Skip to main content
Log in

Topological Fidelity and Image Thresholding: A Persistent Homology Approach

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We develop a method based on persistent homology to analyze topological structure in noisy digital images. The method returns threshold(s) for image segmentation to represent inherent topological structure as well as estimates of topological quantities in the form of Betti numbers. Two motivating data sets are scans of binary alloys and firn, the intermediate stage between snow and ice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bendich, P., Edelsbrunner, H., Kerber, M.: Computing robustness and persistence for images. IEEE Trans. Vis. Comput. Graph. 16(6), 1251–1260 (2010)

    Article  Google Scholar 

  2. Beucher, S.: Segmentation tools in mathematical morphology. In: Handbook of Pattern Recognition and Computer Vision, pp. 443–456. World Scientific (1993)

  3. Beucher, S.: The watershed transformation applied to image segmentation. In: Proc. 10th Pfefferkorn Conf. on Signal and Image Processing in Microscopy and Microanalysis, pp. 299–314. Cambridge, UK, 16–19 September 1991

  4. Biasotti, S., De Floriani, L., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C., Papaleo, L., Spagnuolo, M.: Describing shapes by geometrical–topological properties of real functions. ACM Comput. Surv. (CSUR) 40(4), 12 (2008)

    Article  Google Scholar 

  5. Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discrete Comput. Geom. 42(1), 71–93 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chung, M.K., Hanson, J.L., Ye, J., Davidson, R.J., Pollak, S.D.: Persistent homology in sparse regression and its application to brain morphometry. IEEE Trans. Med. Imaging 34(9), 1928–1939 (2015)

    Article  Google Scholar 

  7. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Courville, Z., Hörhold, M., Hopkins, M., Albert, M.: Lattice-Boltzmann modeling of the air permeability of polar firn. J. Geophys. Res. Earth Surf. 115(F4), F04032 (2010). https://doi.org/10.1029/2009JF001549

    Article  Google Scholar 

  9. d’Amico, M., Frosini, P., Landi, C.: Using matching distance in size theory: a survey. Int. J. Imaging Syst. Technol. 16(5), 154–161 (2006)

    Article  Google Scholar 

  10. Di Stefano, L., Bulgarelli, A.: A simple and efficient connected components labeling algorithm. In: International Conference on Image Analysis and Processing, 1999. Proceedings, pp. 322–327. IEEE (1999)

  11. Dotko, P., Wanner, T.: Topological microstructure analysis using persistence landscapes. Phys. D: Nonlinear Phenom. 334, 60–81 (2016). (Topology in Dynamics, Differential Equations, and Data)

    Article  MathSciNet  Google Scholar 

  12. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Soc., Providence (2010)

    MATH  Google Scholar 

  13. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S., Singh, A.: Confidence sets for persistence diagrams. Ann. Stat. 42(6), 2301–2339 (2014). https://doi.org/10.1214/14-AOS1252

    Article  MathSciNet  MATH  Google Scholar 

  15. Frosini, P.: Towards an observer-oriented theory of shape comparison. In: Ferreira, A., Giachetti, A., Giorgi, D. (eds.) Eurographics Workshop on 3D Object Retrieval, pp. 5–8. The Eurographics Association, Delft (2016). https://doi.org/10.2312/3dor.20161080

    Google Scholar 

  16. Frosini, P., Landi, C.: Persistent betti numbers for a noise tolerant shape-based approach to image retrieval. Pattern Recognit. Lett. 34(8), 863–872 (2013). (Computer Analysis of Images and Patterns)

    Article  Google Scholar 

  17. Gameiro, M., Hiraoka, Y., Izumi, S., Kramar, M., Mischaikow, K., Nanda, V.: A topological measurement of protein compressibility. Jpn. J. Ind. Appl. Math. 32(1), 1–17 (2014). https://doi.org/10.1007/s13160-014-0153-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Gameiro, M., Mischaikow, K., Wanner, T.: Evolution of pattern complexity in the Cahn–Hilliard theory of phase separation. Acta Mater. 53(3), 693–704 (2005)

    Article  Google Scholar 

  19. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall Inc, Upper Saddle River (2006)

    Google Scholar 

  21. Gorsse, S., Ouvrard, B., Gouné, M., Poulon-Quintin, A.: Microstructural design of new high conductivity-high strength Cu-based alloy. J. Alloys Compd. 633, 42–47 (2015)

    Article  Google Scholar 

  22. He, L.F., Chao, Y.Y., Suzuki, K.: An algorithm for connected-component labeling, hole labeling and Euler number computing. J. Comput. Sci. Technol. 28(3), 468–478 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaczynski, T., Mischaikow, K.M., Mrozek, M.: Computational Homology, vol. 157. Springer, New York (2004)

