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Abstract. In the elastic shape analysis approach to shape matching and object clas-

sification, plane curves are represented as points in an infinite-dimensional Riemannian
manifold, wherein shape dissimilarity is measured by geodesic distance. A remarkable

result of Younes, Michor, Shah and Mumford says that the space of closed planar shapes,

endowed with a natural metric, is isometric to an infinite-dimensional Grassmann man-
ifold via the so-called square root transform. This result facilitates efficient shape com-

parison by virtue of explicit descriptions of Grassmannian geodesics. In this paper,
we extend this shape analysis framework to treat shapes of framed space curves. By

considering framed curves, we are able to generalize the square root transform by us-

ing quaternionic arithmetic and properties of the Hopf fibration. Under our coordinate
transformation, the space of closed framed curves corresponds to an infinite-dimensional

complex Grassmannian. This allows us to describe geodesics in framed curve space ex-

plicitly. We are also able to produce explicit geodesics between closed, unframed space
curves by studying the action of the loop group of the circle on the Grassmann manifold.

Averages of collections of plane and space curves are computed via a novel algorithm

utilizing flag means.

1. Introduction

The study of shape is of fundamental importance to problems in computer vision, object
recognition, biomedical imaging and computer graphics. A common mathematical formal-
ism for comparison of shapes of objects involves representing the objects as points in a
metric space (the shape space), where distance corresponds to some notion of shape dissim-
ilarity. Classical approaches to shape analysis have represented objects by a finite number
of landmarks, whence the shape space is a finite-dimensional manifold [11, 22]. There has
recently been a large amount of work blending shape analysis with functional data analysis,
wherein shapes are represented as equivalence classes of parameterized immersed mani-
folds [1, 19, 34, 39]. The shape spaces in this framework are infinite-dimensional manifolds
obtained as quotients of function spaces. Using this approach, a shape space can more
generally be endowed with a Riemannian structure. This gives rise to a metric defined by
geodesic distance as well as algorithms for statistical calculations such as Karcher means
and Principal Component Analysis.

The purpose of this paper is to extend functional analysis-based shape comparison meth-
ods to the study of shapes of framed curves. A framed curve is a curve in R3 endowed with
a choice of adapted moving frame. There are two main motivations for doing so. First,
framed curves have a wide variety of applications; for example, they are used in computer
graphics and animation [4, 5], camera tracking [13], modeling of protein folding [17], and
they are central to the study of elasticity [21]. The second motivation is theoretical. By
studying framed space curves, we are able to extend well-known work of Younes, Michor,
Shah and Mumford on shapes of planar curves [39]. Roughly, their result says that the
shape space of closed planar curves is isometric to an infinite-dimensional real Grassmann
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2 TOM NEEDHAM

manifold. The simple geometry of the manifold leads to highly efficient shape comparisons,
since geodesics in the Grassmannian are given explicitly. Our generalization says that the
shape space of closed framed curves in R3 is isometric to a complex Grassmannian. More-
over, we show that the space of (unframed) closed curves in R3 is isometric to a quotient of
the Grassmann manifold by the infinite-dimensional based loop group of S1. The takeaway
of our results is that calculations in these infinite-dimensional spaces of closed curves in R3

can be performed explicitly. A more precise description of the contributions of this paper
follows below.

1.1. Elastic Shape Analysis of Curves. In this section, we briefly outline the elastic
shape analysis approach to object matching. We will focus on shapes of curves in Rn,
although the general framework is quite flexible and has been extended to treat shapes of
immersed surfaces [19, 25] and of curves in non-Euclidean manifolds [27, 37]. More details
are available in several survey articles [2, 36] or the recent textbook [35].

For concreteness, we begin by considering shapes of closed curves in R2. Under the elastic
shape analysis paradigm, one represents planar curves as points in an infinite-dimensional
Riemannian manifold. The representation is achieved via a quotient construction; for prac-
tical purposes, we deal with parameterized curves, but we theoretically identify a pair of
curves if they differ by a translation, a rotation, a scaling and/or a reparameterization. A
point in the manifold of curve shapes is therefore the orbit of a parameterized curve under
the action of the group of shape-preserving transformations; i.e., the shape space of planar
curves is the quotient space

ImmpS1,R2q{

"

transl., rot.,
scal., reparam.

