arXiv:1802.01895v4 [math.NA] 31 Oct 2018

Unified Models for Second-Order TV-Type
Regularisation in Imaging

A New Perspective Based on Vector Operators

Eva-Maria Brinkmann!, Martin Burger?, Joana Sarah Grah?

! Applied Mathematics: Institute for Analysis and Numerics, Westfilische Wilhelms-Universitt
Miinster, Germany,
e.brinkmann@wwu.de
2Department Mathematik, Friedrich-Alexander Universitit Erlangen-Niirnberg, Germany,
martin.burger@fau.de
3Institute for Computer Graphics and Vision, Graz University of Technology, Austria,
joana.grah@icg.tugraz.at

1st November 2018

Abstract

We introduce a novel regulariser based on the natural vector field operations gradi-
ent, divergence, curl and shear. For suitable choices of the weighting parameters
contained in our model it generalises well-known first- and second-order TV-type
regularisation methods including TV, ICTV and TGV? and enables interpolation
between them. To better understand the influence of each parameter, we characterise
the nullspaces of the respective regularisation functionals. Analysing the continuous
model, we conclude that it is not sufficient to combine penalisation of the divergence
and the curl to achieve high-quality results, but interestingly it seems crucial that the
penalty functional includes at least one component of the shear or suitable bound-
ary conditions. We investigate which requirements regarding the choice of weighting
parameters yield a rotational invariant approach. To guarantee physically meaning-
ful reconstructions, implying that conservation laws for vectorial differential operators
remain valid, we need a careful discretisation that we therefore discuss in detail.

1 Introduction

In the beginning of the 1990s, Rudin, Osher and Fatemi revolutionised image processing
and in particular variational methods using sparsity-enforcing terms by introducing total
variation (TV) regularisation [33|. Since then, it has been serving as a state-of-the-art
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concept for various imaging tasks including denoising, inpainting, medical image recon-
struction, segmentation and motion estimation. Minimisation of the TV functional, which
for u € L'(Q) is given by

TVa(u) :=  sup /u div(yp) dz, (TV*)
peC=(Q,R?) JQ
llelloo<a

provides cartoon-like images with piecewise constant areas that are separated by sharp
edges. Note that here and in the following  C R? is an open, bounded image domain
with Lipschitz boundary and a > 0. With regard to the TV model, it is a well-known fact
that there are two major drawbacks inherent in this method: on the one hand solutions
typically suffer from a loss of contrast. On the other hand they often exhibit the so-
called ’staircasing-effect’, where areas of gradual intensity transitions are approximated by
piecewise constant regions separated by sharp edges such that the intensity function along
a line profile in 1D is reminiscent of a staircase. To address the former deficiency, Osher
and coworkers proposed the use of Bregman iterations [30], a semi-convergent iterative
procedure that allows for a regain of contrast and details in the recovered images. More
recently, various debiasing techniques [20, 14, 21| have been introduced to compensate for
the systematic error of the lost contrast. In this paper, we shall however focus on the
latter issue. To this end, we propose a novel regularisation functional composed of natural
vector field operators that is capable of providing solutions with sharp edges and smooth
transitions between intensity values simultaneously. This approach certainly stands in the
tradition of several modified TV-type regularisation functionals that have been contrived
to cure the staircasing effect by incorporating penalisation of second-order total variation,
which is given by (cf. for example [34, 4])

TVZ(u) = sup /u div?(p) du. (TV2%)
peC (Q,Sym?(R?)) JQ
ll#lloo <
Here, Sym®(R?) denotes the set of second-order symmetric tensor fields on R?, i.e. the set
of symmetric 2 x 2-matrices. Moreover, for a symmetric 2 x 2-matrix ¢, div(p) € C3(Q, R?)

and div?(p) € Cy(€2) are defined by

2
. 0p;j
(dive): = D5,
j:
2
. 8 3290“ 82<P11 a28022 824,012 .
2(p) = 2 Yo 2 . 2
div(p) ; 8:6% S+ ;j@xiaxj o2 + 3 + 011014 (div2)

Let us briefly recall the most popular instances of second-order TV-type regularisers in
a formal way. Note first that for u € W'(Q), the (first-order) total variation functional
can be rephrased as

_ /Q IVl da, (TV)



where here and in the following we always denote by Vu the gradient of u in the sense of
distributions and by | - | the Euclidean norm. Against the backdrop of (TV), Chambolle
and Lions [16] proposed to compose regularisers for image processing tasks by coupling
several convex functionals of the gradient by means of the infimal convolution, defined for
two functionals as

J1(uw)OJs(u) = i£12f J1(u — ug) + Jo(ug). (IC)

In particular, they suggested to use a combination of first and second derivatives

ICTV(a,a0)(u) =  inf @ oq/ |\Vu — Vug| dz + ao/ |V (Vug) | dz, (ICTV)
Q 0

u2€W2,1

where here and in the following a;, 2 > 0 and we denote by | - | the Frobenius norm
whenever the input argument is a matrix. Following this train of thought, Chan, Esedo-
glu and Park [18| proposed another variant of such a composed regularisation functional,
namely

u€W21(Q

CEP (4, ,a0)(u) =  inf )a1/ |Vu — Vuy| do + ao/ | div (Vug)| da. (CEP)
0 Q

More recently, Bredies, Kunisch and Pock [11] suggested to generalise the TV functional to
the higher-order case in a different way. In comparison to the second-order TV functional
(TV2*), they further constrained the set over which the supremum is taken by imposing an
additional requirement on the supremum norm of the divergence of the symmetric tensor
field. Thus, they introduced the total generalised variation (TGV) functional, which in the
second-order case is given by

TGV(zal,ao)(u) = sup / u div?(y) dz,
Q

pEBy

Bo = {¢ € C*(Q, Sym*(R?)) : [|¢]le < axg, [|div(e)lloc < 1}

(TGV*)

Considering the corresponding primal definition of this functional, we obtain the following
unconstrained formulation:

TGV? y(u) = inf ay /Q \Vu —w| do + ao/ﬂ |E(w)| dx. (TGV)

anao weWL1(Q,R2)

In this case one naturally obtains a minimiser for w in the space BD(2) of vector fields of
bounded deformation, i.e. w € L'(Q, R?) such that the distributional symmetrised deriv-
ative £(w) given by

aw):%(Vw+Vmﬁ) (symC)

is a Sym?(R?)-valued Radon measure. Note that we will very briefly recall the definition
of Radon measures and some related notions in the subsequent section. Looking closely
at the (TGV) functional, similarities and differences to the other second-order TV-type
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regularisation functionals introduced so far are revealed: all these approaches have in
common that they employ the infimal convolution to balance between enforcing sparsity
of the gradient of the function u and sparsity of some differential operator of a vector field
resembling the gradient of u. Thus, they locally emphasise penalisation of either the first-
or the second-order derivative information, which will become visually apparent in Section
6, Figures 6 and 7. As a consequence, in comparison to the original TV regularisation, all
the previously recalled second-order models introduce an additional optimisation problem.
On the other hand, we can already observe a difference between the former two models and
the latter approach: while in the ICTV and the CEP functional the gradient respectively
the divergence operator is applied to the gradient of us, the symmetrised derivative in
the TGV functional is applied to a vector field w that does not necessarily have to be a
gradient field. We will come back to this point later on. In the course of this paper, we
will moreover show that our novel functional, which will be introduced below, can be seen
as a generalisation of all aforementioned first- and second-order TV-type models, since for
suitable parameter choices we (in the limit) obtain each of these approaches as a special
case. This way, we do not only shed a new light on the relation of these well-established
regularisation functionals and provide a means of interpolating between them, but we will
also discuss properties of further second-order TV-type approaches that can be obtained
by different weightings between the natural vector field operators our model builds upon.
Let us now introduce our novel approach in more detail. In [13], we proposed a vari-
ational model for image compression that was motivated by earlier PDE-based methods
[28, 29]: essentially, images are first encoded by performing edge detection and by saving
the intensity values at pixels on both sides of the edges and this data is then decoded by
performing homogeneous diffusion inpainting. In this context, our key observation was
that the encoding step amounts to the search for a suitable image representation by means
of a vector field whose non-zero entries are concentrated at the edges of the image to be
compressed. Therefore, we conceived a minimisation problem that directly promotes such
a sparse vector field v and at the same time guarantees a certain fidelity of the decoded

image u to the original image f:
1

5/ (u—f)* do+ 04/ |v| dz — min subject to  div(Vu —v) =0,
Q Q u,v

or equivalently, defining w = Vu — v,

1/ (u— f)° dm—l—oz/ |Vu —w|dx + xo (div(w)) — min, (SVF1)
Q Q

2 u,W
where xo denotes the characteristic function of the set of divergence-free vector fields w.
Figure 1 illustrates the sparse vector fields (SVF) method for image compression in an
intuitive way. The input image f (Figure 1, left image) is encoded via the two components
of the vector field v (second and third image) with the corresponding decoded image u
(right image) satisfying div(Vu — v) = 0. Looking at these results, we concluded that the
support of v (fourth image) indeed corresponds well to an edge indicator, confirming the
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Figure 1: Tllustration of the SVF image compression approach (SVF1) for o =

&l
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relation to [28, 29]. Moreover, we observed that on the one hand, our method preserves
the main edges well while on the other hand, the decoded images (cf. Figure 1, right) ex-
hibit a higher spatial smoothness in comparison to the original input images (cf. Figure 1,
left). Since this increased smoothness did not come along with characteristic artefacts like
the staircasing-effect in case of the TV regularisation, this seemed attractive for further
reconstruction tasks. Therefore, we already back then considered the SVF model for ho-
mogeneous diffusion inpainting-based image denoising. In order to obtain higher flexibility,
we reformulated the minimisation problem to

%/ﬂ(u_f)de+a/Q|Vu—w| dx+oz\/5/ﬂ|div(w)| dx—>151}ﬂn (SVF)

with > 0. In this form the (SVF) model reveals strong similarities to the (CEP) model
with the only difference that w does not necessarily have to be a gradient field. However, we
had to realise that the denoising performance of this model was not convincing, since point
artefacts were created at reasonable choices of the regularisation parameter (cf. [13, Fig.
5]). In particular, these point artefacts are also apparent in the second image of Figure 2 in
Section 3.1. As we will elaborate on in greater detail in Section 3, these artefacts are indeed
inherent in this method. Against the backdrop of the Helmholtz decomposition theorem,
stating that every vector field can be orthogonally decomposed into one divergence-free
component and a second curl-free one, we proposed in [13] to extend the SVF model by
incorporating penalisation of the curl of w. However, as we shall dwell on in Section 4,
such an extended model still had not yet provided satisfactory results, since the point
artefacts could indeed be reduced, but were still visible. Hence, we concluded that further
adjustments to our model were needed. Inspired by the idea to combine penalisations of
divergence, curl and shear to regularise motion flow fields [35], we eventually contrived the
following image denoising model, which (dependent on the weights chosen) enforces a joint
vector operator sparsity (VOS) of divergence, curl and the two components of the shear:

VB curl(w)

1 u— f)?dr+a u—w|dr + « VB, div(w) r — min,
2/9( ) dx + /Q|V | dx + %S?Ewg dr — (VOS)



where o > 0 is a regularisation parameter in the classical sense while the §; > 0 are
determining the specific form of the regularisation functional.

