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Abstract

Measuring attenuation coefficients is a fundamental problem that can
be solved with diverse techniques such as X-ray or optical tomography
and lidar. We propose a novel approach based on the observation of a
sample from a few different angles. This principle can be used in existing
devices such as lidar or various types of fluorescence microscopes. It is
based on the resolution of a nonlinear inverse problem. We propose a
specific computational approach to solve it and show the well-foundedness
of the approach on simulated data. Some of the tools developed are of
independent interest. In particular we propose an efficient method to
correct attenuation defects, new robust solvers for the lidar equation as
well as new efficient algorithms to compute the Lambert W function and
the proximal operator of the logsumexp function in dimension 2.

1 Introduction

The ability to analyze the composition of gases in the atmosphere, the orga-
nization of a biological tissue, or the state of organs in the human body has
invaluable scientific and societal repercussions. These seemingly unrelated is-
sues can be solved thanks to a common principle: rays traveling through the
sample are attenuated and this attenuation provides an indirect measurement
of absorption coefficients. This is the basis of various devices such as X-ray and
optical projection tomography [1–3] or lidar [4]. The aim of this paper is to
provide an alternative approach based on the observation of the sample from a
few different angles.

1.1 The basic principle

Let us provide a flavor of the proposed idea in an idealized 1D system. Assume
that two measured signals u1 and u2 are formed according to the following
model:

u1(x) = β(x) exp

(
−
∫ x

0

α(t) dt

)
for x ∈ [0, 1] (1)
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and

u2(x) = β(x) exp

(
−
∫ 1

x

α(t) dt

)
for x ∈ [0, 1]. (2)

The function β : [0, 1] → R+ will be referred to as a density throughout
the paper. It may represent different physical quantities such as backscat-
ter coefficients in lidar or fluorophore densities in microscopy. The function
α : [0, 1] → R+ will be referred to as the attenuation and may represent ab-
sorption or extinction coefficients. The signals u1 and u2 can be interpreted
as measurements of the same scene under opposite directions. Equations (1)
and (2) coincide with the Beer-Lambert law that is a simple model to describe
attenuation of light in absorbing media. The question tackled in this paper is:
can we recover both α and β from the knowledge of u1 and u2?

Under a positivity assumption β(x) > 0 for all x ∈ [0, 1], the answer is

straightforwardly positive. Setting v(x) = log
(
u2(x)
u1(x)

)
, equations (1) and (2)

yield:

v(x) =

∫ x

0

α(t) dt−
∫ 1

x

α(t) dt. (3)

Therefore

α(x) =
1

2

∂

∂x
v(x) (4)

and

β(x) =
u1(x)

exp
(
−
∫ x
0
α(t) dt

) . (5)

Unfortunately, formulas (4) and (5) only have a theoretical interest: they can-
not be used in practice since computing the derivative of a log of a ratio is
extremely unstable from a numerical point of view. We will therefore design
a numerical procedure based on a Bayesian estimator to retrieve the density α
and attenuation coefficient β in a stable and efficient manner. It is particularly
relevant when the data suffer from Poisson noise.

1.2 Contributions

This paper contains various contributions listed below.

• We show that it is possible to retrieve attenuation coefficients from mul-
tiview measurements in different systems such as lidar, confocal or SPIM
microscopes. To the best of our knowledge, this fact was only known in
lidar until now [5–7]1.

Fig. 1 summarizes the proposed idea. The attenuation, which is usually
considered as a nuisance in confocal microscopy is exploited to measure
attenuation. The algorithm successfully retrieves estimates of the density
and attenuation from two attenuated and noisy images. Let us mention
that some researchers already proposed to measure absorption and cor-
rect attenuation by combining optical projection tomography and SPIM
imaging [8]. The principle outlined here shows that much simpler optical
setups (a traditional confocal microscope) theoretically allows estimating
the same quantities.

1We became aware of these works while finishing this work.
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• We propose novel Bayesian estimators for the density α and the attenua-
tion β. To the best of our knowledge, this is the first attempt to provide
a clear statistical framework to recover these quantities.

• The proposed estimators are solutions of a nonconvex problem. We de-
velop a specific nonlinear programming solver based on a warm-start con-
vex initialization. This leads us to develop an efficient algorithm to com-
pute the proximal operator of the logsumexp function in dimension 2 as
well as a new algorithm to compute the Lambert W function.

• The proposed estimators also seem to be novel for the standard mono-
view inverse problem in lidar and for correcting attenuation defects under
a Poisson noise assumption.

• We perform a numerical validation of the proposed ideas on synthetic
data, showing the well-foundedness of the approach. The validation of the
method on specific devices is left as an outlook for future works.

2 Applications

In this section, we show various applications where the methodology proposed in
this paper can be applied. We finish by describing precisely the discrete model
considered in our numerical experiments.

2.1 Lidar

In lidar, an object (atmosphere, gas,...) is illuminated with a laser beam. Par-
ticles within the object reflect light. The time to return of the reflected light is
then measured with a scanner. The received signal u1(x) is the backscattered
mean power at altitude x for a specific wavelength. The density β corresponds
to the backscattered coefficient, while α is called extinction coefficient. The
equation relating u1 to α and β is:

u1(x) = P
(
C

x2
β(x) exp

(
−2

∫ x

0

α(t) dt

))
, (6)

where C is independent of x. The notation P(z) stands for a Poisson distributed
random variable of parameter z. The Poisson distribution is a rather good noise
model in lidar, since measurements describe a number of detected photons. The
term C

x2 β(x) appears in the lidar equation (6) instead of simply β. The algorithm

developed later will allow retrieving C
x2 β(x) instead of β. This is not a problem

since there is a direct known relationship between both.