*

,

where ImmpS1,R2q denotes the space of immersions γ : S1 Ñ R2 with γ1ptq ‰ 0 for all t.
A Riemannian structure on the shape space is constructed by defining a Riemannian

metric on the total space of immersed curves ImmpS1,R2q. If the metric is invariant under
the shape-preserving transformations, then it descends to a well-defined metric on the shape
space. There are many reasonable choices of metric on ImmpS1,R2q, and one typically
considers Sobolev-type metrics of order at least one (due to the fact that geodesic distance
vanishes with respect to the reparameterization-invariant L2-metric [28]). A popular class
of metrics are those in the two parameter family ga,b of elastic metrics [29], defined by

ga,bγ pµ, µq “

ż

S1

a 〈Dsµ, T 〉2 ` b 〈Dsµ,N〉2 ds,

where γ P ImmpS1,R2q,
µ P TγImmpS1,R2q « C8pS1,R2q,

T is the unit tangent to γ and N is its unit normal. Throughout the rest of the paper,
we use Ds “

1
}γ1ptq}

d
dt to denote derivative with respect to arclength and ds “ }γ1ptq}dt to

denote arclength measure.
A main inspiration for the present paper is the following well-known result of Younes,

Michor, Shah and Mumford.

Theorem 1.1 ([39]). The space

ImmpS1,R2q{ttransl., rot., scal.u,

endowed with the elastic metric ga,a is locally isometric to the Grassmann manifold Gr2pC
8pS1,Rqq

of two-dimensional planes in the vector space C8pS1,Rq, endowed with its canonical L2 met-
ric.
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The usefulness of this result lies in the fact that geodesics in the Grassmann manifold
can be described explicitly by a straightforward extension of the finite-dimensional formula.
This identification therefore facilitates a fast algorithm for shape comparisons. The proof
of Theorem 1.1 relies completely on the identification of R2 with the complex plane, as the
isometry is induced by the map cptq ÞÑ

a

c1ptq, with the square root taken pointwise, chosen
so that the image is a continuous curve.

There have been several other papers building on this theme; that is, given an elastic
metric on the space of plane curves, one constructs a coordinate transformation taking
the elastic metric isometrically to a simplified metric [1, 24]. This procedure is sometimes
referred to as flattening the metric. The most widely used of these is the square root velocity
transform (SRVT) of [34], which flattens the elastic metric g1{4,1. The SRVT generalizes
to a transform for the space of immersed curves in Rn, where immersion space is endowed
with a straightforward generalization of the elastic metric g1{4,1.

A caveat is that, besides the square root transform of [39], none of the metric-flattening
transforms in the existing literature treat closed curves explicitly. As a result, most of the
algorithms in the literature require, in each iterative step, an orthogonal projection from the
manifold of open curves to the submanifold of closed curves. Unfortunately, it is unclear how
the square root transform and its resulting explicit geodesics for closed curves would directly
generalize to curves in higher dimension, due to its reliance on complex arithmetic. We will
show that if one considers framed curves in R3, then the pointwise complex arithmetic
can be replaced with quaternionic arithmetic, and there is an appropriate generalization of
Theorem 1.1 which treats closed curves explicitly.

1.2. Main Contributions and Outline of the Paper. We begin Section 2 with defini-
tions of our spaces of framed curves. A family of elastic metrics is defined on the space of
framed curves and we show that the family is a natural generalization of the elastic metrics
for plane curves (a different generalization than the one used in the literature on SRVT
for curves in Rn). We then utilize quaternionic algebra to give a coordinate transforma-
tion which flattens a particular choice of framed curve elastic metric. This construction was
described in previous articles [31, 30], where the focus was on symplectic geometry and theo-
retical applications. The exposition provided here is focused on algorithms and applications
to shape analysis. We show that the transformation takes our elastic metric isometrically
to an L2 metric on the target space (Theorem 2.1). Using this transformation, we give an
explicit formula for geodesics in the space of open framed curves.

Section 3 specializes to closed framed curves. We show how the coordinate transforma-
tion described above restricts to identify the shape space of closed framed curves with a
complex Grassmannian (Theorem 3.3). An explicit formula for geodesics in the complex
Grassmannian is provided.