In this paper, we will show results for image denoising, but similar to existing TV-type
regularisers our novel approach is not limited to this field of application, but can rather
be used as a regulariser for a large variety of image reconstruction problems. To apply the
(VOS) model in the context of a different imaging task, the squared L?-norm would have
to be replaced by a suitable distance measure D(Au, f), where A denotes the bounded
linear forward operator between two Banach spaces corresponding to the reconstruction
problem to be solved. The fidelity term D(Aw, f) would have to be chosen in dependence
on the expected noise characteristics and specific application as it is common practice in
variational modelling (cf. [15, 6]). However, for the sake of simplicity and to provide a
good intuition for the effects of our novel regulariser on the reconstruction result, we will
adhere to image denoising for the remainder of this paper.

To summarise our contributions, we provide a way of looking at well-established TV-
type regularisation methods from a new angle. We introduce a functional that generalises
both our model presented in [13] and the methods discussed above, formulated by applying
sparsity constraints to common natural differential vector field operators. In contrast to
improving state-of-the-art imaging methods, we rather focus on a sound mathematical
analysis of our regulariser incorporating analysis of the nullspaces, which allows us to
draw conclusions on optimal parameter combinations. Even more, we investigate under
which conditions imposed on the weighting parameters we obtain rotational invariance.
We also show that we can yield competitive denoising results sharing the ability of second-
order models to reconstruct sharp edges and smooth intensity transitions simultaneously.
Moreover, we highlight the fact that our model is able to interpolate between (ICTV) and
(TGV) by only modifying one parameter. We also include a discussion on our discretisation,
which is different from the one for the latter models, but has its own merits with respect
to compliance with conservation laws.

Particularly, the remainder of this paper is organised as follows: In the subsequent
section we very briefly recall some notions in the context of Radon measures relevant for
the further course of this work. Afterwards, exact definitions of the differential operators
included in the (VOS) model will be stated in Section 3. We will investigate both the-
oretically and practically how regularisation where only one (; is non-zero affects image
reconstruction. In fact, all of the four resulting cases will involve certain characteristic
artefacts that can be rigorously explained by studying the corresponding nullspaces of the
regulariser. As we will show in Section 4, the VOS model is indeed capable of produ-
cing denoising results with sharp edges and smooth transitions between intensity values
simultaneously at suitable choices of the weighting parameters. Even more, a rigorous
discussion and analysis of this model will reveal further properties and will pave the way
for the insight that our novel approach is a means of unifying the well-known first- and
second-order TV-type models introduced above and as such it naturally offers possibilities
for interpolation between them. In Section 5, the discretisation of our model is explained
in detail, as it is not straightforward to choose due to the various vector field operators
involved. We compare our specific type of discretisation with the one in [11] and justify
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our choice by showing that we comply with various conservation laws. In Section 6, we
briefly discuss the numerical solution of our model, compare the best result we can obtain
to state-of-the-art methods illustrating that the proposed approach can indeed compete
with those of existing second-order TV-type models. We furthermore present statistics on
how various parameter combinations affect reconstructions with respect to different quality
measures. We conclude the paper with a summary of our findings and future perspectives
in Section 7.

2 Preliminaries

In the previous section we have introduced the total variation of a function u € L'(Q) as

TV(u) =  sup /u div(p) dx.
peC=(QR2) JQ
llelloo <1

On this basis one defines the space of functions of bounded variation by
BV(Q) = {u € L'(Q) : TV(u) < oo},
which equipped with the norm
[ullzy = flully + TV (u)

constitutes a Banach space. It is a well-known fact (cf. e.g. [3], Chapter 2) that for
u € BV(Q) the distributional gradient Vu of u can be identified with a finite vector-
valued Radon measure, which can be characterised in the following way (cf. e.g. [1],
Chapter 1): Let B(Q2) denote the Borel o-algebra generated by the open sets in 2. Then
we call a mapping p: B(Q) — RY, d > 1, an Ré-valued, finite Radon measure if u()) = 0
and p is o-additive, i.e. for any sequence (A, )nen of pairwise disjoint elements of B(£2) it
holds that (22, An) = > oo u(A,). Moreover, we denote the space of R-valued finite
Radon measures by

M(Q,RY) = {u: B(Q) — R?: p1 is R%valued, finite Radon measure}.

By means of the Riesz-Markov representation theorem the space of the R%-valued finite
Radon measures can be identified with the dual space of Cy(€2, R?) under the pairing

d
(o pt) = Z/Qsoi dp;  for ¢ € Co(Q,RY).
=1

Consequently, we equip the space of the R%valued finite Radon measures with the dual
norm

d

oz = _sw (= s 3 [ pidn
PECH(QLRY) weCH(Q,RY) =7 JQ
[lelloo <1 [0 <1



yielding a Banach space structure for M(Q, R%). Now taking into account that for u €
BV(Q) the distributional gradient is a finite R?-valued Radon measure we can consider

IVullm@rey = sup  [(p, Vu|.
©ECH(Q,R?)
lllloa<1

By the density of the space of test functions C2°(€2) in Cy(£2), we moreover obtain the
following identity:

|Vullpmry = sup  [(p,Vu)| = sup / udiv(p) dz = TV (u),
PeC(QR?) peC®(Q,R2) JQ
[lelloo <1 [lelloo <1

where the second equality results from the definition of the distributional gradient. We thus
see that for u € BV (2) its total variation equals just the Radon norm of its distributional
gradient. For this reason an alternative approach towards the definition of the space
of bounded variation characterises functions u € L'(2) as elements of BV (Q) if their
distributional gradient is representable by a finite R?%valued Radon measure. However,
there also exists a dissimilarity between ||Vul| p(or2) and TV (u): while by its characteristic
as a norm the former can only attain values in [0, c0), the latter can not only be defined
for functions in BV (), but also for any function in L'(£2), since it can equal infinity. We
will come back to this point shortly.

In view of the previously summarised insights it seems natural to implement the infimal
convolution to balance between enforcing sparsity of the distributional gradient of v and
some differential operator of a finite R%-valued Radon measure w resembling Vu by means
of Radon norms. In the following, we will thus pursue this approach. In doing so, we
however will slightly abuse notation by extending the Radon norm to a broader class of
generalised functions similar to TV that is defined for a broader class of functions than the
actual Radon norm of the distributional gradient. Here, we will adhere to the notation of
the Radon norm and just set it to infinity whenever the argument is no finite R%-valued
Radon measure, but only an element of the more general class of distributions.

3 Natural Differential Operators on Vector Fields

In Section 1 we recalled the (SVF) model for image denoising and already mentioned that
due to point artefacts the obtained denoising results were unsatisfactory. Nevertheless, we
decided to adhere to the idea of realising penalisation of second-order derivative information
by applying natural vector operators to a two-dimensional vector field w resembling the
gradient of u. Against the backdrop of the Helmholtz respectively the Hodge decomposition
theorem and inspired by the work of Schnérr [35], the differential operators we are going to
consider besides the divergence are the curl and the two components of the shear. In this
section, we first give precise definitions of these operators in 2D. In a next step, we then
reexamine the SVF model and moreover consider three alternatives, where the divergence



operator is replaced by one of the aforementioned natural vector operators, namely the
curl respectively one component of the shear. We show denoising results for the respective
models revealing that each regulariser leads to very distinct artefacts that we can explain
rigorously by analysing the corresponding nullspaces.

3.1 Differential Operators on 2D Vector Fields

The curl is traditionally defined for three-dimensional vector fields and there is no unique
way to define it in two dimensions. We chose the following definition of the curl of a 2D
vector field z:

. (922 821

curl(z) = — — — (curl)

B 81’1 8x2 ’
The definition of the divergence is well-known and is given as

. 621 i 822

le(Z') = 8_1’1 8_33‘2

(div)
As mentioned in Section 1, incorporating the shear as a component of a sparse regulariser
for vector fields has first been introduced by Schnérr in [35]. It consists of two components,
each of which we consider separately. Their definitions also differ slightly in the literature
and we decided to choose the following two:

0z 0z
0 0

3.2 Sparsity of Scalar-Valued Natural Differential Operators

Sparse curl Sparse div Sparse sh Sparse sha

Figure 2: Reconstruction of piecewise affine test image using (gSVF) for different vector operators
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In Figure 2, we can see how enforcing sparsity of one of the four different aforementioned
scalar-valued natural vector operators applied to the vector field w in (SVF) changes the
reconstruction u. More precisely, we consider the model

1

2 . .
5 /Q(u — ) de + we./\ilr(lsf),RQ) ol Vu — wl| pmeo,r2y + a\/BHS(w)HM(Q) — uer%%?m, (gSVF)

where S corresponds to one of the vector field operators defined in (curl) - (sh2). Here
and in the following we will slightly abuse notation and write derivatives of the measure
w, which are however to be interpreted in a distributional sense. We first identify S(w)
with the linear functional

p € Cr(Q) — /QS*go(x) - dw.

If this linear functional is bounded in the predual space of M(£2), the space of continuous
functions with compact support, then we can identify it with a Radon measure S(w) and
define ||S(w)||m(q), otherwise we set it to infinity.

In order to understand the appearance of artefacts as above, it is instructive to study
the nullspaces of the differential operators, as the following lemma shows, providing a result
similar to [5]:

Lemma 1. Let R : L*(Q) — RU{+o00} be a convez absolutely one-homogeneous functional,
i.e. R(cu) = |c|R(u) Ve € R. Then for each uy € L*(Q) with R(ug) = 0 we have

R(u+uo) = R(u), ¥ ue LXQ). (1)

Moreover, let f = fo+ g with R(fo) = 0 and [, fog dx = 0. Then the minimiser i of

1 ) .
slu— 71+ aR(w) — min 2)

is given by U = fo+ u. with [, fou. dz =0 and

s = gll2 = min{ado, |lgll2},  R(u.) < R(g) — %min{oﬁxo? lgll2}*,
where \g 1s the smallest positive eigenvalue of R.
Proof. Convexity and positive homogeneity imply a triangle inequality, hence
R(u) — R(—up) < R(u+up) < R(u) + R(uo),

and since R(ug) = R(—ug) = 0, we conclude R(u + ug) = R(u).
Now consider the variational model (2) and write u = ¢fo+v with [, vfy dz = 0. Then
we have

1 1 1
Sl = fI3+ aR(w) = Slie = Dfoll + 5o = gl + aR(w).
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The first term is minimised for ¢ = 1 and the second for v = u, with u, being the solution
of

1

plu—glB+aRw) > min
It remains to verify that indeed fQ Uy fo dr = 0. Since the Fréchet subdifferential of the
functional to be minimised is the sum of the Fréchet derivative of the first term and the
subdifferential of the regularisation term (cf. e.g. [32, Theorem 23.8]), the solution w,
satisfies the optimality condition u, = g+ ap, for p, € OR(u,). We refer to [22, Chapter I,
Section 5| for a formal definition of the subdifferential. Since by definition of a subgradient
of R

/ pofo dz < R(fo) = 0. / po(—fo) de < R(—fo) =0,
Q Q

we obtain the orthogonality relation because fQ gfo dx = 0. The lower bound on ||u, — g||2
follows from a result in [5, Section 6|, the upper bound on the regularisation follows from
combining this estimate with

1 *
Sl = gll3 + aR(w) < aR(g)

which is due to the fact that wu, is a minimiser of the functional with data g. O

Lemma 1 has a rather intuitive interpretation: while the nullspace component with
respect to R in the signal is unchanged in the reconstruction, the part orthogonal to
the nullspace is changed. Indeed this part is shrunk in some sense, u, has a smaller
value of the regularisation functional than g. Hence, when rescaling the resulting image
for visualisation, the nullspace component is effectively amplified. As a consequence, we
proceed to a study of nullspaces for the different models with