Remark 1. In Raman lidar, the coefficient β corresponds to the molecular den-
sity of the atmosphere, while α is the sum of extinction coefficients at different
wavelengths. The theory developed herein also applied to this setting.

When the backscatter coefficient β has a known analytical relationship with
the extinction coefficient α, direct inversion is possible. A popular method
is Klett’s formula [9] for instance. Alternative formula exist [10] when the
backscatter coefficient is known. The recent trend consists in using iterative
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(a) Density β (b) Attenuation α

(c) Image u1 (d) Image u2

(e) Estimated density
SNR=22.4dB

(f) Estimated attenuation
SNR=9.4dB

Figure 1: Illustration of the contribution. A sample (here an insect) has a
fluorophore density α shown in Fig. 1a and an attenuation map β shown in
Fig.1b. The two measured images u1 and u2 are displayed in Fig. 1c and 1d.
As can be seen, they are attenuated differently (top to bottom and bottom to
top) since the optical path is reversed. From these two images, our algorithm
provides a reliable estimate of each map in Fig. 1e and 1f despite Poisson noise.
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Figure 2: Scheme of a confocal microscope

methods coming from the field of inverse problems [11–13], leading to improved
robustness. All these approaches crucially depend on a precise knowledge of
the backscatter coefficient. This is a strong hypothesis that is often rough or
unreasonable in practice.

To overcome this issue, a few authors proposed to use two opposite lidars
and to retrieve the attenuation coefficient using equation (4) [5–7]. The stability
to noise was ensured by linear filtering of the input and output data. The
algorithms proposed later will provide a more robust and statistically motivated
approach.

2.2 Confocal microscopy

The principle proposed herein can also be applied to fluorescence microscopy, in
particular confocal and multi-SPIM microscopy. To the best of our knowledge,
this idea is novel. We expect it to be relevant when absorption dominates
scattering and diffusion. A particular case of interest should be optically cleared
samples that are commonly used in optical projection tomography [2].

In confocal microscopy, a laser beam is focused at a specific point in 3D
space and excites fluorophores. The emitted light is then collected on a camera.
A 3D image can be created by scanning the whole sample volume with the focal
spot, see Fig. 2.

In order to apply the proposed principle, two images from opposite sides
have to be taken. This can be done by either rotating the sample or using 4π
microscopes [14,15]. The image formation model can then be written as follows:

u1(x, y, z) = P
(
Cβ(x, y, z) exp

(
−(A+

t αt +A+
e αe)(x, y, z)

))
(7)

and
u2(x, y, z) = P

(
Cβ(x, y, z) exp

(
−(A−t αt +A−e αe)(x, y, z)

))
. (8)

The coefficients αt and αe refer to the attenuation coefficients for the transmit-
ted and emitted light respectively. They may differ since the excitation light is
typically red, while the emitted light is usually green. In order to retrieve them,
we will assume a linear relationship of type α = αe = cαt between both for a
certain constant c. The symbols A+

t , A+
e , A−t and A+

t are integral operators
describing the optical path for the transmitted and emitted light respectively.
In the numerical experiments of this paper, we will simply use the following

5



model:

(At1αt)(x, y, z) =

∫ z

0

αt(x, y, t) dt (9)

(At2αt)(x, y, z) =

∫ z

1

αt(x, y, t) dt (10)

(Ae1αe)(x, y, z) =

∫ z

0

αe(x, y, t) dt (11)

(Ae2αe)(x, y, z) =

∫ z

1

αe(x, y, t) dt. (12)

The proposed algorithm also applies to more general linear operators integrating
the attenuation coefficients along cones. With the mentioned hypotheses and
setting C = 1, equations (7) and (8) simplify to:

u1(x, y, z) = P (β(x, y, z) exp (−(A1α)(x, y, z))) (13)

and
u2(x, y, z) = P (β(x, y, z) exp (−(A2α)(x, y, z))) , (14)

where A1 = At1 + cAe1 and A2 = At2 + cAe2.

2.3 Multiview SPIM

SPIM is an acronym for Selective Plane Illumination Microscopy [16]. An al-
ternative name is Light Sheet Fluorescence Microscopy (LSFM). Its principle is
explained in Fig. 3, left: a laser beam passing through a cylindrical lens focuses
in only one direction, getting the shape of a light sheet. This light sheet excites
fluorophores in a sample. The light sheet coincides with the focal plane of a
microscope, allowing imaging 2D sections of the object. A 3D image can be re-
constructed by shifting the sample or the light sheet and stacking the obtained
images.

Many different variants of this microscope exist. Here, we are interested in
the multiview SPIM [17–20], which simultaneously produces 4 images generated
with different optical paths, see Fig. 3, right and Fig. 4. Similarly to the confo-
cal microscope, let αt and αe denote the attenuation maps for the transmitted
and emitted light respectively. The four images can be written as:

u1,+ = P
(
Cβ exp(−A(1,t,+)αt −A(1,e,+)αe)

)
(15)

u1,− = P
(
Cβ exp(−A(1,t,−)αt −A(1,e,−)αe)

)
(16)

u2,+ = P
(
Cβ exp(−A(2,t,+)αt −A(2,e,+)αe)

)
(17)

u2,− = P
(
Cβ exp(−A(2,t,−)αt −A(2,e,−)αe)

)
. (18)