In Section 4, we introduce another group action which is genuinely unique to the framed
curve setting. This is the action of C8pS1, S1q on framed curve space by frame twisting.
The space of unframed curves in R3 can be viewed as the quotient of framed curve space
by this group action. Theorem 4.1 shows that geodesics in framed curve space which are
horizontal with respect to this action can be determined explicitly. As a consequence, we
are able to find explicit geodesics for open and closed (unframed) curves in R3 with respect
to our metric.

The paper concludes in Section 5 with several examples of geodesics between framed and
unframed curves. We also apply our theory to shape analysis of supercoiled circular DNA
molecules, with shape data from the experiment described in [18]. In this section, we also
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introduce a new algorithm for averaging plane curves and space curves, based on the notion
of a flag mean for points sampled from a Grassmannian [10].

2. Shape Analysis of Open Framed Curves

In this section we describe the structure of the shape space of open framed curves and
our algorithm for producing geodesics between framed curves.

2.1. Spaces of Framed Paths.

2.1.1. The Preshape Space. A framed space curve is a pair pγ, V q of smooth maps γ, V : I Ñ
R3 from a closed interval I Ă R such that γ is an immersion and V is a unit normal vector
field to γ. We fix the choice of domain I “ r0, 2s as a convenient normalization; the utility of
this particular choice will become clear when we pass to the subspace of closed curves. Our
end goal is to study shapes of framed curves, which are equivalence classes with respect to
the shape-preserving group actions of translation, scaling, rotation and reparameterization.

The simplest invariance to treat is the action of R3 by translation, since the quotient
by R3 is concretely realized by representing all framed curves pγ, V q with a fixed basepoint

γp0q “ ~0. The resulting quotient space pSo will be referred to as the preshape space of (open)
framed paths.

2.1.2. Manifold Structure. In this paper, infinite-dimensional manifolds will belong to the
Nash-Moser category of tame Fréchet manifolds [14]. For a finite-dimensional manifold M ,
we use the simplified notation PM “ C8pI,Mq and LM “ C8pS1,Mq for the path space
and loop space of M , respectively.

It is shown in [30] that pSo is an infinite-dimensional tame Fréchet manifold by identifying
it with PpSOp3q ˆ R`q using the map

(1) pγ, V q ÞÑ
`

pT, V, T ˆ V q , }γ1}
˘

,

where } ¨ } will always denote the Euclidean norm and T “ γ1{}γ1} denotes the unit tangent
curve of γ. By fixing the standard basis, we identify SOp3q with the space of 3ˆ 3 matrices
with orthonormal columns. Each entry T , V and TˆV in the image of (1) is then considered
as a path of column vectors. The map (1) is a bijection: the only information lost by the

map is the basepoint γp0q, and this is accounted in the definition of pSo.

2.1.3. The Shape Space. The finite-dimensional Lie groups R` and SOp3q act on pSo by
scaling (of the base curve) and rotation, respectively, while the infinite-dimensional Lie
group Diff`pIq of orientation-preserving diffeomorphisms of I acts by precomposition: for

ρ P Diff`pIq and pγ, V q P pSo, the action is given by the formula

ρ ¨ pγ, V q “ pγ ˝ ρ, V ˝ ρq.

We refer to this as the reparameterization action. The shape space of open framed curves is
then defined to be the quotient space

So “ pSo{pR` ˆ SOp3q ˆDiff`pIqq.

2.2. Metrics on the Shape Space.
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2.2.1. Framed Path Elastic Metrics. In order to perform statistical analysis on collections of
framed curves, we wish to introduce a Riemannian metric on the shape space So. Following
the elastic shape analysis framework outlined in the introduction, this is accomplished by

first defining a metric on the preshape space pSo which is invariant under scaling, rotation
and reparameterization, so that it descends to a well-defined metric on the quotient shape
space.

It is a straightforward exercise to verify that the tangent space to a base point pγ, V q P pSo
consists of smooth variations pν,W q satisfying the constraints

νp0q “ ~0〈
ν1, V

〉
`
〈
γ1,W

〉
“ 〈W,V 〉 “ 0.