R(u) = werth e IV = w|| pmzz) + VBIS )| mee)-

e Let S = curl and choose u € C?(Q), then we can set w = Vu and since the curl
of the gradient vanishes, we obtain the infimum at zero. By a density argument R
vanishes on L?(f2). Hence, Lemma 1 with g = 0 shows that the data f are exactly
reconstructed by .

e Let S = div, which exactly resembles (SVF), and we can observe the point
artefacts described above (cf. Figure 2, second image). Those are more diffi-
cult to be understood from the nullspace, which consists of harmonic functions
(w = Vu, div(w) = 0). The latter is less relevant however for discontinuous func-
tions, which are far away from harmonic ones. We rather expect to have a divergence
of w being sparse, i.e. a linear combination of Dirac d-distributions. Hence, with this
structure of Au = div(w) the resulting u would be the sum of a harmonic function
and a linear combination of fundamental solutions of the Poisson equation, which
exhibits a singularity at its centre in two dimensions. This singularity corresponds
to the visible point artefacts.
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e With S = sh;, we observe a stripe-like texture pattern in diagonal directions. Here,
w = Vu, shy(w) = 0 yields a wave equation gix%‘ = %. According to d’Alembert’s
formula (cf. e.g. [23, pp. 65-68]), the latter is solved by functions of the form u =
U(x1+ x2) + V(z1 — x2), which corresponds exactly to structures along the diagonal.

e The artefacts in the case S = shy look similar, but the stripe artefacts are parallel
to the z1- and z5-axes. Now the nullspace is characterised by w = Vu, shy(w) = 0,
which is equivalent to % = 0. This holds indeed for v = Uy (z1) + Us(z2), i.e.
structures parallel to the coordinate axes.

As observed already in the SVF model, we see from the above examples that the
functional using any single differential operator has a huge nullspace and will not yield
a suitable regularisation in the space of functions of bounded variation. On the other
hand, using norms of the symmetric or full gradient as in TGV or ICTV is known to
yield a regularisation in this space |4, 11]. Thus, one may ask which and how many scalar
differential operators one should combine to obtain a suitable functional. In the subsequent
section we will deduce an answer to this question, where in the end again a particular focus
is laid on the four natural differential operators discussed above.

4 Unified Model

In view of the insights described in the previous section, we decided to consider a much more
general approach, where no longer one natural vector operator is applied to w, but instead
a general operator A is applied to the Jacobian of w to penalise second-order derivative
information. We give a rigorous dual definition of the regularisation functional and state
the corresponding subdifferential. By rephrasing this very general approach appropriately,
we are eventually able to show that for a suitable choice of the general operator we can
return to a formulation based on a weighted combination of the aforementioned natural
vector field operators. We analyse the thus obtained model with respect to nullspaces and
prove the existence of BV solutions. In addition, we unroll that it is indeed justified to
call the proposed approach a unified model, since we show that (at least in the limit) we
can obtain the well-known second-order TV-type models ICTV, CEP and TGV as well as
variations of first-order total variation as special cases. Finally, we investigate under which
conditions the presented approach is rotationally invariant.

4.1 General Second-Order TV-type Regularisations

In a unified way any of the above regularisation functionals can be written in the form

Rlu) = b e Ve AV . 3
() weAltI(lQ,W)H u—wlmerz) + [AVW| pm@rm) (3)

with a pointwise linear operator A : R?*? — R™ independent of x such that Vw(z)
AVw(z) if w has C! density, where in the above context m = 1. In the general setting we
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can use the distributional gradient and identify AVw with the linear form
o€ C(QR™) s / div(A* o (z)) - duw.
Q

We are interested in the case where this linear functional is bounded on the predual space
of M(£2,R™), i.e. the space of continuous vector fields, and thus identify AVw with such a
vector measure justifying the use of the norm in (3) (see also the equivalent dual definition
below). Note that for m < 4 A will have a nullspace and hence AVw being a Radon
measure does not imply that Vw is a Radon measure. The product is hence rather to be
interpreted as some differential operator AV applied to the measure w than A multiplied
with Vw.

In view of (3), where as mentioned earlier m = 1, we can derive a rigorous dual definition
starting from

R(u) = inf sup /udiv(ap) dx—i—/go- dw+/diV(A*1/1)~ dw,
Q 0 Q

weM(,R2) (p0)EBy

Bi={(p,¥) € CZ(QR*) x CZ(Q) : [l < 1, ¥l < 1}

(4)

Assuming that we can exchange the infimum and supremum, i.e.

R(u) = sup inf /udiv(gp) d:x—l—/go- dw+/diV(A*¢)- dw,
0 0 o

(o ))EBY weM(Q,R2)

we see that a value greater than —oo in the infimum only appears if ¢ + div(A*Y) = 0.
Thus, we can restrict the supremum to such test functions, which actually eliminates w
and ¢, and obtain the following formula reminiscent of the TGV-functional [11]:

R(u) = sup / udiv?(A*y) dr, (5)
veBY JQ
B = {¢ € CZ(Q) : [¢lle <1, [|div(A™P)[loo < 1} (6)

We see that there is an immediate generalisation of the above definition when we want
to use more than one scalar differential operator for regularising the vector-valued measure
w, we simply need to introduce a pointwise linear operator A : R?*2 — R™ with m > 1.
Then the definition (5) remains unchanged if we adapt the admissible set

By = {¢ € CZ(QR™) : [[¢]loo < 1, [|div(A™)) oo < 1} (7)

Let us provide some analysis of the above formulations. First of all we show that the
infimal convolution is exact, i.e. for given v € BV(Q) the infimum is attained for some

w e M(Q,R?).
Lemma 2. Let u € BV(R), then there exists w € M(2,R?) such that

1 f V - V m) — v —w V_ mY.
we/\l/lr(lQ,RQ)H u—wllmer) + [AVW|pm@rm) = [[Vu =0l mor) + IAVD] o rm)
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Proof. We consider the convex functional
F(w) = [|[Vu = w|[ pmeo.r2) AV s rm)-

First of all w = 0 is admissible and yields a finite value F'(0) = ||Vul[pmor2) < 00, since
u € BV (). Thus, we can look for a minimiser of F' on the set F'(w) < F(0). For such w
the triangle inequality yields the bound

|w|| mar2) + AV || army < 2[[Vull pmea,r2)-

In particular, w and AVw are uniformly bounded in M(£2, R?), which consequently also
holds for minimising sequences w,, and AVw,. A standard argument based on the Banach-
Alaoglu theorem and the metrisability of the weak-star topology on bounded sets (or al-
ternatively cf. [1, Theorem 1.59]) yields the existence of weak-star convergent subsequences
wy, and AVw,, . Let w € M(Q,R?) denote the limit of the first subsequence w,, . Taking
into account the continuity of the operator AV in the space of distributions, the limit of
the second subsequence AVw,, equals AVw. Then w is a minimiser due to the weak-star
lower semicontinuity of both summands of F. ]

Next, we show the equivalence of the problem formulations in (3) and (5).

Lemma 3. The definitions (3) and (5) with a pointwise linear operator A : R**? — R™
are equivalent, i.e. for all u € BV () we have

inf Vu—w + [[AVw my = SU /udiv2 A*Y) dx
wertd e I [rm@r2) + || | M rm) s, (A™)

with B given by (7).

Proof. The proof follows the line of argument in [10] (see also [12]) and is based on a
Fenchel duality argument for the formulation, which we already sketched above. For this
sake let Rp denote the primal formulation (3) and rewrite the dual formulation Rp given
in (5) as

Rp(u) = sup /Qudiv(vl) dx — I (v1) — Ir(v9),

(v1,v2)€X
Av=0
where we use the spaces X = C}(,R?) x CZ(2,R™), Y = C}(2,R?), the linear operator
A: X =Y, A(vy,v9) = —v; + div(A*vy), and the indicator functions

0 ifflylle <l .
o) ={ Gy j=12

The equivalence of the supremal formulation on these spaces follows from the density of
C>(Q) in CE(Q) for any k. Using the convex functionals G : Y — R U {+oo} as the
indicator function of the set {0} and F': X — RU {400} given by

Fv) = /Q (—udiv(o) + I (vn) + L(vs)) da,

14



we can further write
Rp(u) = sup —F(v)— G(Av).

(v1,v2)€X

In view of [10, p. 12| it is straightforward to verify that

Y = | A(dom(G) — Adom(F)),

A>0

where dom(F') = {x € X : F(z) < oo} denotes the effective domain, and hence together
with the convexity and lower semicontinuity the conditions for the Fenchel duality theorem
[2, Corollary 2.3| are satisfied. Hence,

Rp(u) = inf F*(—A'w)+ G*(w)

weY*

= inf sup {(—A'w,v)+udiv(vy) — (v1) — I2(ve)}

weyY* (v1,02)EX

= inf sup {(w,—Av)— (Vu,v)}
weY'™ (v1,02)€X
lv1]]eo <1
lv2]loo <1

= inf sup {(w,v; —div(A*vy)) — (Vu,v,)}
WEY™ (41 v)EX
f[v1f[oc<1
lvzloo <1

= inf sup {(w— Vu,v)+ (AVw,1s)}
wey' (v1,v2)€X
[lv1]]oo <1
llvalloo <1

= Inf [|Vu —wlp@ze) + AVl m@rm),

where the last conversion results from the definition of the Radon norm. Since u € BV (2)
the above functional only has a finite value for w € M(Q,R?). Hence the infimum in the
larger space Y* equals the infimum in M(Q, R?). This yields the assertion.

O

Based on the dual formulation (5) we can also understand the subdifferential of the
absolutely one-homogeneous functional R. We see that p € OR(u) if p = div?(A*Y) for
Y € By and

/Qp w di — /QdiVQ(Aw) w dz = R(u).

In general, subgradients will be elements of a larger set, namely a closure of B} in L>(Q2)
with the restriction that div(.4*¢) can be integrated with respect to the measure Vu.

The domain of R and the topological properties introduced are unclear at first glance
and depend on the specific choice of A. However, we can give a general result bounding R
by the total variation.

Lemma 4. The functional R is a seminorm on BV () and satisfies R(u) < TV (u) = |u|py
for allu € BV(Q).

15



Proof. The fact that R is a seminorm is apparent from the dual definition (5). From the
primal definition (3) we see that the infimum over all w is less than or equal to the value
at w = 0, which is just |u|py. O

4.2 Combination of Natural Differential Operators

As an alternative to the above form we can provide a matrix formulation when writing the

gradient as a vector
awl awl (9w2 811)2 r
va = ) ) )
8561 8252 8x1 83:2
Then the operator A is represented by an m x 4 matrix A, and we have AVw = AVyw.
For the four scalar operators used above we obtain

Acurl =V Bl(oa_1a170)7 Adiv =V /62(1707071)a
Ash1 =V 63(_1707 071)7 ASh2 =V 64(0717170)'
Using the vector of natural differential operators

Vyw = (curl(w), div(w), shy (w), shy(w)) "

we can also write

0 -1 120
I 0 01
AVVU}:BVNU), A=B 1 0 0 1
0 1 10

We mention that due to the fact that we use the Frobenius norm, which has the property
|z]] = ||Qz]|| for every orthogonal matrix Q, two regularisations represented by matrices
A, and A, will be equivalent if there exists an orthogonal matrix Q with A, = QA;.