The eight operators A·,·,· describe integrals along the different directions for the
emitted and transmitted waves. It is relatively easy to show, using a reasoning
similar to that of paragraph 1.1, that the four images allow retrieving the at-
tenuation coefficients αe and αt, without assuming linear relationships between
them. This is an advantage over the simpler confocal microscope.
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Figure 3: Left: Scheme of a light sheet or SPIM microscope. Right: Scheme
of a multiview SPIM. The sample is illuminated from two opposite sides and
images are formed in two opposite planes parallel to the light sheet.

u1,+

u2,+

u1,−

u2,−

Figure 4: Light propagation for the 4 multiview SPIM images. In red, the
excitation path (laser). In green, the emission path (fluorophores).
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2.4 Summary

We showed three different applications where measuring attenuation could be
attacked with a similar methodology. In all mentioned applications, we have
access to a set of m signals (ui)1≤i≤m with the following expression:

ui = P (β exp(−Aiα)) , (19)

where α is a concatenation of attenuation coefficients at different wavelengths
and A is a concatenation of integral operators. In this paper, we will focus
on the simplest setting where only two views are available. We developed the
algorithms in such a way that their extension to an arbitrary number of views
be rather straightforward. In addition, we will assume that the two views are
opposite in the numerical experiments. This is a requirement in 1D, but not
when dealing with 2D or 3D images.

3 MAP estimator and numerical evaluation

3.1 The discretized model

The discrete model considered in this paper reads:{
u1 = P (β exp(−A1α))
u2 = P (β exp(−A2α)) .

(20)

The signals u1, u2, β and α are assumed to be nonnegative and belong Rn, where
n = n1 . . . nd denotes the number of observations and d is the space dimension.
The value of a vector u1 at location i = (i1, . . . , id) will be denoted either u1[i]
or u1[i1, . . . , id]. The matrices A1 and A2 in Rn×n are discretization of linear
integral operators. In our numerical experiments, the product A1u1 represents
the cumulative sum of u1 along one direction and the product A2u2 represents
the cumulative sum of u2 in the opposite direction. For instance, for a 1D signal,
we set:

(A1u)[i] =
i∑

j=1

u1[j]. (21)

Therefore, matrix A1 has the following lower triangular shape:

A1 =


1 0 0 0 . . . 0
1 1 0 0 . . . 0
1 1 1 0 . . . 0

. . . . . . . . .
. . . . . . 0

1 1 1 1 . . . 1

 (22)

We are now ready to design a Bayesian estimator of α and β from model
(20).

3.2 A Bayesian estimator

The Maximum A Posteriori (MAP) estimators α̂ and β̂ of α and β are defined
as the maximizers of the conditional probability density:

max
α∈Rn,β∈Rn

p(α, β|u1, u2). (23)
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By using the Bayes rule and a negative log-likelihood, this is equivalent to finding
the minimizers of:

min
α∈Rn,β∈Rn

− log(p(u1, u2|α, β))− log(p(α, β)). (24)

Let us evaluate p(u1, u2|α, β). To this end, set

λ1 = β exp(−(A1α)) and λ2 = β exp(−(A2α)). (25)

Since the distribution of a Poisson distributed random variable with parameter
λ has the following probability mass function:

P(X = k) =
λke−λ

k!
, (26)

we get:

p(u1, u2|α, β) =

n∑
i=1

λ1[i] + λ2[i]− u1[i] log(λ1[i])− u2[i] log(λ2[i]) + C, (27)

where C is a value that does not depend on α and β. Next, we assume that α
and β are independent random vectors with probability distribution functions
of type:

p(α) ∝ exp(−Rα(α)) and p(β) ∝ exp(−Rβ(β)), (28)

where Rα : Rn → R ∪ {+∞} and Rβ : Rn → R ∪ {+∞} are regularizers
describing properties of the density and attenuation maps. In particular, we
choose them so as to impose nonnegativity of the estimators:

Rα(α) = +∞ if ∃i ∈ {1, . . . , n}, α[i] < 0 (29)

and
Rβ(β) = +∞ if ∃i ∈ {1, . . . , n}, β[i] < 0. (30)

Overall, the optimization problem characterizing the MAP estimates reads:

min
α∈Rn,β∈Rn

F (α, β) (31)

where

F (α, β) =

n∑
i=1

2∑
j=1

[exp(−(Ajα)[i])β[i]+uj [i]((Ajα)[i]−log(β[i]))]+Rα(α)+Rβ(β).

(32)

Remark 2. With an arbitrary number m of views, it suffices to replace
∑2
j=1 by∑m

j=1 in the above expression. For m = 1 view, the problem minα F (α, β) allows
recovering the attenuation knowing the density: this is an inverse problem met
in lidar. To the best of our knowledge, the proposed formulation is novel for this
problem. The problem minβ F (α, β) corresponds to correcting the attenuation on
the density map. This is also a frequently met problem [21–24] and the proposed
approach also seems novel.

Remark 3. The hypothesis of independence between α and β can probably be
improved in some applications. For instance, in lidar, it is well known that
extinction and backscatter coefficients are strongly related. Similarly, strongly
absorbing parts of biological specimens are likely to have a specific density of
fluorophores. We prefer stating this independence property, since our aim is to
derive a generic algorithm.
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3.3 The overall optimization algorithm

If Rα and Rβ are convex functions, then F is convex in each variable separately.
Unfortunately, F is usually nonconvex on the product space Rn+ × Rn+ since
the 2D function f(x, y) = exp(−x)y + x − log(y) is nonconvex. Finding global
minimizers in reasonable times therefore seems complicated, except for specific
regularizers Rα and Rβ that could compensate for the nonconvexity of the data
term. The main observation in this paragraph is that it is possible to find a
global minimizer of F when Rα is a standard convex regularizer and Rβ is just
the indicator function of the positive orthant. Set

Rβ(β) = ιRn+(β) =

{
0 if β[i] ≥ 0,∀i ∈ {1, . . . , n},
+∞ otherwise.