Such a variation decomposes at each point into four components: bending toward V , bending
toward T ˆ V , stretching of γ, and rotation of V around T . Inspired by the plane curve
elastic metrics introduced in Section 1.1, we define the framed curve elastic metric with
parameters a, b, c, d by

ga,b,c,d
pγ,V q ppν,W q, pν,W qq “

ż

I

a 〈Dsν, V 〉2 ` b 〈Dsν, T ˆ V 〉2

` c 〈Dsν, T 〉2 ` d 〈W,T ˆ V 〉2 ds.

The parameters control the weights of the four types of deformations described above. Since
the derivatives and the measure are with respect to arclength, these metrics are invariant
under Diff`pIq. Moreover, they are translation and rotation-invariant. Finally, they scale
with homotheties of the base curve and can therefore be made scale invariant by dividing
by the total length of γ; we instead opt to treat this invariance by working primarily in the
submanifold of curves of fixed length.

2.2.2. The Submanifold of Planar Curves. The space C8pI,R2q{R2 of based planar curves

embeds naturally into pSo as the submanifold of framed curves pγ, V q such that the image of
γ lies in the xy-plane and V is the oriented unit normal vector to γ. The tangent variations
to this submanifold have no bending component in the T ˆ V -direction and no twisting
component. These terms therefore vanish in the restriction of ga,b,c,d to this submanifold
and it follows that the induced metric on the submanifold is the planar elastic metric ga,c.
The framed curve elastic metrics therefore give a natural generalization of the plane curve
elastic metrics which is an alternative to the standard generalization to curves in Rn [34].

2.2.3. Fixing a Parameter Choice. In this paper, we focus on the particular parameter choice
a “ b “ c “ d “ 1. Let gS be the metric given by the formula

gSpγ,V q ppν1,W1q, pν2,W2qqq “
1

4

ż

I

〈Dsν1, Dsν2〉` 〈W1, T ˆ V 〉 〈W2, T ˆ V 〉 ds.

This metric will be used for all of our shape spaces, hence the generic superscript in our
notation. A simple calculation shows that

gS “
1

4
g1,1,1,1.

We rescale by a factor of 4 as a matter of convenience; this scaling will disappear when we
introduce a change of coordinates in the following subsection.

When restricting to the submanifold of planar curves, the induced metric is a constant
multiple of the planar elastic metric g1,1, and the work in this paper can therefore be seen
as a direct extension of the results of [39].
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2.3. Quaternionic Coordinates for Framed Paths.

2.3.1. The Frame-Hopf Map. Let H “ spanRt1, i, j,ku denote the skew-field of quaternions.
A quaternion

q “ q0 ` q1i` q2j` q3k P H
has conjugate denoted

q “ q0 ´ q1i´ q2j´ q3k.

We will abuse notation slightly and also denote quaternion-valued paths and loops by q “
qptq.

It is well known that a framed curve pγ, V q can be represented as a path in the quaternions
q P PH which is unique up to a global choice of sign (e.g., [9, 15]). More precisely, there is

a smooth double covering map H : PH˚ Ñ pSo defined explicitly by

(2) Hpqq “ pγ, V q “

ˆ
ż

qiq dt,
qjq

}q}2H

˙

with Hpq1q “ Hpq2q if and only if q1 “ ˘q2, which we refer to as the frame-Hopf map. In
(2), all quaternionic arithmetic in the formula is understood to be performed pointwise on
the curves. It is easy to check that the quaternionic paths qiq and qjq are purely imaginary,
so that they can be naturally identified with paths in R3. The norm } ¨ }H is the Euclidean
norm on H « R4, and is also applied pointwise. The integral symbol in the first coordinate
denotes the antiderivative based at ~0. It is also straightforward to check that V defines a
normal vector field to γ. Putting all of this together, we conclude that the frame-Hopf map
is well-defined.

2.3.2. The Classical Hopf Map. We call H the frame-Hopf map in reference to its relationship
to the well known anti-homomorphic double-covering

(3) h : SUp2q Ñ SOp3q.

The double-covering h can be realized by identifying SUp2q with the 3-sphere of unit quater-
nions S3 Ă H via

ˆ

u v
´v u

˙

Ø u` vj,

where u and v are complex numbers satisfying |u|2 ` |v|2 “ 1. Then h : S3 Ñ SOp3q is the
map

q ÞÑ pqiq, qjq, qkqq.