The question we would like to investigate in detail in the following paragraphs is whether
enforcement of joint sparsity of some or all of the four natural differential operators (curl)
- (sh2) applied to the vector field w can improve the reconstruction results. Moreover,
we shall characterise a variety of models in the literature as special cases. This is not
surprising, as we can always choose a suitable matrix A for any of those, but interestingly
they can all be described by a diagonal matrix

B = diag(\/E, \/E? \/E7 \/E)

We will thus describe the regularisation functional solely in terms of the vector

ﬁ: (\/Ev \/Ev \/Ea \/E)

as

Rg(u) = div(p) de = inf |[|[Vu— di v 8
s(u) sup /Q udiv(y) dx ertd g Ve — wl|mre) + [|diag(B)Vw| mezrs  (8)
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with

Cs = {p € CZ(Q,R?) : p = Vi (diag(B)y) for some v € C°(Q,RY), [[plloc < 1, 9]l < 1},

where
U
N zz = curl® ¢y 4 div* ¢ + shy" 13 + shy™ 1y
(o
and

T T
curl* ¢ = (8_@/) _8_¢) , div* ey = <_8_@/)’_8_¢) ,

Oxy  Oxy Oxy’ Oz
o o\ oy o\
by = (22 Y by = (=5 o |
St ¢ (3:)&1’ (9.1'2) ’ Sz w ( 81'2’ 8901
Based on this regularisation we will study the model problem
1 9 :
5 /Q(u — f)" dov 4+ aRg(u) — uerg‘l/r(lm 9)

for f € L*(2), which of course can be extended directly to more general inverse problems
and data terms. Note that « is a regularisation parameter in the classical sense, while the
parameters (3; are rather characterising the specific form of the regularisation functionals.

In Section 3, we have presented reconstruction results for the denoising problem (gSVF')
and the effect of regularisation incorporating one of the four scalar-valued vector opera-
tions (curl)-(sh2), i.e. for only one of the weights f5; being non-zero. In the following, we
demonstrate how our model behaves when two, three or all §; are non-zero.

In Figure 3, we are given a piecewise affine test image and add Gaussian noise with
zero mean and variance o = 0.05. For the task of denoising, we solve (9) and vary the
weights 3;. We optimise the parameters such that the structure similarity (SSIM) index
is maximal. We can observe that setting two weights in our novel regulariser to zero still
yields some artefacts in the reconstruction, especially in the case of enforcing a sparse curl
in combination with one of the two components of the shear. As soon as we only set one of
the four weights to zero, we obtain very good results, as can be seen in the bottom row of
Figure 3. On the top right, the reconstruction with all weights being non-zero is presented,
which yields a comparably good result.

In the following, we demonstrate that we can resemble special cases of already existing
TV-type reconstruction models by modifying the weights in our regulariser (8). In partic-
ular, we show that we are able to retrieve (TV), (CEP), (TGV) and (ICTV). However,
before we discuss the relation of our proposed model to these existing regularisers in detail
and even demonstrate that we can interpolate between the latter two by adapting one
single weight, we shall elaborate on nullspaces and the existence of BV solutions for our
unified model given in (9).
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Test image Noisy image Sparse curl, div, shy, shy

6]
Sparse curl, div Sparse curl, shy Sparse curl, sho

Sparse div, sh; Sparse div, shs Sparse shy, shy

Sparse curl, div, shy Sparse curl, div, shy Sparse curl, shy, shs Sparse div, shy, shy

Figure 3: Reconstruction of a piecewise affine test image adding Gaussian noise with zero mean
and variance o2 = 0.05 using (9) for different parameter combinations
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4.3 Nullspaces and Existence of BV Solutions

Our numerical results indicate that we obtain a real denoising resembling at least the
regularity of a BV solution if at least three of the [3; are not vanishing. It is thus interesting
to further study the nullspace N'(Rg) of the regularisation functional Rg in such cases and
check whether it is finite-dimensional. Subsequently, a similar argument to [4] can be
made showing that the regularisation functional is equivalent to the norm in BV (2) on a
subspace that does not include the nullspace. If the nullspace components are sufficiently
regular, Lemma 1 yields that minimisers of a variational model for denoising are indeed
in BV (Q). In the following, we thus aim at characterising the set of all u € L*(Q) for
which Rg(u) = 0 holds. Note that we provide further details on the derivation of the
subsequent results in Appendix A. First of all, we directly see that 8; plays a special role,
since curl(Vu) = 0. Thus, the case 51 = 0 will yield the same nullspace as 1 > 0. Hence,
we only distinguish cases based on the other parameters:

e 3, >0,1=2,3,4. In this case we have Vu = w and Vw = 0, the nullspace simply
consists of affinely linear functions (see also [4]).

e 35 =0, f3,8, > 0. In this case we can argue similarly to Section 3 and see that
u="U(xy + x2) + V(x; — x3) = Uy (1) + Uz(x2). Computation of second derivatives
with respect to x1 and xo, respectively, yields the identity U” (x4 x2)+ V" (21 —x2) =
U{(x1) = Ul (x3). Thus, Uy and U} are equal and constant. Integrating those with the
constraint that U; and U, can only depend on one variable yields that the nullspace
can only be a linear combination of 22 + 23, x1, 9, 1. One easily checks that these
functions are indeed elements of the nullspace.

e O3 =0, 83,0, > 0. Now we see that w is harmonic and on the other hand u =
Uy (x1) 4+ Us(xq), which yields Uy (x1) + UJ (x2) = 0. The latter can only be true if U{
and U} are constant, with constants summing to zero. Integrating those shows that
the nullspace consists exactly of linear combinations of x5 — 3, 1, xs, 1.

e 5, =0, (s, 03 > 0. A similar argument as above now yields u = U(z14x2)+V (21—22)
and U"(xy + x2) + V" (21 — x2) = 0. Again we obtain that U” and V" are constant,
after integration we see that the nullspace consists exactly of linear combinations of
12, L1, T2, 1.

This leads us to the following result characterising further the topological properties
of the regularisation functionals, based on a Sobolev-Korn type inequality, which we state
first.

Lemma 5. Let 5; > 0 fori=1,...,4 and assume that at most one of the parameters f3;
vanishes. Then the Korn-type inequality

Ju— Pawloss < Cal BV ywluos 1o

holds, where Pg is the projection onto the finite-dimensional nullspace N (BV yw) of the
differential operator BV yw and Cp is a constant depending on B only.
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Proof. We will use the Korn inequality in measure spaces (cf. [9], Corollary 4.20), stating
that for vector fields of bounded deformation the inequality

||w — Pw||L2(Q,R2) S CSHSS('LU)“M(Q’R2X2)

holds, where Eg(w) is the symmetric gradient and P a projector onto its nullspace. We
can equivalently write the inequality as

|w — Pwl[2qr2) < ClE(w) | pmary),

where £(w) is the vectorised symmetric gradient

ow Jws  Jw dw T
E(w) = oW Buy * Ger Gw T 9wy, OW2
(9&:1 ’ 2 ’ 2 ’ (9272 ’

Since on a bounded domain the total variation of a measure is a weaker norm than the L?
norm of its Lebesgue density, we find
|w — Pw||pm@rey < ClEW) || ars)-

In order to verify the Korn-type inequality it is crucial to have three coefficients 3; different
from zero. In this case an elementary computation shows that there exists an invertible
matrix B € R**? and an orthogonal Matrix @ € R*** such that

QBVyw = E(Bw).
Thus, the Korn inequality applied to w = Buw implies
[ — Pi|| pe,ez) < CIE(BW)||ameers
= CHQBVNU)”M(Q,R4)
= CHBvaHM(Q,R‘l)'
Since P = BPN(B)_I is a projector on the nullspace of £, we obtain

lw — Pyw||pmrey < 1B (|6 — Po|| smore)
< ||B7Y| C| BV yw|| pma,rs)-

If all 3; are positive, we can use an analogous argument with BV yw = VBw and the
Poincaré-Wirtinger inequality in spaces of bounded variation [7]. ]

Lemma 6. Let 3; > 0 fori=1,...,4. Then for Rg defined in (8) the estimate Rg(u) <
|ulgy holds for all w € BV (). Moreover, assume that at most one of the parameters [;
vanishes and let U C BV () be the subspace of all BV functions orthogonal to N'(Rg) in
the L* scalar product. Then there exists a constant ¢ € (0,1) depending only on B and
such that Rg(u) > clu|py for allu € U.
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Proof. The first estimate is a special case of Lemma 4. In order to verify the second
inequality we proceed as in [10]. The key idea is to use the Korn-type inequality defined
in Lemma 5. Given (10), we have

|Vu — w||M(Q,R2) + ||BVNU’||M(Q,R4)

1
> [Vu — wl| pmore) + C—Hw — Pw|| pmar?)
B
i 1
Z mln{l, C—B}(HVU — wHM(Q,RQ) + Hw — PBwHM(Q,RQ))
) 1
> min{1, C—}HVU — Ppw|| mer2)-
B
Thus, taking the infimum over all w yields

1
R > min{l, — inf Vu—P
p(u) = min{ Cs } we/éll(lﬂ,RQ) [Vu BwHM(Q’RQ)

1
= min{l, — inf Vu—w ,
(La},_dnt [Vu=
where the last equality results from the definition of the projection Pg. It is then easy to
see that for u € U the optimal value is w = 0. This implies the desired estimate. O]

Remark 1. In the above analysis of the nullspaces we figured out that due to our choice of
the first term ||Vu — w|| pmor2y of the regulariser Rg, penalisation of the curl is irrelevant
for the characterisation of the nullspaces of Rg. Accordingly, the assertion of the above
lemma can easily be extended to the cases 31 = B = 0 and (3,84 > 0, 1 = f3 = 0 and
Ba, Bs > 0 as well as 1 = B4 = 0 and Ps, B3 > 0, where the line of argument follows exactly
the proof given above. For all remaining cases the above proof fails however, since in these
cases the resulting nullspaces are not finite-dimensional.

Theorem 1. Let f € L*(R) and a > 0. Moreover, let B; > 0 for i = 1,...,4 and
let at most one of the parameters By,..., s vanish. Then there exists a unique solution
€ BV(Q) of (9).

Proof. We decompose u = ug + (u — ug) and f = fo + (f — fo), where ug respectively fo
are the L*-projection on the nullspace of Rg. Then

1
1 /(u 1 de + aRg(u)
2 Ja
1 2 1 2
=— [ (up — fo)" de + aRg(u —up) + = [ (u—up — f+ fo)° dx.
2 Ja 2 Ja
Since fy € BV(Q), it is easy to see that the optimal solution is given by u = fy + v, where
v is a minimiser of

1 .
5 /Q(v [+ Do) e+ aR(v) > min
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according to Lemma 1.

Since Rg is coercive on U and the functionals are lower semicontinuous in the weak-star
topology on bounded sets, we conclude the existence of a minimiser by standard arguments.
Uniqueness follows from strict convexity of the first term and convexity of Rg. O

4.4 Special Cases

In the following, we discuss several special cases of second-order functionals in the literature,
which arise either by a special choice of the vector 3 or by letting elements in 3, in
particular 31, tend to infinity. For the sake of readability we will in all cases consider all
models with additional parameters equal to one, the case of other values follows by simple
scaling arguments. Throughout this section, for simplicity we denote by £(w) and V(w)
the respective vectorised versions, i.e.