(33)

With this specific choice, the optimality conditions of problem (31) with respect
to variable β read:

β =
u1 + u2

exp (−A1α) + exp (−A2α)
. (34)

This expression can be seen as a simple estimator of β knowing u1, u2 and α. By
replacing this expression in (32), we obtain an optimization problem in variable
α only:

min
α∈Rn

n∑
i=1

2∑
j=1

uj [i]

(Ajα)[i] + log

 2∑
j=1

exp(−(Ajα)[i])

+Rα(α). (35)

Proposition 1. Problem (35) is convex for a convex regularizer Rα.

Proof. The term uj [i](Ajα)[i] is linear, hence convex. The term log
(∑2

j=1 exp(−(Ajα)[i])
)

is the composition of the convex logsumexp function with a linear operator,
hence it is convex.

The above observation motivates using the minimizer of (35) as an initial
guess. Then, it is possible to use an arbitrary convex regularizer Rβ and to
minimize (31) using an alternate minimization between α and β. This idea is
captured in Algorithm 1, it ensures a monotonic decay of the cost function:
F (αk+1, βk+1) ≤ F (αk, βk). However the algorithm does not necessarily con-
verge to a stationary point. This is not a critical issue since we will see later
that only 1 iteration is usually preferable.

3.4 Minimizing the initial convex program: warm start

We now delve into the numerical resolution of the warm start initialization (35).
First, we need to choose a convex regularizer Rα. In this paper, we propose to
simply use the total variation [25], which is well known to preserve sharp edges.
Its expression is given by:

Rα(α) = λα

n∑
i=1

‖(∇α)[i]‖2, (36)

where ∇ : Rn → Rdn is a discretization of the gradient and λα ≥ 0 is a regular-
ization parameter. We will use the standard discretization proposed in [26] in
our numerical experiments.
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Algorithm 1 An algorithm to solve problem (31)

1: Input: Initial guess u1, u2, A1, A2 and Nit.
2: Output: α̂ and β̂, estimates of the attenuation and density.
3: Find α0, the minimizer of (35).
4: Find β0 = argmin

β∈Rn+
F (α0, β).

5: for k = 1 to Nit do
6: Find αk = argmin

α∈Rn+
F (α, βk−1).

7: Find βk = argmin
β∈Rn+

F (αk, β).

8: end for

Problem (35) is convex, but rather hard to minimize for various reasons listed
below. First, the vectors α and β may be very high dimensional, preventing
the use of an arbitrary black-box method. Second, the regularizer Rα is non
differentiable. Third, the operators Ai have a spectral norm depending on the
dimension n, preventing the use of gradient based methods since the Lipschitz
constant of the gradient would be too high, see Proposition 2. Last, the proximal
operator associated to the logsumexp function has no simple analytical formula.

Proposition 2. Matrix A1 in (22) satisfies ‖A1‖2→2 & n, where ‖·‖2→2 stands
for the spectral norm.

Proof.

‖A1‖22→2 ≥

∥∥∥∥∥∥∥A1

1/
√
n

...
1/
√
n


∥∥∥∥∥∥∥
2

2

≥ 1

n

∥∥∥∥∥∥∥∥∥


1
2
...
n


∥∥∥∥∥∥∥∥∥
2

2

&
n3

n
= n2.

A large number of splitting methods have been developed to solve problems
of type (35), and we refer to the excellent review paper [27] for an overview.
Among them, the Simultaneous Direction Method of Multipliers (SDMM), a
variant of the ADMM [28, 29] is particularily adapted to the structure of our
problem. This algorithm allows solving problems of type:

min
α∈Rn

g1(L1α) + . . .+ gm(Lmα), (37)

where functions gi : Rn → R ∪ {+∞} are convex closed and the operators
Li : Rn → Rmi are linear and such that Q =

∑n
i=1 L

T
i Li is an invertible matrix.

The SDMM then takes the algorithmic form described in Algorithm 2.
To cast problem (35) into form (37), we use the following choices. We set

L1 : Rn → R2n

α 7→ c1

(
A1α
A2α

)
, (38)
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Algorithm 2 The SDMM algorithm to solve (37)

1: input: Nit, γ > 0, (yi,0)1≤i≤m, (zi,0)1≤i≤m
2: for k = 1 to Nit do
3: xk = Q−1

∑m
i=1 L

T
i (yi,k − zi,k)

4: for i = 1 to m do
5: si,k = Lixk.
6: yi,k+1 = proxγgi(si,k + zi,k)
7: zi,k+1 = zi,k + si,k − yi,k+1

8: end for
9: end for

g1 : R2n → R ∪ {+∞}(
z1
z2

)
7→
∑n
i=1

∑2
j=1 uj [i]

[
zj [i]/c1 + log

(∑2
j=1 exp (−zj [i]/c1)

)]
,

(39)

L2 = c2∇ and g2

z1...
zd

 =
λ

c2

n∑
i=1

√
z21 [i] + . . .+ zd[i]2, (40)

L3 = c3In and g3(z) = ιRn+(z). (41)

The numbers c1, c2, c3 are positive constants allowing to accelerate the algo-
rithm’s convergence by balancing the relative importance of each term. This
can also be seen as a simple diagonal preconditioner. In our numerical experi-
ments, we set c1 = 1 and tune c2 and c3 manually to accelerate convergence.