Each entry in the image is a purely imaginary quaternion, and can therefore be identified
with a column vector in R3. Then each column has unit norm and the columns are pairwise
orthogonal, so the image lies in SOp3q. Up to multiplication by a constant, this map is an
isometry with respect to the natural invariant metrics on SUp2q and SOp3q. See, e.g., [12]
for more details.

2.3.3. Local Isometry Theorem. Let 〈¨, ¨〉H denote the Euclidean inner product on H « R4.
In quaternionic coordinates, this is given by

〈q0, q1〉H “ Re q0q1.

We denote the standard L2 metric on the vector space PH by

〈q1, q2〉L2 “

ż

I

〈q1, q2〉H dt

and its induced norm by } ¨ }L2 .
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The following theorem relates the complicated metric gS on framed path space to this
simple L2-metric. This result is stated in [30], but not proved. We include a proof in the
appendix (Section 7.1).

Theorem 2.1. The pullback of gS by H satisfies

H˚gS “ gL
2

.

This motivates us to define a shape similarity metric on pSo by assigning a pair of framed
curves pγj , Vjq, j “ 0, 1, the distance

(4) mint}q0 ´ q1}L2u,

where the minimum is taken over the four possible combinations of lifts of of the pγj , Vjq.
Theorem 2.1 implies that this is equal to the geodesic distance between the framed curves
with respect to the metric gS .

2.4. Modding out Scaling and Rotation.

2.4.1. Scale-Invariance. To explicitly treat scale-invariance for framed curve shapes, we can
preprocess and consider framed curves pγ, V q such that the base curve γ has fixed length 2
(once again, a convenient normalization). This is the space

pSo{R` «
"

pγ, V q P pSo |
ż

I

}γ1} dt “ 2

*

,

which is a codimension-1 submanifold of pSo (this follows by an easy application of Hamilton’s
implicit function theorem [14, Section III, Theorem 2.3.1]). The frame-Hopf map restricts
to give an isometric double covering

H : S?̊
2
Ñ pSo{R`,

where S?2 is the radius-
?

2 Hilbert sphere

S?2 “
 

q P PH | }q}2L2 “ 2
(

and

S?̊
2
“ S?2 X PH˚.

Geodesic distance between points pγ0, V0q and pγ1, V1q in the submanifold pSo{R` is therefore
given by

?
2 ¨mintarccos 〈q0, q1〉L2u,

where the minimum is taken over lifts qj of the pγj , Vjq and
?

2¨arccos 〈q0, q1〉L2 is great-circle
distance in the sphere S?2.

2.4.2. Rotation-Invariance. Rotation-invariance for framed curves is naturally built into this
framework as well. The group SUp2q « S3 acts on PH˚ by pointwise multiplication. The
frame-Hopf map has the following equivariance property for all A P SUp2q and q P PH˚:

Hpq ¨Aq “ hpAq ¨Hpqq.

The action on the righthand side is the SOp3q-action on pSo by pointwise rotation, where
the matrix hpAq is the image of A under the map (3). This equivariance descends to the

restricted map H : S?2 Ñ
pSo{R`.
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Recall that gS is rotation-invariant. This implies that it descends to a well-defined metric

on the quotient pSo{pR` ˆ SOp3qq. By the above discussion, geodesic distance between the
equivalence classes of framed curves pγ0, V0q and pγ1, V1q in this quotient is given by

(5)
?

2 ¨mintarccos 〈q0 ¨A0, q1 ¨A1〉L2u,

where the minimum is taken over quaternionic lifts of the pγj , Vjq and over elements Aj of
the compact Lie group SUp2q. Optimal alignment over rotations is treated explicitly by the
following proposition. The proof is in Section 7.2.

Proposition 2.2. Let q0, q1 P S?2 be quaternionic paths which are not L2-orthogonal. The
minimum distance between the SUp2q-orbits of q0 and q1 is realized by

?
2 ¨ arccos

〈
q0, q1 ¨ pA

〉
L2
,

where pA is the normalization of the quaternion

ż

I

q0q1 dt.

2.5. Reparameterizations and Geodesics in Shape Space.

2.5.1. The Diff`pIq-action in Quaternionic Coordinates. A diffeomorphism ρ P Diff`pIq
acts on q P PH˚ via

ρ ¨ q “
a

ρ1pq ˝ ρq.