Owy | Owy dwi 4 Ows T
_ awl Oxo + Oxr; Ox2 + Oz an
E(w) =

8[[‘1 ’ 2 ’ 2 ’ 8ZE2

and

V(w) . (9w1 (‘3w1 8w2 8102 T
N 31‘1 ’ 8513'2 ’ (9:61 ’ 8.1'2

TGV

The second-order TGV model (TGV) in a notation corresponding to our approach is given
by

TGV(u) = ertd e IVu = w pere) + [1€(w) | mears

with €(w) being the symmetric gradient, encoded via the matrix

1 0 0 O
0+ Lo
Argy = i 1
0% 350
0 0 0 1
Now let B =diag(0, \%, \%, \%) and
0 -1 10 0 0 00
1 0 01 1 1 001
Ar=B -1 0 01| 2| -1001
0 1 10 0 1 10
We see that Argv = QA with the orthogonal matrix
0 1 -1 0
1 1 0 0 1
Q_ﬁ -10 0 1
0 1 1 0
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1 1 1).

Hence, the TGV functional can be considered as a special case of (8) with 3 = (0, ==, 757

Sl

TGV with full gradient matrix

A variant of the second-order TGV model is given by using the full gradient instead of the
symmetric gradient, i.e.

TGVF(u) = we/\iAI(lsf‘z ) IVu —wl m@re) + [Vl mors)-

This can simply be encoded via Atgyr = I being the unit matrix in R***. Choosing
B= \%I we immediately see the equivalence, since

0 -110 0 -1 10
1 0 01 11 1 0 01
M=EBL 0 01 V2|l -1 0 01
0 1 10 0 1 10

is already an orthogonal matrix and we obtain Argyr = AlTAl. Hence, the TGV func-

tional with full gradient matrix can be considered as a special case of (8) with B =
L1 1
(V5 v V5 va)

ICTV

Let us now examine the relation to (ICTV), which rewritten in our notation becomes

ICTV(U) = lIlf ||Vu — w||M(Q7R2) + ||Vw||M(QyR4).
weEM(2,R?)
curl(w)=0

In this case we do not need to distinguish between the gradient of w and the symmetric
gradient, since they are equal due to the vanishing curl. Note that we have replaced the
assumption of w being a gradient by the equivalent assumption of vanishing curl, which
corresponds better to our approach and indicates that we will need to consider the limit
B1 — oo. Not surprisingly we will choose 8, = 3 = 5, = % as in the TGV case. Thus, we
will study the limit of 8; — oo, using the notion of I'-convergence ([8, 19]):

Theorem 2. Let By = (3 = B4 = % We define B := (t, \/ié, \%, \/Li), t > 0. Then Rg
[-converges to ICTV strongly in LP(Q2) for any p < 2 as t — oo, where we extend both
functionals by infinity on LP(2) \ BV ().

Proof. Let t > 0, u, € BV(Q) and let w; € M(Q,R?) be a minimiser of
IV = wllmere) + BV vwl| s

with B! being the diagonal matrix with diagonal 3. First, we consider the lower bound
inequality. To this end, we assume u;, — u strongly in LP(Q2). Then we either have
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liminf; Rgt(u:) = oo, which makes the lower bound inequality trivial, or Rgt(u;) bounded.
If liminf Rg:(u;) is finite, we immediately see from the norm equivalence and lower semi-
continuity of the total variation that the limit w has finite norm in BV (2). Hence, for
u € LP(Q)\ BV (Q) the lower bound inequality holds. Thus, let us consider the remaining
case of the limit inferior being finite and u € BV (€2). Then we see that

tl| curl(w) [ meo) < BV ywllmers < Rpe(ur),
which implies that curl(w;) strongly converges to zero in M(2). Since
|B'V ywl| o ray > ||BOVN7~U||M(Q,R4)
for all w, we have
Rge(ur) = [|[Vuy — wi|| marey + ||BtvatHM(Q,R4)
> |Vuy — wel| mare) + |IB°Vivwe| mea.rs)-
Due to the lower semicontinuity of the last term we see
lim irt1f Rgi(uy) > lim irtlf Ve — wil| mearey + BV vwe|| aio,re)
> [[Vu — wlm@re) + 1BV vwl mors),

where w is a weak-star limit of an appropriate subsequence of w;. The latter exists due to
the boundedness of w; and satisfies curl(w) = 0. Since the infimum over all curl-free w is
at most as large, we obtain the lower bound inequality

lim irgf Rgt(u;) > ICTV(u).

Next, we consider the upper bound inequality. For u € LP(Q)) \ BV (Q2) the upper bound
inequality follows trivially with the sequence u; = u for all ¢. The upper bound inequality
for u € BV (Q) is also easy to verify since for such u we have Rg:(u) < ICTV(u) due to
the fact that we obtain exactly ICTV (u) when we restrict the infimum in the definition of
Rgt(u) to the subset of curl-free w. O

An interesting observation is that we interpolate the two TGV models as well as the
ICTV model solely by the parameter ;, from the TGV model with the symmetric gradient
(81 = 0) over the one with the full gradient (8, = %) to the ICTV model in the limit
ﬁl — OQ.

Interpolation between TGV and ICTV

In this paragraph, we illustrate the previously described ability of our approach to in-
terpolate between the ICTV and TGV model by means of a numerical test case. To
this end, we corrupted an image section of the parrot test image from the Kodak im-
age database' by Gaussian noise with zero mean and a variance of 0.05. Next, we

http://rOk.us/graphics/kodak/
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applied the proposed denoising model (9) to the noisy image data, where we always
chose o = i and By = (3 = [, = % and varied ; as follows: In order to obtain a
second-order ‘T'GV-type’ reconstruction, we set ; equal to zero. For the ‘ICTV-type’
model recovery that we obtain if 8, tends to infinity, we chose 3; = 10°. The cor-
responding denoising results are depicted in the left and right column of the first row
of Figure 4. Additionally, we calculated the respective interpolated denoising result for
B € {1074,1073,1072,1071,0.25, 1,2, 4, 25,100, 2500, 10%, 10°}, where 3, = 25 yielded the
best result with respect to the quality measure SSIM. The corresponding denoised image is
shown in the middle of the top row of Figure 4. It is a well-known fact that the TGV and
the ICTV model yield results of comparable quality and thus it is not surprising that all
three denoising results as well as the error images in the second row of Figure 4 look very
similar. This visual inspection is further confirmed by the quality measure SSIM, since
the differences are only in the range of 1072. To point out that there are indeed slight
differences between these denoising results, we also provide difference images between the
result for #; = 25 and the TGV respectively the ICTV result in the third row of Figure 4.
While in the first rows of Figure 4 we can hardly recognise any visual difference between
the results of the three methods under consideration, the lower four rows of Figure 4 reveal
that in some sense the interpolated model is indeed in between the TGV and the ICTV
model. In these rows, we plot the four different operators (curl)-(sh2) applied to the vector
field w corresponding to the ‘TGV-type’, ‘interpolated” and ‘ICTV-type’ reconstruction in
the top row, respectively. Looking at these results, we can observe that the plots of the
divergence and the two components of the shear apparently are rather similar and exhibit
the same structures. On the other hand, the plot of the curl of the ICTV-type model seems
to be very close to zero in the whole image domain, while in the curl of the interpolated
model slight structures become visible, which are even more evident in the respective plot
of the TGV model, exactly as expected.

CEP - Model

The CEP model (CEP) can be rewritten in our notation as

(W= inf I Ltz + 1| dive) Lo
curl(w)=0

It is apparent in this case to choose ' := (¢,1,0,0) and to again consider the limit ¢ — oo
to recover CEP as a limit of Rg:. However, here we are in a situation where more than
one of the parameters 3; vanishes, thus we cannot guarantee the existence of a minimiser
for such a model and consequently we cannot perform a rigorous analysis of the limit in
BV (). In the denoising case (9) one could still perform a convergence analysis for the
functional including the data term with respect to weak L? convergence, which is however
not in the scope of our approach.

From the issues in the analysis and our previous discussion of artefacts when only using
div and curl in the regularisation functional it is also to be expected that the CEP model
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Figure 4: Reconstruction of parrot test image adéiing Gaussian noise with zero mean and variance
02 = 0.05 using (9) demonstrating the ability to interpolate between (TGV) and (ICTV). Top
three rows: denoised images u, error image showing the difference to the ground truth, difference
image to the interpolated result. Lower four rows: different differential operators applied to vector
field w.



produces some kind of point artefacts. Indeed those can be seen by close inspection of the
results in [18], in particular Figure 4.

TV and Variants

We finally verify the relation of our model to the original total variation, which is of course
to be expected as the parameters (5; converge to infinity. This is made precise by the
following theorem, from which we see the I'-convergence except on the finite-dimensional
nullspace. The proof is analogous to Theorem 2 and omitted here.

Theorem 3. Let 5; > 0 fort = 1,...,4 and let at most one of them vanish. Set B =
diag(\/Bi, ...,/ Bs) and B' = t3, B = tB. Then Rg T'-converges to TVy strongly in
LP(QY) for any p < 2 as t — oo, where

TVB = E,Bivl}\,fﬁzo HV’U, - wHM(Q’Rz)
and we extend both functionals by infinity on LP(Q) \ BV (§2).

4.5 Rotational Invariance

At the end of this section we show that by imposing a simple condition on the choice of the
weighting parameters i, ..., 34 we can control the rotational invariance of the regulariser

Rg(u).

Theorem 4. Let 5; > 0 fori =1,...,4 and let B3 = 4. Then the requlariser Rg(u) is
rotationally invariant, i.e., for an orthonormal rotation matriz Q € R?**? with

Q) - (ggjgg; ;g;f(lg)) for 0 € [0,27)

and for u € BV (Q) it holds that t € BV (), where & = uo Q, i.e. u(r) = u(Qx) for a.e.
x €€, and

Ro(i)) = Rg(u).
Proof. See Appendix B.

5 Discretisation

We devote a separate section of this paper to the discretisation of our novel approach and
the contained natural vector operators as a basis for any numerical implementation. This
seemed necessary, since we aim at complying not only with the standard requirement that
it should hold that

V*(u) = —div(u), (adjG)
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but also with natural conservation laws such as
curl (Vu) =0 and div (curl” (u)) =0 (conservLaws)

imposing additional constraints upon the choice of discretisation. We will use the finite
differences-based discretisation proposed in the context of the congeneric second-order
TGV-model [11] as a starting point for our considerations in this section. However, as
we shall see, the approach taken there fails to fulfil the aforementioned conservation laws
(conservLaws). As a consequence, we suggest a similar, yet in several places adjusted
and thus different discretisation, which all numerical results of our unified model (VOS)
presented in this paper are based upon. We will compare solutions of the TGV-model
(TGV) obtained by means of the discretisation we suggest with images resulting from the
discretisation proposed in [11]. Eventually, we will comment on chances and challenges
of other discretisation strategies using staggered grids or finite element methods in the
context of our unified model.

Abusing notation, we denote the involved functions and operators in the same way
as in the continuous setting before, but from now on, we are thereby referring to their
discretised versions. For the sake of simplicity, we assume the normalised images to be
quadratic, i.e. f,u € [0, 1]¥*¥. Then we discretise the image domain by a two-dimensional
regular Cartesian grid of size N x N, i.e. Q = {(ih,jh) : 1 <i,j < N}, where h denotes the
spacing size and (i, j) denote the discrete pixels at location (ih, jh) in the image domain.
Similarly as in [11| and as it is fairly customary in image processing, we use forward
differences with Neumann boundary conditions to discretise the gradient (V),; : R — R?
of a scalar-valued function u, i.e.