In order to apply Algorithm 2, we need to compute the proximal operators
of each function gi, defined by:

proxγgi(z0) = argmin
z∈Rmi

γgi(z) +
1

2
‖z − z0‖22. (42)

The proximal operators of g2 and g3 have closed form solutions found in nearly
all recent total variation minimization solvers. We refer to [29] for instance.
Unfortunately, the proximal operator of g1 has no closed-form expression. In
order to compute it, we propose using a non trivial Newton based algorithm
described in section 6.1. Finally, we need to evaluate matrix-vector products
with Q−1. This can be achieved using either a LU factorization or a conjugate
gradient. In our codes, we simply use a conjugate gradient algorithm.

To conclude this paragraph, we illustrate the results obtained by the de-
scribed procedure in Figure 5.

3.5 Recovering the attenuation knowing the density

In this paragraph, we focus on the resolution of:

αk = argmin
α∈Rn

F (α, βk−1)

= argmin
α∈Rn

h1(L1α) + h2(L2α) + h3(L3α),

12



(a) Density β ∈ [0, 100]n (b) Attenuation α ∈ [0, 0.03]n

(c) Image u1 (d) Image u2

(e) (34): SNR=-53.1dB (f) TV: SNR=11.9dB

Figure 5: Warm start initialization. (5a) and (5b) are the original density
and attenuation. (5c) and (5d) are the observed signals. (5e) is the direct
density estimate (4). As can be seen, the formula yields useless results since
it is completely unstable to noise. (5f) is the density estimate using the total
variation solver. It allows recovering the main details of the cameraman, despite
a significant amount of noise.
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where L1, L2 and L3 are defined as in the previous section, h2 = g2, h3 = g3
and

h1 : R2n → R(
z1
z2

)
7→
∑2
j=1

∑n
i=1 uj [i]zj [i]/c1 + exp(−zj [i]/c1)βk−1[i].

(43)

As in the previous section, the SDMM is a good candidate to solve this problem.
The only difficulty is to compute the proximal operator proxγh1

. This amounts
to solving 2n 1D optimization problems of the following type:

argmin
z∈R

γuz + γ exp(−z)β +
1

2
(z − z0)2, (44)

where u, z0 and β are real numbers.

Proposition 3. The solution z∗ of problem (44) is given by:

z∗ = a+W (βγ exp(−a)), (45)

where a = z0−γu and W is the so-called Lambert W function, i.e. the reciprocal
function of x 7→ x exp(x).

Proof. The optimality conditions for this problem read:

γu− βγ exp(−z∗) + z∗ − z0 = 0, (46)

so that
z∗ = a+ βγ exp(−z∗), (47)

with a = z0 − γu. Now, we can write z∗ = a + w, hence w = βγ exp(−a − w),
which is still equivalent to:

w exp(w) = βγ exp(−a), (48)

or w = W (βγ exp(−a)).

Remark 4. The Lambert W function has been studied thoroughly. The stan-
dard approach to compute it consists of using Halley’s method (a Househölder
method with cubic convergence rate) initialized with the first terms of an asymp-
totic expansion. This method was proposed in the excellent review paper [30]
and seems to be the default solver in MAPLE and MATLAB. Unfortunately,
this method fails for our problem since the number βγ exp(−a) can exceed the
maximum number available in double precision. We therefore develop a specific
method in Appendix 6.2.

3.6 Recovering the density knowing the attenuation

In this paragraph, we focus on the resolution of minβ∈Rn F (αk, β). This amounts
to simultaneously correcting the attenuation and denoising the resulting image.
This is a rather simple inverse problem, but it seems original due to the noise
statistics. A Poisson distributed variable multiplied by a positive constant differ-
ent from 1 is not Poisson anymore. This makes the proposed algorithm similar,
but different from existing approaches developed for Poisson noise in [31,32] for
instance.
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A simple idea to regularize the problem is to use the total variation again,
i.e. to set Rβ(β) = λβ

∑n
i=1 ‖(∇β)[i]‖2. Once again the resulting problem can

be solved with the SDMM. Let us detail this procedure. Define

a[i] =

2∑
j=1

exp(−(Ajα)[i]) and u[i] =

2∑
j=1

uj [i]. (49)

The problem then reads:

min
β∈Rn+

n∑
i=1

a[i]β[i]− u[i] log(β[i]) + λβ

n∑
i=1

‖(∇β)[i]‖2

= min
β∈Rn

j1(L1β) + j2(L2β),

with L1 = c1In,

j1 : Rn → R ∪ {+∞}
z 7→ ιRn+(z) + 1

c1

∑n
i=1 a[i]z[i]− u[i] log(z[i]),

(50)

L2 = c2∇ and

j2 : R2n → R(
z1
z2

)
7→ λβ

c2

∑n
i=1

√
z1[i]2 + z2[i]2.

(51)

The proximal operators of j2 is standard and we do not detail it here. The
proximal operator of j1 is provided below:

Proposition 4. We have:

proxγj1(z0) =
−(γ/c1a− z0) +

√
(γ/c1a− z0)2 + 4γu

2
. (52)

Proof. It suffices to write the first order optimality conditions of minz≥0 1/2‖z−
z0‖22 + a/c1z − u log(z/c1). This shows that z is the root of a second order
polynomial. Its only positive root is given in (52).

We show a typical result of total variation minimization in Figure (6). Pa-
mareter λβ was chosen manually so as to maximize the SNR of the result.