It is straightforward to check that the map H is equivariant with respect to this action on

PH˚ and the reparameterization action on pSo; i.e.,

H
´

a

ρ1pq ˝ ρq
¯

“ Hpqq ˝ ρ.

Geodesic distance between equivalence classes of framed curves pγ1, V1q and pγ2, V2q in
pSo{Diff`pIq is therefore given by

(6) inft}ρ0 ¨ q0 ´ ρ1 ¨ q1}L2u,

where the infimum is taken over lifts qj of the pγj , Vjq and over all ρj P Diff`pIq. The fact

that Diff`pIq acts by L2 isometries implies that this expression can be simplified to

(7) inft}q0 ´ ρ ¨ q1}L2u,

where the infimum is taken over lifts and ρ P Diff`pIq. Moreover, the Diff`pIq-action
preserves the submanifold of fixed length curves (or the Hilbert sphere, in quaternionic
coordinates) and commutes with the rotation action of SOp3q. Geodesic distance in the
shape space So is then given by

(8) inft
?

2 ¨ arccos 〈q0, ρ ¨ q1 ¨A〉L2u,

with the infimum taken over all quaternionic lifts qj , all ρ P Diff`pIq and all A P SUp2q.
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2.5.2. Existence of Optimal Reparameterizations. It is natural to ask whether the infima in
the distance formulas (7) and (8) are realized by smooth reparameterizations ρ. In fact, they
are not; an example of Younes et. al. appearing in [39, Section 4.2] in the context of planar
curves also applies here, since our metric restricts to the Younes metric on the submanifold
of plane curves.

The corresponding question in the SRVT setting has been rigorously studied in several
recent articles and is known to have a positive answer in lower regularity classes. It is
shown in [7] that the optimal matching between C1 curves is realized by an absolutely
continuous reparameterization. The case of piecewise linear curves is considered in [26],
where it is shown that the optimal reparameterization is realized by a PL curve. This result
was extended to more general elastic metrics on PL plane curves in [24].

Precise results in lower regularity classes for the framed curve setting will be the subject
of future work. In this article, we take the practical point of view that optimal reparame-
terizations will be approximated numerically. The step of optimizing over Diff`pIq, requires
an approximation of

(9) inf
ρ

ż

›

›

›
q0 ´

a

ρ1q1 ˝ ρ
›

›

›

2

H
dt,

for qj P PH˚ « P
`

R4zt0u
˘

. Fortuitously, the identification of } ¨ }H with the Euclidean

norm in R4 implies that this is exactly the optimization problem which appears in the
SRVT setting, meaning that existing, highly efficient algorithms can be directly applied.
We will use the dynamic programming algorithm of [29] to approximate solutions of (9).

2.5.3. Geodesics Between Open Framed Curves. Geodesics in the shape space So are com-
puted as follows. Given framed curves pγ0, V0q and pγ1, V1q, we preprocess as necessary
to ensure lengthpγjq “ 2. The quaternionic lifts of the framed curves q0 and q1 are then
elements of the Hilbert sphere S?2. Numerical algorithms for lifting a framed curve to

a quaternionic representation can be found in [15]. We choose our lifts to minimize L2

distance. We then compute an optimal rotation via Proposition 2.2 and an approximate
optimal reparameterization via the dynamic programming algorithm of [29]. This proce-
dure is iterated until a stopping condition is met (e.g., decreases in geodesic distance fall
below a fixed threshold, or a predetermined number of iterations is reached) to produce a

final reparameterization pρ and rotation pA. Let pq1 “ pρ ¨ q1 ¨ pA. The geodesic joining the
equivalence classes of the framed curves pγj , Vjq in the shape space is realized by applying
the frame-Hopf map H pointwise to the spherical interpolation

(10) qu “
sinpp1´ uqθq

sin θ
q0 `

sinpuθq

sin θ
pq1,

with u P r0, 1s and with θ denoting geodesic distance between q0 and pq1. Several examples
of geodesics are provided in Section 5.