    MATH  Google Scholar 

  24. Kaempfer, T.U., Hopkins, M.A., Perovich, D.K.: A three-dimensional microstructure-based photon-tracking model of radiative transfer in snow. J. Geophys. Res. Atmos. 112(D24), D24113 (2007). https://doi.org/10.1029/2006JD008239

    Article  Google Scholar 

  25. Keegan, K., Albert, M.R., Baker, I.: The impact of ice layers on gas transport through firn at the north greenland eemian ice drilling (neem) site, greenland. The Cryosphere 8(5), 1801–1806 (2014). https://doi.org/10.5194/tc-8-1801-2014

    Article  Google Scholar 

  26. Kramar, M., Goullet, A., Kondic, L., Mischaikow, K.: Persistence of force networks in compressed granular media. Phys. Rev. E 87, 042,207 (2013). https://doi.org/10.1103/PhysRevE.87.042207

    Article  Google Scholar 

  27. Kramr, M., Levanger, R., Tithof, J., Suri, B., Xu, M., Paul, M., Schatz, M.F., Mischaikow, K.: Analysis of Kolmogorov flow and Rayleigh–Bénard convection using persistent homology. Phys. D: Nonlinear Phenom. 334, 82–98 (2016)

    Article  Google Scholar 

  28. Kurlin, V.: A fast persistence-based segmentation of noisy 2D clouds with provable guarantees. Pattern Recognit. Lett. 83(Part 1), 3–12 (2016). (Geometric, topological and harmonic trends to image processing)

    Article  Google Scholar 

  29. MATLAB: R2016b. The MathWorks Inc., Natick (2016)

  30. Matzl, M., Schneebeli, M.: Measuring specific surface area of snow by near-infrared photography. J. Glaciol. 52(179), 558–564 (2006)

    Article  Google Scholar 

  31. Mischaikow, K., Nanda, V.: Morse theory for filtrations and efficient computation of persistent homology. Discrete Comput. Geom. 50(2), 330–353 (2013). https://doi.org/10.1007/s00454-013-9529-6

    Article  MathSciNet  MATH  Google Scholar 

  32. Nanda, V.: Perseus, the persistent homology software. http://www.sas.upenn.edu/~vnanda/perseus (2013)

  33. Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11(285–296), 23–27 (1975)

    Google Scholar 

  34. Robins, V., Saadatfar, M., Delgado-Friedrichs, O., Sheppard, A.P.: Percolating length scales from topological persistence analysis of micro-ct images of porous materials. Water Resour. Res. 52(1), 315–329 (2016). https://doi.org/10.1002/2015WR017937

    Article  Google Scholar 

  35. Sahoo, P.K., Soltani, S., Wong, A.K.: A survey of thresholding techniques. Comput. Vis. Graph. Image Process. 41(2), 233–260 (1988)

    Article  Google Scholar 

  36. Schneebeli, M., Sokratov, S.A.: Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity. Hydrol. Process. 18(18), 3655–3665 (2004)

    Article  Google Scholar 

  37. Sezgin, M., et al.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electr. Imaging 13(1), 146–168 (2004)

    Article  MathSciNet  Google Scholar 

  38. Snidaro, L., Foresti, G.: Real-time thresholding with Euler numbers. Pattern Recognit. Lett. 24(910), 1533–1544 (2003). https://doi.org/10.1016/S0167-8655(02)00392-6

    Article  MATH  Google Scholar 

  39. Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Secaucus (2003)

    MATH  Google Scholar 

  40. Suzuki, K., Horiba, I., Sugie, N.: Linear-time connected-component labeling based on sequential local operations. Comput. Vis. Image Underst. 89(1), 1–23 (2003)

    Article  MATH  Google Scholar 

  41. Vaitkus, M.: Grayscale and color image segmentation using computational topology. In: Proceedings of CESCG (2013)

  42. Xia, K., Wei, G.W.: Persistent topology for cryo-EM data analysis. Int. J. Numer. Methods Biomed. Eng. (2015). https://doi.org/10.1002/cnm.2719

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Stéphane Gorsse (Bordeaux INP & ICMCB-CNRS), and Kaitlin Keegan (University of Copenhagen) for their generous sharing of data (Figs. 12, 13, respectively). This work was supported by NSF DMS 0955604.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Min Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, YM., Day, S. Topological Fidelity and Image Thresholding: A Persistent Homology Approach. J Math Imaging Vis 60, 1167–1179 (2018). https://doi.org/10.1007/s10851-018-0802-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0802-4

Keywords

Navigation