(V) = (Nu)é’j) - ((5”“)1'4) , (discreteG)

(vu)i,j (5y+u)i,j
where
Oy W)ij = Wit1j — Wig, .
(O t)ig i 7 (forwDiff)
5y+u)i,j = Ujj+1 — Ui,
and where we extend the definition by zero if ¢+ = N respectively j = N. To avoid

asymmetries and to preserve the adjoint structure (adjG), we discretise the first-order

divergence operator (div);; : R* = R of a two-dimensional vector field w;; = (w; ;, w?;)"

using backward finite differences with homogeneous Dirichlet boundary conditions, i.e.

(div(w))ij = (dp—w")ij + (§,_w?)ij, (discreteDiv)
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where

(w}, —wl ,, ifl<i<N,
(Op-w')ij = § whj, if i =1,
—w} 1 if i = N,
(wij—wij_l, if1<j <N,
(0y-w?)i; = S w?;, if j =1, (backwDiff)
\—wzj_l, it 7 = N.

In [11] the authors moreover proposed to recursively apply forward and backward dif-
ferences to the divergence operator of higher order such that the outermost divergence
operator is based on backward differences with homogeneous Dirichlet boundary condi-
tions. For the second-order divergence operator (divz)m : R?*2 5 R of a symmetric
2 x 2-matrix (g);; at every pixel location (7, ) (cf. (div2)) this means:

(div*(9))ij = (00—0ur911)ij + (6y—0y4G22)i; + (0o—0ysGr2)ij + (Oy—0uyGo1)i
= (5x—5:c+911)i,j + <5y—5y+922)i,j + ((556—51/-&- + 5y—5x+)912)i,j'

Further following the reasoning in [11], the discrete second-order derivative and dis-
crete second-order divergence should also satisfy an adjointness condition. Consequently,
we calculate the adjoint of div® in order to obtain the Hessian matrix of a scalar-valued
function u. Symmetrisation of the Hessian then yields the following discretisation of the
symmetrised second-order derivative (), : R — R**2:

((6y—0a+4+02—0y4+)u);
(02— Ozr )i =
(E%(u)iy = (E(Vu))iy = . oY), 2 ,
: P\ (5, 8y )iy

where for the first equality we used that since (Vu); ; is a (1,0)-tensor, or in other words a
vector, the symmetrised gradient £ of u is just equal to the gradient. To stay consistent,
the symmetrised derivative (£);; : R? — R?*? of a two-dimensional vector field w;; =

(wil,j7 wi j)T should thus be discretised in the following way:
Sy—wl+86,_w?)
(5z—w1)i7j ( - 2 )”
(g(II‘U))ZJ = <§I,wl+§y7w2>. . 2 ’
2 = ((5y*w )1v]

where (§,_w?);; and (0,-w');; are defined analogously to (backwDiff) with w' and w?

being interchanged. We have thus recalled the choice of discretisation of the second-order
divergence and hence of the symmetrised derivative as suggested in [11].

With regard to Section 4.4 we conclude that in this setting the most natural dis-
cretisations of the curl operator (curl);; : R* — R of a two-dimensional vector field

w;j = (w};,w?)" as well as of the two components of the shear (sh;);; : R? — R and

T/’j ’ Z7j
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(sh);; : R? — R would all be based on backward finite differences with homogeneous
Dirichlet boundary conditions, i.e.

(curl(w))i; = (6p—w?)ij — (6y-w' )i,
(shi(w))ij = (6y-w?)ij — (Go—w' )i,
(sha(w))iy; = (Oy-w)ij + (6z-w?)s ;.

However, this discretisation of the curl operator fails to comply with the conservation laws
given in (conservlaws), since

(cwrl(Vu))i; = (0-0y )iy — (0y—0uttt)iy,
(div(curl*(w)))ij = (0a—0y+w)ij — (6y—0uytr)iy

can in general each be non-zero. To resolve this issue, we decided to instead discretise the

curl operator (curl);; : R? — R of a two-dimensional vector field w; ; = (w} ;, w?.)" with

1,70 1,7
forward finite differences, i.e.
(curl(w))ij = (Gerw?®)ij — (Gyrw)iy. (discreteCurl)

In order to meet the theory derived for the continuous setting in Section 4.4 the discretisa-
tion of the curl operator by forward finite differences in combination with the discretisation
of the divergence operator by backward finite differences requires that the first component
of the shear (shy);; : R? — R shall be discretised using backward finite differences while
the second component (shs);; : R? — R shall be discretised by means of forward finite
differences, i.e.

(Shl (w))i,j = (5y_w2)i’j — ((517_’11]1),"]'7 (discreteShl)
(sho(w))ij = (§ypw')ij + (Sprw?)i ;. (discreteSh2)

As a side benefit of this choice of discretisation we additionally obtain the identities
shy (shy (u)) =0 and shy (sh] (u)) = 0. (conservLaws2)

Vice versa, this approch leads to the following discretisation of the symmetrised derivative

(£)ij : R* = R*** of a vector field w;; = (w; ;, w7 ;)"

N (6y+w1+5z+w2)i,j
(E(w))iy = (515%1:(23;’2]) 2 ; (discreteSymG@G)
2 (0y-w?)iy

2

that is we discretise the mixed derivatives differently than proposed in [11]. Further fol-
lowing the line of argument brought forward in this section, the corresponding discrete
second-order divergence operator (div?);; : R¥>? — R of a symmetric 2 x 2-matrix (g); ;
at every pixel location (7, ) (cf. (div2)) would be given by:

(div(9))ij = (Ba—bor-911)iy + (0y—0ys922)ij + ((GaiOys + 6yrboi)gr2)iy
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Paraphrasing this discretisation, one could say that with respect to the pure second partial
derivatives, i.e. the diagonal entries of the Hessian, we stick to the idea of recursively
applying forward and backward differences as proposed by Bredies and coworkers [11],
while in regard to the mixed partial derivatives we repeatedly use forward differences.
Being aware that this discretisation of the second-order divergence might seem a little
less intuitive than the one proposed in [11], we nevertheless decided to adhere to the
discretisation that we introduced in this section. This is because in the context of our
unified model it seems crucial to find a discretisation that preserves the nullspaces of
the continuous model and complies with natural conservation laws such that for example
choosing 5, > 0 and 3 = 83 = (4 = 0 indeed returns the noisy image f as predicted by
the theory for the continuous model.

To compare the effect of the two different discretisation schemes on the reconstructed
images, we corrupted a test image from the Mc Master Dataset [37] by Gaussian noise of
mean 0 and variance 0.05 and calculated the denoising results obtained by means of the
TGV? model (TGV) with both discretisation approaches discussed in this section so far,
the one proposed by Bredies and coworkers in [11] as well as our alternative satisfying the
natural conservation laws. The outcome of this comparison is shown in Figure 5. Looking
at the denoised images, we can conclude that both discretisation approaches provide very
similar results, since visually there is hardly any difference between the corresponding im-
ages detectable. Thus, we included the difference images in the figure to illustrate that
the reconstructions based on the two different discretisations are not identical, but indeed
differ slightly especially close to some of the edges and near the boundary of the image
domain. Also, with respect to the quality measure SSIM the results for both discretisa-
tions are in a similar range, however the differences seem to become more significant with
decreasing image resolution. This makes sense since the proportion of pixels depicting an
edge in relation to the overall number of pixels of the image increases with decreasing res-
olution and this is where most of the differences due to the different discretisation schemes
occur. In light of the bottom row of Figure 5 we can conclude that at a relatively low
image resolution our proposed discretisation apparently performs slightly inferior to the
one proposed by Bredies and coworkers, however we decided to nevertheless adhere to the
proposed discretisation scheme since this way we can guarantee that the conservation laws
valid in the continuous setting also apply for the discretised model.

At the end of this section we shall also briefly comment on alternative discretisation
schemes in the context of our unified model (VOS) that do not rely on finite differences.
One option for such a discretisation would be based on staggered grids, i.e. on two grids,
often referred to as primal and dual grid, that are shifted with respect to each other by half
a pixel. Following for example [25], one could define a discrete gradient operator of a scalar
function mapping from the cell centres of the primal grid to the vertical and horizontal
faces (normal to the sides) of the primal grid, which can be identified with the vertical and
horizontal edges (tangential to the sides) of the dual grid. In this setting one could then
also define discrete versions of the natural vector field operators contained in our model:
the curl would map from a vector field defined on the edges of the dual grid to a scalar
function defined on the cell centres of the dual grid, which can be identified with the nodes
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Proposed Discretisation in
discretisation [11]

Difference image

500 x 500 pixels

SSIM = 0.8180 SSIM = 0.8180

250 x 250 pixels

SSIM = 0.7822 SSIM = 0.7840

Figure 5: Comparison of our proposed discretisation (reconstructions in the left column) with the
one in [11]| (reconstructions in the middle column) and absolute difference of the two reconstruc-
tions (right column) for two different image sizes

of the primal grid. The same would apply to the second component of the shear. The
divergence operator and the first component of the shear on the contrary would map from
a vector field defined on the faces of the primal grid to a scalar function defined on the
cell centres of the primal grid. However, now one had to face the question of how to add
up the values of these different natural vector operators of a given vector field, since their
codomains do not coincide. Of course, one may consider introducing averaging operators
such that in the end one obtains values of the respective operators at the same locations
[25] or one might try to resolve this issue by defining inner products and norms in a suitable
way (cf. e.g. [27, 26, 36]), however again it seems less obvious which is the best way to go.
Another alternative would be Raviart-Thomas-based finite element methods [31], where it
would be quite straightforward to define the gradient and the divergence operator, however
here, too, it would be less clear how to define the curl operator and the two components
of the shear in the most natural way.

Summing up, there seems to be no straightforward solution to the discretisation of our
unified model (VOS) that meets all our demands and we thus, despite the known demerits,
decided to stick to the simple discretisation based on forward finite differences introduced
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earlier in this section. An extensive investigation of the most natural discretisation in the
context of higher-order TV methods and the Hessian taking into account the connection
to the natural vector field operators and the related conservation laws is beyond the scope
of this paper and left to future research.

6 Results

In this section, we report on numerical denoising results obtained for two different greyscale
test images: Trui (257 x 257 pixels), cf. Figure 1, and the piecewise affine test image
considered in Figures 2 and 3 (256 x 256 pixels). We choose the denoising framework
because of its straightforward implementation and simple interpretability but would like
to stress that our novel joint regulariser could be employed in any variational imaging
model. First, we compare the best denoising result with respect to the structure similarity
(SSIM) index obtained by using our unified model (VOS) with denoising models using
TV, ICTV and second-order TGV regularisers and the same standard L? data term. In
addition, we present results of a large-scale parameter test solving our model (VOS) and
examining how various parameter combinations lead to reconstructions of different quality.

In all experiments, we use the first-order primal-dual algorithm by Chambolle and Pock
[17] for the convex optimisation. Moreover, we make use of both the step size adaptation
and the stopping criterion presented in [24]. In order to solve our model (VOS), analogous
to the implementation described in detail in [13], we define

. ’ v 0o 0 0 0)\"
JJ:(U»U)) ) y:(yl’yz) ) K:(—[ curl div sh; Sh2) ’

where the image u and the vector field w are defined as above, y; has the same size as w,
1o is a vector with four components, each of which has the same size as u, and I denotes
the identity matrix. Using this notation we can now write our energy functional as a sum
G(z) + F(Kx) according to [17] by defining

Gla) = gllu— I3, F(Kx) = aRs(u),

and apply the modified primal-dual algorithm in [24]|. For the implementation of the TV,
ICTV and TGV models, we employ the corresponding standard primal-dual implementa-
tions, using the discretisation proposed in the respective papers if applicable.