We note that S?̊
2

is not geodesically complete; there are q0 and pq1 for which the geodesic

given by (10) passes through S?2zS?̊2
. This does not cause an issue from a practical point

of view, as geodesic distance is still a reasonable measure of shape dissimilarity between
the shapes and the frame-Hopf map H is still well-defined at those points—they correspond
geometrically to singular curves along the geodesic. Moreover, it holds generically that
geodesics stay in S?̊

2
, in the sense that a generic homotopy of curves in R4 will not pass

through the origin.
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3. Shape Analysis of Closed Framed Curves

We now turn to a similar description of the geometry of the space of closed framed
curves. Unlike the SRVT setting, geodesics in the submanifold of closed curves can be
described explicitly. This is facilitated by a natural identification of closed curve space with
an infinite-dimensional Grassmannian, generalizing Theorem 1.1. The construction of this
identification was described in [30], but is summarized here for the convenience of the reader.

3.1. The Space of Closed Framed Curves.

3.1.1. The Pre-Shape Space of Framed Loops. A framed loop is a pair pγ, V q of smooth maps
from the circle S1 into R3 such that γ is an immersion and V is a (periodic) unit normal
vector field to the image of γ. In order to identify the collection of framed loops with a
subset of the shape space of framed paths, we identify S1 with the quotient r0, 2s{0 „ 2. It

will still be convenient to mod out by translations and we denote by pSc the preshape space
of (closed) framed loops, which is the set of framed loops satisfying γp0q “ ~0. Just as in the
framed paths case, we will treat remaining shape-preserving group actions separately.

3.1.2. Manifold Structure. The map (1) restricts to pSc to give an injective map into LpSOp3qˆ
R`q, but it is no longer surjective; for example, any constant loop is not in its image. The

image is a codimension-3 submanifold of LpSOp3q ˆ R`q and this can be used to endow pSc
with a manifold structure [30]. It can be deduced from the fact that the fundamental group

of SOp3q is Z{2Z that the manifold pSc has two connected components. The component that
a framed pγ, V q curve belongs to is determined by the topological linking number of γ with
a small pushoff along the V –direction, measured modulo-2 (a more detailed explanation is
given in [30, 32]).

3.1.3. The Shape Space of Framed Loops. Similar to the case of open framed curves, the

Lie groups R`, SOp3q and Diff`pS1q act on pSc by scaling, rotation and reparameterization,
respectively. There is a remaining group action by which it will be convenient to quotient.
This is the action of S1 by global frame twists (as opposed to local frame twisting, which
is treated in section 4). An element θ P S1 acts on a framed loop pγ, V q by rotating each
vector V ptq by the angle θ in the plane normal to γptq with respect to the right-hand rule.
We define the shape space of framed loops to be the quotient space

Sc “ pSc{pR` ˆ SOp3q ˆ S1 ˆDiff`pS1qq.

3.2. Complex Coordinates for Framed Loops.

3.2.1. Antiloop Space. We wish to determine the subset of PH˚ which covers pSc via the
frame-Hopf map. We first note that closure is not a necessary condition for a quaternionic
curve to be mapped to a smoothly closed framed loop. For example, the open quaternionic
curve

qptq “ cospπt{2q ` i sinpπt{2q`

j cospπt{2q ´ k sinpπt{2q

maps to a closed framed loop under the frame-Hopf map. We introduce the anti-loop space

AH˚ “ tq P PH˚ | qpkqp2q “ ´qpkqp0q @ku.

A necessary condition for q P PH˚ to correspond to a smoothly closed framed loop is that

(11) q P LH˚ \AH˚.
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The necessity of this condition follows easily from the double-covering property of the frame-

Hopf map. The disjoint union here corresponds to the fact that pSc has two path components.

3.2.2. Closure Condition. Condition (11) on q is not sufficient for Hpqq to be a framed loop,
due to the codimensionality of the closure condition discussed in Section 3.1.2. To describe
the closure condition in quaternionic coordinates, it is useful to identify H with C2 via

q0 ` q1i` q2j` q3kØ pq0 ` q1i, q2 ` q3iq.

This gives an identification of inner product spaces pH, 〈¨, ¨〉Hq and pC2,Re 〈¨, ¨〉C2q, where
〈¨, ¨〉C2 is the standard Hermitian inner product on C2 and this extends to an identification
of inner product spaces PH and PC2 with their induced L2 inner products. We will convert
between quaternionic and complex notation freely throughout the rest of the paper.