4 Additional comments

4.1 Parameter selection

Data terms The two data term parameters are λα and λβ . They specify
the regularity of the attenuation and the density respectively. In all our ex-
periments, we optimized them by trial and error. We observed experimentally,
that similar results are obtained within a relatively large range, making a man-
ual optimization quite easy. In addition, for a given measurement device, the
same parameter is likely to be always the same, decreasing the interest of an
automatized procedure such as SURE.
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(a) Density β ∈ [0, 100]n (b) Attenuation α ∈ [0, 0.03]n

(c) Image u1 (d) Image u2

(e) (34): SNR=12.9dB (f) TV: SNR=21.9dB

Figure 6: Recovering the density knowing the exact attenuation, with a non
regularized estimator or a total variation solver. (6a) and (6b) are the original
density and attenuation. (6c) and (6d) are the observed signals. (6e) is the
direct density estimate (34). (6f) is the density estimate using a total variation
solver.
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Algorithms parameters The optimization algorithms are based on the SDMM
and their convergence rates depend a lot on the paramaters γ, c1, c2, c3 and c4.
They may converge to a satisfactory solution rapidly (about 50 iterations) or
slowly (more than 10000 iterations) depending on these choices. Unfortunately,
we found no systematic method to choose them and also used a trial and error
strategy in our numerical experiments. Our numerical experiments suggest that
these parameters are suitable for a wide range of data (image size, maximum
attenuation, image dynamics), so that the tedious tuning can be done once for
all for a given application.

4.2 Number of outer iterations

Algorithm 1 depends on a number of outer iterations denoted Nit. One may
wonder how many iterations are needed to obtain a satisfactory solution. It
turns out that 1 iteration leads to the best results in terms of SNR: iterating
more tends to degrade the solution, even though the cost function continues to
decrease. The precise reason behind this is still unknown, but it is likely that
this is total variation bias. Low contrasted solutions are favored at the expense
of SNR. This seems to be one more example, where the Maximum A Posteriori
principle should be taken with caution [33–35]. It is useful to get a rough idea
of a functional to minimize (here it allowed designing the warm start estimate),
but should not be considered as the best possible estimator.

This remark being stated, the proposed algorithm can be seen as a simple
two step procedure:

• Find the warm start estimate (35).

• Correct the density (see section 3.6).

It is possible to evaluate the attenuation once again (see section 3.5), but we
observed that this influenced the result very little.

4.3 Computing times

All the experiments of the paper were performed on a laptop with an Intel
i7 processor with 4-cores. The codes were written mostly in Matlab (natively
parallel), with some parts written in C with OpenMP support.

The complexity of the proposed algorithms scale roughly linearly with the
number of pixels n, as shown in Fig. 7. We observed that the number of
iterations of the SDMM to reach a given relative accuracy remains the same
whatever the size n, while the cost per iteration scales linearly with it (at least
for the cumulative sum integral operators considered herein).

As can be seen on Fig. 7 the algorithm takes around 48 seconds for a
256× 256 image. Out of these, 45 seconds are spent to recover the attenuation,
while the 3 remaining are dedicated to correct the density.

All codes can be easily parallelized on a GPU. A speed-up of 100 can be
expected on such an architecture, making the proposed methods suitable for
large 2D or 3D images.
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Figure 7: Time needed to compute the warm start estimate and correct the
attenuation with respect to the number n of pixels (in log-log scale). A lin-
ear regression indicates that the slope is roughly equal to 1, showing a linear
dependency with respect to the number of pixels.

4.4 Influence of attenuation and signal-to-noise ratio

Two parameters strongly influence the ability to recover the attenuation and
density: the signals dynamics (or signal-to-noise ratio) and the attenuation
dynamics.

As the signal-to-noise ratio decreases, it becomes impossible to recover fine
details. For instance, the fine stripes are not recovered in Fig. 1e, but they are
recovered for signals with a much higher amplitude. In Fig. 8, it can indeed be
verified that a high dynamics of 105 allows recovering most of the stripes. This
experiment shows that highly sensitive EMCCD cameras should be preferred
over more standard devices for this specific application.

The attenuation amplitude also plays a key role: if it is too low, then no
attenuation can be detected. On the contrary, if it is too high, then the signals u1
and u2 will vanish too rapidly, making it impossible to evaluate the attenuation.
This is illustrated in Fig. 8. It is remarkable that the algorithm manages to
recover the attenuation partially for very low signal-to-noise ratio. In Fig. 8c,
we observe that the attenuation is partially recovered with no more than 30
expected photons per pixel!

4.5 Toolbox

A Matlab toolbox containing all the main algorithms described in the paper
is provided on the website of the authors https://www.math.univ-toulouse.
fr/~weiss/ and on GitHub https://github.com/pierre-weiss/MAEC. The
Lambert W function and the proximal operator of logsumexp have been im-
plemented with C-mex files with OpenMP support for multicore acceleration.
Demonstration scripts are available for testing.
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(a) ‖β‖∞ = 30 (b) ‖α‖∞ = 0.01 (c) SNR: 3.3dB (d) SNR: 15.1dB

(e) ‖β‖∞ = 104 (f) ‖α‖∞ = 0.01 (g) SNR: 9.2dB (h) SNR: 21.2dB

(i) ‖β‖∞ = 30 (j) ‖α‖∞ = 0.15 (k) SNR: 6.0dB (l) SNR: 9.7dB

(m) ‖β‖∞ = 104 (n) ‖α‖∞ = 0.15 (o) SNR: 11.2dB (p) SNR: 21.1dB

(q) ‖β‖∞ = 105 (r) ‖α‖∞ = 0.1 (s) SNR: 13.5 (t) SNR: 44.3

Figure 8: Ability to recover the attenuation and density depending on the den-
sity and attenuation amplitude. First and second column: attenuated images
given as input to the algorithm. Third column: recovered attenuation α. Fourth
column: recovered denisty β.
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5 Conclusion & outlook

We proposed a robust and efficient approach to recover attenuation and correct
density from multiview measurements. This principle was already known in
the field of lidar and solved with simple filtering approaches. The algorithms
proposed herein are based on a clear and versatile statistical framework. The
approach seems promising in various devices such as lidar or some fluorescence
microscopes. It is likely that its scope be much wider and we therefore provide
a free Matlab toolbox on our website.