6.1 Comparison of Best VOS Result to State-Of-The-Art Methods

In the following, we compare the best result of our (VOS) model employing the discret-
isation described in Section 5 with denoising results obtained by using TV, ICTV and
second-order TGV regularisation. We measure optimality with respect to SSIM.

In Figure 6, we demonstrate that by using our unified model (VOS) we are able to
obtain a reconstruction of the noisy Trui image superior to TV and comparable to ICTV
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Figure 6: Best results with respect to SSIM for Trui test image

and second-order TGV with respect to the quality measure SSIM. The task is to reconstruct
the image on the top left, which has been corrupted by additive Gaussian noise with zero
mean and variance o2 = 0.05 (top centre). We would like to stress that this noise level
is relatively high compared with most publications on denoising but we chose it in order
to better highlight the visual differences in the reconstructions. In the TV-regularised
reconstruction (top right), we choose o = 1 and obtain an SSIM value of 0.7995. In
the ICTV case (bottom left), we select oy = 3 and ag = &, where SSIM = 0.8121. For
the second-order TGV-type reconstruction, we set ay = ay = ;11. Here, we obtain an
SSIM value of 0.8141. For better comparison with the ICTV result and the result of our
unified model we mention that the corresponding TGV-result with our discretisation on
this image resolution yields an SSIM of 0.8131. The best result using our model is shown
on the bottom right, choosing o = ﬁ,ﬁl =0,0 = %,63 =1and g4 = % and achieving
an SSIM value of 0.8136. We would like to especially draw attention to the enhanced
reconstruction of the chessboard-like pattern in the scarf as well as the regions around the
eyes and the mouth by using our model.

Now we present similar results obtained by solving the denoising problem for the piece-
wise affine square test image in Figure 7, again considering a noise variance of o = 0.05.
In the case of TV denoising (top right), we choose a = %, yielding SSIM = 0.9153. On
the bottom left, ICTV regularisation selecting oy = 1 and oy = % leads to an SSIM value

of 0.9509. The parameters for the second-order TGV reconstruction (bottom centre) are
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Figure 7: Best results with respect to SSIM for piecewise affine test image

o = % and ay = 2. Here, we obtain an SSIM value of 0.9775. The best result using our
model is obtained by setting a = %, b1 = 4.5, B =90 and B3 = B4 = 9. We achieve the
best SSIM index of 0.9844.

6.2 Practical Study of Parameter Combinations

In order to get a better understanding of our novel regulariser and how zero and non-zero
values of the different parameters in our model affect the denoising reconstructions, we set
up large-scale parameter tests for both the Trui and the piecewise affine test image. We
use the discretisation described in Section 5 for all experiments, solving (VOS) numerically
as described at the beginning of this section. For the Trui image we select o € {%, ﬁ, %1}
and 3; € {0,%,4,3,1,2,5,20}, i = 1,...,4, which leads to 12288 different combinations,
and for the piecewise affine test image we choose a € {ﬁ, ;11, %, %} and (§; = %, b €
{0, %, i, %, 1,10}, i =1,...,4, which leads to 5184 different combinations. We use different
parameter sets, as our images differ quite significantly in structure and we naturally need a
stronger overall regularisation for the less textured and more homogeneous piecewise affine
test image. Again, we consider the denoising problem explained above and corrupt the
original image by additive Gaussian noise with zero mean and variance 0% = 0.05.
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Figure 8: Histograms for Trui considering all tested parameter combinations
Figure 8 shows histograms for three quality measures we calculated for all obtained

reconstructions of Trui in our parameter test: SSIM, PSNR and relative error. It can be
immediately observed that in the majority of cases, we get competitive values.

[Mall non-zero [Mall non-zero
[Mone

7000 a0
Mone zero one zer0

6000 [Mitwo zero %00 Mitwo zero
Mlihree zero Mlihres zero

5000 2500

a0 00

- 150

200 o0

™ 50 D

. | —_— . — —

prym 508 1608 bsosizs T U629 Reszn) @iae) @1oae @Az Saes

SSIM PSNR Relative Error

§

g

§

§

g

- 8

Figure 9: Histograms for Trui considering all tested parameter combinations, sub-divided into
four cases: 1) all f3; are non-zero (blue), 2) one f3; is equal to zero (orange), 3) two j3; are equal to
zero (yellow), 4) three 3; are equal to zero (purple). Note that the bars do not have equal width.

In Figure 9, we examine the occurrences of various quality measure values for different
parameter combinations in more depth. More specifically, we sub-divide the results into
four classes, dependent on how many (3; are non-zero. From this analysis, we can already
conclude that scenarios where only one [; is positive and hence only a single differential
operator acts on the vector field w in the joint vector operator sparsity regularisation term
yield the worst results with respect to our selected measures. Setting two of the [3; to zero
seems to be the second-worst case. On the other hand, having all 3; activated yields the
best performing results, which confirms the usefulness and added value of our model and
justifies the comparably large number of parameters.

Note at this point that for the multi-colour histograms throughout this section, we
manually selected the very differently sized intervals for the bars and heavily customised
them such that the different classes become well-separated. Consequently, if a bar still con-

36



tains a variety of colours, they could not be separated further in a reasonable or meaningful
manner.
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Figure 10: Histograms for Trui in the scenario that one f; is equal to zero: 1) 51 = 0 (blue), 2)

B2 = 0 (orange), 3) B3 = 0 (yellow), 4) B4 = 0 (purple). Note that the bars do not have equal
width.

In Figure 10 we only consider a subset of our results and look at the case where one of
the f3; is set to zero, i.e. where three differential operators are active in our joint regulariser.
Also in this scenario we recognise a certain trend. Considering the curl in the regularisation
does not seem to be essential, since the best results are achieved in the case when it is set
to zero. In contrast, the divergence appears to be of more crucial importance, as setting it
to zero produces worse results in general. Of course, this is however strongly dependent on
the combination of all five parameters including the overall regularisation weight «, and
in some cases zero divergence even yields very good results, especially with respect to the

SSIM.
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Figure 11: Histograms for Trui in the scenario that two (; are equal to zero: 1) 81 = f2 = 0
(blue), 2) f1 = B3 = 0 (orange), 3) 51 = B4 = 0 (yellow), 4) B2 = 3 =0 (purple), 5) Bo = 4 =0
(green), 6) B3 = B4 = 0 (cyan). Note that the bars do not have equal width.

The histograms shown in Figure 11 correspond to the case where two of the f; are
positive and the other two are set to zero. This yields six different combinations to con-
sider. Interestingly, we again recognise some general trends throughout our data set. In a
relatively consistent manner, setting both s, i.e. the divergence term, and 3 or 4, i.e. one
component of the shear, to zero seems to be a bad idea, as this produces the worst results.
This exactly coincides with our observations in Section 4 and more specifically in Figure 3,
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where the sparse curl/sh; and sparse curl/shy reconstruction of the piecewise affine square
test image contains diagonal and straight line artefacts, respectively. The third worst per-
forming scenario in general is the combination of sparse curl and divergence. Setting (;
and either component of the shear to zero results in the second-best reconstructions. In
our test we obtain the best performance by only enforcing sparsity in the shear.

Piecewise Affine Test Image
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Figure 12: Histograms for piecewise affine image for all tested parameter combinations

For the piecewise affine image in Figure 7, we generally obtain similar results. In
Figure 12, we can see that again, the histograms for the SSIM, PSNR and relative error
are concentrated around desirable values, even better ones than for the Trui image. This
is probably due to the simpler structure of the piecewise affine test image.
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Figure 13: Histograms for piecewise affine image considering all tested parameter combinations,
sub-divided into four cases: 1) all 5; are non-zero (blue), 2) one f; is equal to zero (orange), 3)
two ; are equal to zero (yellow), 4) three (; are equal to zero (purple). Note that the bars do
not have equal width.

Figure 13 confirms that the more §; are non-zero, the better the denoising reconstruc-
tions are in general. The worst and second-worst results are obtained when three or two
[; are set to zero, respectively.

Furthermore, the results in Figure 14 reflect the ones in Figure 10. Setting the curl term
to zero has a less negative effect compared to omitting the divergence term. However, we
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Figure 14: Histograms for piecewise affine image in the scenario that one 3; is equal to zero: 1)
f1 = 0 (blue), 2) B2 = 0 (orange), 3) B3 = 0 (yellow), 4) B4 = 0 (purple). Note that the bars do
not have equal width.

cannot make more general statements or draw conclusions regarding the shear terms, as the
histograms are rather equally distributed with respect to the four parameter combination
scenarios.
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=0y = ™ W5, =6,=
By= =
4= =
= b= . I I W= 0,=0
s kmus  Rasa T Risw  bmam gk s pema  Rem e Ban oS

SSIM PSNR Relative Error

Figure 15: Histograms for piecewise affine image in the scenario that two f; are equal to zero: 1)
B1 = B2 =0 (blue), 2) B1 = B3 = 0 (orange), 3) B1 = B1 = 0 (yellow), 4) B2 = 83 = 0 (purple), 5)
P2 = B4 =0 (green), 6) B3 = B4 = 0 (cyan). Note that the bars do not have equal width.

Figure 15 seems to reinforce the statements for Figure 11. It can be clearly observed
that the case where the divergence and the second component of the shear are equal to
zero leads to the worst reconstructions with respect to the three quality measures. Also,
similar to before, the combinations 5y = 3 = 0 and 83 = 84 = 0 perform rather poorly.

7 Conclusion

Starting from our SVF model presented in [13], where we motivated sparsity enforcement
of a vector field related to the gradient of the underlying image by an image compression
framework using PDE-based diffusion inpainting methods, we extended (SVF) further by
introducing a novel regulariser penalising a joint L! norm incorporating differential vector
field operators. More specifically, we promote sparsity in the curl, divergence and both
components of the shear of the vector field at hand. We could dispose of the point artefacts
observed in the denoising model in [13]. Moreover, similar to well-established higher-order
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TV models, we avoid the staircasing effect while at the same time enabling piecewise affine
reconstructions.

We showed that our unified regulariser can be viewed as a generalisation of a number
of already existing frameworks: We can recover TV, our previously presented SVF model,
CEP, second-order TGV and ICTV. Furthermore, we showed the capability of our model
to interpolate between the latter two methods by changing the value of only one weighting
parameter. We also saw that a wide range of parameters ; yields very similar results,
confirming the robustness of the approach. In particular, this holds true if three of the g;
are chosen to be non-zero (while not approaching infinity all at the same time) or if we
pick two out of (5, B3 and [4 to be positive weights, as we concluded that the curl has
only marginal influence. Our results also lead to the conjecture that visually more pleasing
reconstructions are obtained if we indeed arrive at singularities along edges rather than in
points, since the latter are visible as artefacts in the images. In view of this paper, it is
hence recommended to either combine at least three natural vector field operators or the
divergence and one component of the shear for the regularisation.

