scholar 

  19. Unal, G., Yezzi Jr., A., Krim, H.: Information-theoretic active polygons for unsupervised texture segmentation. Int. J. Comput. Vis. 62(3), 199–220 (2002)

    Article  Google Scholar 

  20. Ronfard, R.: Region-based strategies for active contour models. Int. J. Comput. Vis. 13(2), 229–251 (1994)

    Article  Google Scholar 

  21. Gokcay, E., Principe, J.C.: Information theoretic clustering. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 158–171 (2002)

    Article  Google Scholar 

  22. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(11), 721–741 (1984)

    Article  MATH  Google Scholar 

  23. Paragios, N., Deriche, R.: Geodesic active regions: a new framework to deal with frame partition problems in computer vision. J. Vis. Commun. Image Present. 13(1), 249–268 (2002)

    Article  Google Scholar 

  24. Li, C., Kao, C., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, C., Huang, R., Ding, Z., Gatenby, J.C., Metaxas, D.N., Gore, J.C.: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process. 20(7), 2007–2016 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, K., Zhang, L., Lam, K.-M., Zhang, D.: A level set approach to image segmentation with intensity inhomogeneity. IEEE Trans. Cybern. 46(2), 546–557 (2016)

    Article  Google Scholar 

  27. Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Darolti, C., Mertins, A., Bodensteiner, C., Hofmann, U.: Local region descriptors for active contours evolution. IEEE Trans. Image Process. 17(12), 2275–2288 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Phumeechanya, S., Pluempitiwiriyawej, C., Thongvigitmanee, S.: Iris segmentation: detecting pupil, limbus and eyelids. In: Proceedings of International Conference on Image Processing, pp. 654–656 (2010)

  30. Mory, B., Ardon, R.: Fuzzy region competition: a convex two-phase segmentation framework. In: Proceedings on Scale Space and Variational Methods, pp. 214–226 (2007)

  31. Sundaramoorthi, G., Soatto, S., Yezzi, A.: Curious snakes: a minimum latency solution to the cluttered background problem in active contours. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2855–2863 (2010)

  32. Michaelovich, Y., Rathi, Y., Tannenbaum, A.: Image segmentation using active contours driven by the Bhattacharyya gradient flow. IEEE Trans. Image Process. 16(11), 2787–2801 (2007)

    Article  MathSciNet  Google Scholar 

  33. Kim, J., Fisher, J., Yezzi, A., Cetin, M., Willsky, A.: A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Trans. Image Process. 14(10), 1486–1502 (2005)

    Article  MathSciNet  Google Scholar 

  34. Wu, H., Appia, V., Yezzi, A.: Numerical conditioning problems and solutions for nonparametric iid statistical active contours. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1298–1311 (2013)

    Article  Google Scholar 

  35. Panjwani, D., Healey, G.: Markov random field models for unsupervised segmentation of textured color images. IEEE Trans. Pattern Anal. Mach. Intell. 17(10), 939–954 (1995)

    Article  Google Scholar 

  36. Krishnamachari, S., Chellappa, R.: Multiresolution Gauss–Markov random-field models for texture segmentation. IEEE Trans. Image Process. 6(2), 251–267 (1997)

    Article  Google Scholar 

  37. Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S.: Dynamic textures. Int. J. Comput. Vis. 51(2), 91–109 (2003)

    Article  MATH  Google Scholar 

  38. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kullback, S.: Information Theory and Statistics. Wiley, New York (1959)

    MATH  Google Scholar 

  40. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kimmel, R.: Fast edge integration. In: Osher, S., Paragios, N. (eds.) Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, Berlin (2003)

    Google Scholar 

  42. Kimmel, R., Bruckstein, A.M.: Regularized Laplacian zero crossing optimal edge integrators. Int. J. Comput. Vis. 53(3), 225–243 (2003)

    Article  Google Scholar 

  43. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 35, 99–109 (1943)

    MathSciNet  MATH  Google Scholar 

  44. Brown, E.S., Chan, T.F., Bresson, X.: Completely convex formulation of the Chan-Vese image segmentation model. Int. J. Comput. Vis. 98, 103–121 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)

    Article  Google Scholar 

  46. Adalsteinsson, D., Sethian, J.: A fast level set method for propagating interfaces. J. Comput. Phys. 118, 269–277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  47. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)

    Article  MATH  Google Scholar 

  49. Dubrovina-Karni, A., Rosman, G., Kimmel, R.: Multi-region active contours with a single level set function. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1585–1601 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yunmei Chen for her helpful comments on this paper. This work was supported by the National Natural Science Foundation of China (Grant No. 11471001) and the Fundamental Research Funds for the Central Universities. We are grateful to the anonymous reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Deng, T. A Nonparametric Statistical Snake Model Using the Gradient Flow of Minimum Probability Density Integration. J Math Imaging Vis 60, 1150–1166 (2018). https://doi.org/10.1007/s10851-018-0801-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0801-5

Keywords

Navigation