As a prospective, we plan to confront our algorithms with real data com-
ing from lidar and microscopy. The total variation based algorithm to correct
attenuation defects is somewhat disappointing since it is unable to recover fine
textures. A promising and unexplored issue is to extend the nonlocal means
algorithms [36] to solve this problem. To conclude, let us mention a serious lim-
itation of the proposed approach: it is not so common to find a couple optical
system-sample, where attenuation dominates scattering. We do not know at
the present time how many applications can reasonably be modeled by equa-
tion (19). This question is central to precisely understand the strengths and
limits of the proposed approach.

6 Appendices

6.1 Proximal operator of logsumexp in dimension 2

In this section, we propose a fast and accurate numerical algorithm based on
Newton’s method to solve the following problem:

w = proxγg1(z)

= argmin
x∈R2n

γ

n∑
i=1

2∑
j=1

uj [i]

xj [i] + log

 2∑
j=1

exp(−xj [i])

+
1

2
‖x− z‖22,

where z =

(
z1
z2

)
and x =

(
x1
x2

)
are vectors in R2n. This problem may seem

innocuous at first sight, but turns out to be quite a numerical challenge. The
first observation is that it can be decomposed as n independent problems of
dimension 2 since:

w[i] = argmin
(x1,x2)∈R2

γ

2∑
j=1

uj [i]

xj + log

 2∑
j=1

exp(−xj)

+
1

2
(xj − zj [i])22. (53)

To simplify the notation, we will skip the index i in what follows. The follow-
ing proposition shows that our problem is equivalent to finding the proximal
operator associated to the “logsumexp” function.

Proposition 5. Define the logsumexp function lse(x1, x2) = log
(∑2

j=1 exp(xj)
)

.

The solution of problem (53) coincides with the opposite of the proximal operator
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of lse:

w[i] = − argmin
(x1,x2)∈R2

alse(x1, x2) +
1

2
((x1 − y1)2 + (x2 − y2)2) (54)

= −proxalse(y1, y2), (55)

where a = γ(u1 + u2) and yj = γuj − zj.

Proof. The first order optimality conditions for problem (53) read{
γu1 − γ(u1+u2) exp(−x1)

exp(−x1)+exp(−x2)
+ x1 − z1 = 0

γu2 − γ(u1+u2) exp(−x2)
exp(−x1)+exp(−x2)

+ x2 − z2 = 0.
(56)

By letting a = γ(u1 + u2) and yj = γuj − zj , this equation becomes{
− a exp(−x1)

exp(−x1)+exp(−x2)
+ x1 + y1 = 0

− a exp(−x2)
exp(−x1)+exp(−x2)

+ x2 + y2 = 0.
(57)

It now suffices to make the change of variable x′i = −xi to retrieve the optimality
conditions of problem (55){

a exp(x′1)
exp(x′1)+exp(x′2)

+ x′1 − y1 = 0
a exp(x′2)

exp(x′1)+exp(x′2)
+ x′2 − y2 = 0.

(58)

Remark 5. To the best of our knowledge, this is the first attempt to find a
fast algorithm to evaluate the prox of logsumexp. This function is important in
many regards. In particular, it is a C∞ approximation of the maximum value of
a vector. In addition, its Fenchel conjugate coincides with the Shannon entropy
restricted to the unit simplex. We refer to [37, §3.2] for some details. The
algorithm that follows has potential applications outside the scope of this paper.

We now design a fast and accurate minimization algorithm for problem (55)
or equivalently, a root finding algorithm for problem (58). This algorithm differs
depending on whether y1 ≥ y2 or y2 ≥ y1. We focus on the case y1 ≥ y2. The
case y2 ≥ y1 can be handled by symmetry.

Let λ =
exp(x′1)

exp(x′1)+exp(x′2)
and notice that

exp(x′2)
exp(x′1)+exp(x′2)

= 1 − λ. Therefore

(58) becomes: {
x′1 = y1 − aλ
x′2 = y2 − a(1− λ).

(59)

Hence
1− λ
λ

= exp(x′2 − x′1) = exp(y2 − y1 − a) exp(2aλ). (60)

Taking the logarithm on each side yields 2:

log(1− λ)− log(λ) = y2 − y1 − a+ 2aλ. (61)

2Applying the logarithm is important for numerical purposes. When y2 − y1 − a is very
small, the exponential cannot be computed accurately in double precision.

21



We are now facing the problem of finding the root λ∗ of the following function:

f(λ) = y2 − y1 − a+ 2aλ− log(1− λ) + log(λ). (62)

There are two important advantages for this approach compared to the direct
resolution of (58). First, we have to solve a 1D problem instead of a 2D problem.
More importantly, we directly constrain x′ to be of form x′ = y − aδ, where δ
lives on the 2D simplex.