There are various interesting directions for future research. As we mentioned earlier,
the denoising case was just an academic testbed for studying the regularisations; its use
might become much more relevant in other inverse problems and image reconstruction
frameworks. Moreover, our results could naturally be reconsidered in the regularisation
of problems for vector fields such as motion estimation, where divergence, curl, and shear
even have physical interpretations. In this context it is an often heard conjecture that
in light of the Helmholtz decomposition divergence and curl are sufficient for regularisa-
tion. However, the combination of the two operators only yields satisfactory regularisation
properties if their joint penalisation is combined with suitable boundary conditions as, for
instance, accomplished in [36]. Since the results presented in this paper indicate that a
functional combining at least three suitably chosen differential operators is also capable of
providing an equivalent regularisation in the space of bounded variation without the need
to guarantee any boundary conditions, this might be an interesting alternative approach
for the regularisation of vector fields that might require a less cumbersome numerical imple-
mentation. Furthermore, it would be interesting to reconsider higher-order regularisation
on graphs, in particular to study variants of TGV on such structures. Since the divergence
is the only natural differential operator for vector fields (edge functions) on graphs, our
approach might be even more relevant in such a setting.

Finally, we come to the issue of optimal parameter choice, since our approach yields
quite some freedom in this respect. To overcome this, parameter learning using bi-level
optimisation techniques might be particularly suited.
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A Derivation of Nullspaces

In the following, we aim at characterising the set of all u € L*(Q2) for which Rg(u) = 0
holds.

At first we consider the case Sy = 0 and f3, 54 > 0. Following the line of argument for
the derivation of the nullspaces in Section 3, it is clear that in order to be in the nullspace
u has to satisfy

u(z) = Uz + x2) + V(xy — 22) = Ur(21) + Us(22).

Calculation of first- and second-order derivatives of u then yields the following identities
for the gradient and the Hessian of u:

U@y + ) + 2V (@1 — 12)
Vu(z) = (ai(](wl + x9) — z—V(:El - 962))

Oxa T
_ <aiwlU1($1) —+ %Ug(iﬂg)
%Ul(l‘l) + %UQ(IQ)

and () |
Hu)y (Hu)io
H frd
U ((HU,)QI (HU)QQ) ’
where
0? o2
(Hu)ll( ) = 8.’13'2 U(l‘l + xQ) + @V(l’l .TQ)
1 1
82
—Ui(x
02 ()
2 82
(Huha(z) = 021014 Ulws +2) = 8:(:18:52‘/(361 — 1)
0? o2
- 0x101, Uilirn) + 01101, Us(22) =0
0? o2
(Hu)o () = D102y Uz, + x2) — 891:18:52‘/(3:1 — )
0? 0?2
- 0x101, Uiliry) + 01101, Us(22) =0
0? o2
(Hu)oz(7) = ax%U(xl + 9) + a:E%V(gcl T5)
82
—Us(x
013 2(72)
In particular, we observe:
2 2
0 Ui(zy) = 0 sUz(z2)  for all zy, 2y,

2
Oxy

013
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which can only be true if %Ul(xl) and ;—%UQ(@) are equal and constant, i.e. g—%Ul(:cl) =
2

%UQ(JIQ) =c.

Twofold integration of ;—%Ul respectively aa—ngQ on condition that the former only depends

on x; while the latter only depends on x5 yields:

0

8—1'1(]1(1‘1) :/CdI120I1+d1,
iU(x)—/calac =crote
81‘2 2\+42) — 2 — 2 1

and thus
Up(zy) = /c:cl +dy dwy = ca? + dyzy + do

Us(zo) = /cxg +erdry = cxi + e1xo + €
= u = c(x] +23) + dy71 + e129 + (do + €p).

Consequently the nullspace only consists of functions that are linear combinations of x? +
23, 21,79 and 1.

We continue with the case 3 = 0 and 5, 54 > 0. By the discussion of the nullspaces
in Section 3 u has to be harmonic, i.e.

0? 0?
8_x§u(x) + 0_x%u(x> =0,

and moreover it has to be of the form u(x) = Uj(x1) + Us(xs). Taking into account the
calculations of the first- and second-order partial derivatives in the previous case, we easily
see that the above equality is equivalent to

92 92
—Ui(x1) + =5Us(z9) =0  for all zq, xo,
022 (1) 02 2(x9) 1,2
which obviously can only be true if —66; =Up (1) and —835 >Us(x2) are constant with constants
1 2
summing to zero. On this basis we analogously to the previous case integrate ;—;Ul and
1

g—;UQ twice on condition that the former only depends on x; and the latter only depends
2
on Ty

0
8—ZE1U1($1):/CCZ[E1:CZE1+CZ1,
iU(az:)—/—cd:c = —cxo + €
O 2(T2) = 2 = 2 1
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and hence

Up(zy) = /c:z:l +dy dxy = ca? 4 dyxy + dy
Us(z2) / —cTy + €1 dry = —ca5 + e1my + €
— u

c(a:f — 23+ dyxy + ey + (do + €g)-

The nullspace thus only consists of functions that are linear combinations of 22 — x2, 1, x5
and 1.

Finally, we study the case 4 = 0 and S5, 83 > 0. Analogous to the previous case
we argue that by the characterisation of the nullspaces in Section 3 w is of the form
u(z) = U(xy + x2) + V(21 — 23) and again has to be harmonic, i.e.

2 2
aa—x%u(x) + 88_x§u(x> =0.

Again, we reconsider the first- and second-order partial derivatives from the first case and
obtain for all x, x5

0? 0?
2 (8_1'%[](3:1 + 332) + a—x%V(Jﬁl — wg)) =0

which implies that g—;U and 8‘9—;\/ are constant with constants summing to zero. By
1 2

twofold integration of 88—;2U and 88—;21/ on condition that the former depends on z; + 25 and
1 2
the latter depends on x7; — x5 we thus obtain:

0
%U(xl + x9) = /cd(an +29) = c(x1 + x2) + dy,
1

0
a—V(xl — X)) = /—cd(ml — ) = —c(x; —13) + €1
T2

and hence
U(ZEl + l‘g) = /C(Il + .112) + d1 d(l’l + ZEQ) = C(ZEl + 1’2)2 + dl(Il + ZEQ) + do

V() — ) = / —c(x) — 29) + erd(x) — 13) = —c(z1 — 22)* + €1 (21 — x3) + €
— u = 4cx119 + (d1 + 61)[151 + (dl — 61)1‘2 + (do + 60).

As a result the nullspace contains all functions that are linear combinations of x1xs, 1, T2
and 1.
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B Proof of Theorem 4

Theorem 4. Let 5; > 0 fori =1,...,4 and let B3 = 4. Then the regulariser Rg(u) is
rotationally invariant, i.e., for an orthonormal rotation matriz Q € R**? with

Q)= (o) mipy) om0 02

and for u € BV (Q) it holds that . € BV (), where & = uo Q, i.e. u(r) = u(Qz) for a.e.
x €€, and

Rg(a) = Rp(u).

Proof. In order to prove the assertion we consider & = u o @ and show that we obtain
Rg(t) = Rg(u), where as before

Rﬂ(U) — we_/\i/lr(lgf)j@) ||VU — w||M(Q,R2) —+ ||d1ag(B)VNw||M(Q7R4)

Inserting @ in the first term of the regulariser, we realise that we obtain the equivalence to
the first term of Rg(u) by choosing @ = Q wo Q, i.e.,

/ () dib = / Qo(QTa) dw, V€ Co(Q:R?),
Q Q
since

Vi — 0| marey = Q@ VuoQ — Q wo Q| m@rs
= Q" (VuoQ —wo Q) | mere
= [[V(uo Q) —wo Q| pm@re)

Thus, if we can show that for w = QTw o Q we also obtain the equivalence of the
second term of the regulariser to the second term of Rg(u), we have proven the assertion.
To this end we set v = Q"w and compute

_( cos(@)wy + sin(f)ws

In addition we need the Jacobian matrix Vv of v, where

(Vo) = COS(Q)a—xl + sm(&)a—xl, (Vv)1p = 008(9)8—% + Sln(e)f)_xg’
. . 8w1 811)2 . . 8w1 8w2
(Vv)g = —sin(0) o, + cos(0) 9z, (Vv)ae = —sin(0) o, + cos(0) .

48



We can hence obtain the Jacobian matrix Vi of @ by computing Vi = Q' Vv yielding

ow, ow ow ow
- o 2 . 2 . 1 ) 2
(V)1 = cos (9)—(%1 + cos(0) sm(&)—az_1 + cos(0) sm(@)—aj’:2 + sin (9)_8:52’
N _ owy, . 5, 0w ow, _ Owy
(V)12 = — cos(h) sm(@)aT sin“(0 >8$1 +c (8)6—2 + cos(0) sin(0 )8x2
(Vib)g = COS2(9>% — cos(0) sin(&)ai + cos(0) sin(G)% — sin (0)%
2 8371 8:61 al'z > 8x2 ’
N : owy . 5, 0wy o, OWs _ Own
(V) = — cos() sin(6) o, + sin (0)a o + cos*(0) o, cos(0) sm(é’)a—xQ.

Based on the Jacobian Vi we can calculate the curl, the divergence and the two compon-
ents of the shear for w:

curl(w) = (V)a — (V)12

8w2 8w1

= (cos®(6) + sin*(0)) (8_951 — 8_@) = curl(w),

div(w) = (V)11 — (V)ag
= (cos*(f) + sin*(9)) (2_1;11 + 2_1;22) = div(w),

sh; (ZD) = (Vﬁ})gz - (VZZJ)H

= (cos®() — sin*(9)) <g_l;22 - g_il) — 2cos(f) sin(0) (Z_Z;l + %)
= (cos?(6) — sin?(#)) shy (w) — 2 cos(#) sin(f) shy(w),

sho(w) = (V)12 + (V)

ow ow ow ow
. 2 o 2 1 2 N . 2 1
— (cos6) — sn(®) (G + 52 ) — 2eon(0)snfe) (52 + )

= (cos®(6) — sin®(#)) shy(w) + 2 cos() sin(f) shy (w),
Next, we consider |diag(8)V yw|, where for the sake of readability, we define
a := (cos®(6) — sin?(#)), b := cos(#) sin(0).
Then we obtain:

|diag(8)Vvw| = fi(curl(w))® + Bo(div(w))* + B3(shi (@))* + Ba(sha(w))?
= fi(curl(w))? + Ba(div(w))?

+ B3a®(shy(w))? — Bzabsh;(w) shy(w) 4 B34b? (shy(w))?

+ Baa®(sha(w))? + Baabshy (w) sh(w) + B44b* (sha (w))
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We conclude the proof by setting 53 = 3, yielding the equivalence of |diag(3)V yw| and
|diag(3)V yw|, which then in turn implies Rg(a) = Rg(u).

|diag(8)Vyw| = Bi(curl(w))? + B(div(w))*
+ Bsa®(shy (w))? + Bs4b*(shy(w))?
+ Baa’(sha(w))® + Ba4b* (sha(w))
= By (curl(w))? + Ba(div(w))?
+ B3(cos?(0) + sin?(#))?(shy (w))?
+ Ba(cos?(0) + sin?(0))?(sh () ?
= By (curl(w))? + Ba(div(w))? + Bs(shy(w))? + Ba(sha(w))?
= |diag(8)V yw].

]

C Alternative visualisations of parts of Figures 1, 4 and

Fig. 1: v in z;-direction Fig. 1: v in zo-direction
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Fig. 4: interpolated, curl(w) Fig. 4: ICTV-type, curl(w)
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Fig. 4: TGV-type, curl(w)

Fig. 4: TGV-type, sha(w)
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