Let us collect a few properties of function f . First, we have:

f ′(λ) = 2a+
1

1− λ
+

1

λ
> 0,∀λ ∈ (0, 1). (63)

Therefore, f is increasing on (0, 1). To use convergence results of Newton’s
algorithm, we need to compute f ′′ as well:

f ′′(λ) = − 1

λ2
+

1

(1− λ)2
. (64)

Proposition 6. If y1 ≥ y2, then x′1 ≥ x′2 and

max

(
1

2
,

1

1 + exp(y2 − y1 + a)

)
≤ λ∗ ≤ 1

1 + exp(y2 − y1)
. (65)

Proof. The first statement can be proven by contradiction. Assume that x′2 >
x′1, then equation (58) indicates that y2 > y1.

For the second statement, it suffices to evaluate f at the extremities of the

interval since f ′ > 0. We get f(1/2) = y2 − y1 ≤ 0 and f
(

1
1+exp(y2−y1)

)
=

−a+ 2a
1+exp(y2−y1) ≥ 0.

Proposition 7. Set λ0 = 1
1+exp(y2−y1) . Then, the following Newton’s method

λk+1 = λk −
f(λk)

f ′(λk)
(66)

converges to the root λ∗ of f , with a locally quadratic rate.

Proof. First notice that f ′′(λ) ≥ 0 on the interval [1/2, 1). Hence f ′′ is also
positive on I = [λ∗, λ0]. This ensures that

λ0 ≥ λ1 ≥ . . . ≥ λ∗. (67)

We prove this assertion by recurrence. Notice that λ0 ≥ λ∗ by Proposition 6.
Now, assume that λk ≥ λ∗, then

f(λk) = f(λ∗) +

∫ λk

λ∗
f ′(t) dt ≤ f ′(λk)(λk − λ∗). (68)

Hence, λk − λ∗ ≥ f(λk)
f ′(λk)

and λk+1 ≥ λ∗. In addition f(λk)
f ′(λk)

≥ 0 on I, so that

λk+1 ≥ λk.
The sequence (λk)k∈N is monotonically decreasing and bounded below, there-

fore it converges to some value λ′ ≥ λ∗. Necessarily λ′ = λ∗, since for λ′ > λ∗,
f(λ′)
f ′(λ′) > 0.

To prove the locally quadratic convergence rate, we just invoke the celebrated
Newton-Kantorovich’s theorem [38,39], that ensures local quadratic convergence
if f ′′ is bounded in a neighborhood of the minimizer.
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Finally, let us mention that computing λ0 on a computer is a tricky due
to underflow problems: in double precision the command 1 + exp(y2 − y1) will
return 1 for y2 − y1 < −37 ' log(10−16). This may cause the algorithm to fail
since f and its derivatives are undefined at λ = 1. In practice we therefore set
λ0 = 1/(1+exp(y2−y1))−10−16. Similarly, by bound (65), we get λ∗ = 1 up to
machine precision whenever y2 − y2 − a < log(10−16). Algorithm 3 summarizes
all the ideas described in this paragraph.

An attentive reader may have remarked that the convergence of Newton’s
algorithm depends only on the difference y(1) − y(2) and a. A shift of y(1)
and y(2) by the same value does not change Newton’s iteration. In Fig. 9, we
show that the algorithm behaves very well for a wide range of parameters. For
y(1)−y(2) and a varying in the interval [2−10, 220], the algorithm never requires
more than 18 iterations to reach machine precision and needs 2.8 iterations in
average.

Algorithm 3 An algorithm to compute proxalse(y1, y2) with machine precision

1: Input: (y1, y2) ∈ R2, a ∈ R+.
2: Output: (x1, x2) = proxalse(y1,y2).

3: Set ε = 10−16.
4: if y1 ≥ y2 then
5: if y2 − y1 + a < log(ε) then
6: Set λ = 1.
7: else
8: Set λ = 1

1+exp(y2−y1) − ε.
9: Define d(λ) = y2−y1−a+2aλ+log(λ/(1−λ))

2a+ 1
λ(1−λ)

.

10: while |d(λ)| > ε do
11: Set λ = λ− d(λ).
12: end while
13: end if
14: Set [x1, x2] = [y(1)− aλ, y(2)− a(1− λ)].
15: else if y1 < y2 then
16: if y1 − y2 + a < log(ε) then
17: Set λ = 1.
18: else
19: Set λ = 1

1+exp(y1−y2) − ε.
20: Define d = y1−y2−a+2aλ+log(λ/(1−λ))

2a+ 1
λ(1−λ)

.

21: while |d| > ε do
22: Set λ = λ− d(λ).
23: end while
24: end if
25: Set [x1, x2] = [y(1)− a(1− λ), y(2)− aλ].
26: end if
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Figure 9: Performance evaluation for Newton’s algorithm. Left: found value of
λ∗ depending on a and y1−y2. Right: number of iterations of Newton’s method
to reach machine precision.

6.2 Computing the Lambert W function for large numbers

In this section, we propose a numerical algorithm to solve the following equation:

x exp(x) = exp(z). (69)

The solution is given by x∗ = W (exp(z)), where W is the Lambert W function.
When z is sufficiently small, Halley’s method proposed in [30] can be applied.

However, this method fails whenever z is too large due to numerical instabilities.
For instance, the command log(exp(z)) returns +∞ for z > 710. In that case,
it makes sense to apply a logarithm on each side of equation (69) and solve the
following problem instead:

log(x) + x = z. (70)

The two first terms of the asymptotic expansion of W yield W (exp(z)) ' z −
log(z) for large z. This value is a good starting point for a root finding algorithm.
Here, we simply propose to use Newton’s algorithm for large z. The complete
method is detailed in Algorithm 4. It never takes more than 5 iterations to reach
machine precision. The initialization w =

√
5.43z + 2 − 1 is obtained using a

Padé approximation and the threshold 0.12 has been determined experimentally
in [30].
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