It will be useful to describe the frame-Hopf map in complex coordinates. For pz, wq in
PC2, Hpz, wq “ pγ, V q is given by the formulas

γ “

ż

`

|z|2 ´ |w|2, 2Impzwq, 2Repzwq
˘

dt,(12)

V “
1

p|z|2 ` |w|2q
p2Impzwq,

Repz2 ` w2q, Imp´z2 ` w2q
˘

,

where the integral in the formula for γ denotes the antiderivative based at zero. Using these
explicit formulas, the following lemma is immediate.

Lemma 3.1. Let q “ pz, wq P PH˚ with Hpqq “ pγ, V q.

(a) pγ, V q is a smoothly closed framed curve if and only if q is smoothly closed or anti-
closed and z and w are L2-equinorm and orthogonal.

(b) The length of γ is given by }q}2L2 “ }z}2L2 ` }w}2L2 .

3.2.3. Stiefel Manifolds. Throughout the rest of the paper, we generically use V for LC or
AC (defined analogously to AH˚). The Stiefel manifold of orthonormal 2-frames in V is
the space

St2pVq “ tpz, wq P V2 |

}z}L2 “ }w}L2 “ 1, 〈z, w〉L2 “ 0u.

By a slight abuse of notation, we use 〈¨, ¨〉L2 for the standard L2 inner product on V. We are
particularly interested in the open submanifold St˚2 pVq consisting of pz, wq in St2pVq such

that pzptq, wptqq ‰ ~0 for all t. Lemma 3.1 immediately implies the following corollary.

Corollary 3.2. The frame-Hopf map restricts to an isometric double covering

St˚2 pLCq \ St˚2 pACq Ñ pSc{R`

with respect to the L2 metric and gS .

3.2.4. Grassmann Manifolds. As we have seen, the frame-Hopf map is equivariant with
respect to the rotation actions of SUp2q and SOp3q. Moreover, the action of the diagonal
circle Up1q Ă Up2q on PH˚ corresponds to the frame twisting action of S1 on framed path
space in the sense that

H

ˆ

q ¨

ˆ

θ 0
0 θ

˙˙

“ p2θq ¨Hpqq.
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This motivates us to quotient by the full unitary group to obtain the Grassmann manifolds

Gr2pVqq “ St2pVq{Up2q

and

Gr˚2 pVq “ St˚2 pVq{Up2q.
Corollary 3.2 and the equivariance property described above combine to give the following

theorem.

Theorem 3.3 ([30]). The frame-Hopf map induces an isometry

Gr˚2 pLCq \Gr˚2 pACq Ñ pSc{pR` ˆ SOp3q ˆ S1q

with respect to the induced L2 metric and gS .

3.3. Geodesics for Closed Framed Curves.

3.3.1. Grassmannian Geodesics. Theorem 3.3 implies that geodesics in the quotient

pSc{pR` ˆ SOp3q ˆ S1q

can be realized as images of geodesics in the Grassmannian under the frame-Hopf map. It
is therefore a major benefit of this approach that geodesics can be described explicitly in
these manifolds via the method of Neretin geodesics, adapted to the complex setting [33].

We represent an element of Gr2pVq as the Up2q-orbit of a point pz, wq P St2pVq. We
denote the orbit of pz, wq by rz, ws; note that this can be interpreted geometrically as the 2-
plane in V spanned by tz, wu. Given two points pz0, w0q and pz1, w1q of the Steifel manifold
St2pVq, we construct a geodesic pzu, wuq, u P r0, 1s joining their orbits in Gr2pVq as follows:

(1) Compute the singular value decomposition of the projection map rz0, w0s Ñ rz1, w1s

between 2-planes. From the SVD we obtain a new orthonormal basis przj , rwjq for
rzj , wjs such that the projection map is given by rz0 ÞÑ λzrz1 and rw0 ÞÑ λw rw1, where
0 ď λz, λw ď 1 are singular values. The choice of basis corresponds to registration
over SOp3q ˆ S1 in framed loop space.

(2) The Jordan angles of the 2-planes are θz “ arccospλzq and θw “ arccospλwq.
(3) The geodesic in Gr2pVq is realized by the interpolations

zu “
sinpp1´ uq ¨ θzqrz0 ` sinpu ¨ θzqrz1

sin θz

wu “
sinpp1´ uq ¨ θwq rw0 ` sinpu ¨ θwq rw1

sin θw
.

(4) Geodesic distance between the points is given by
a

θ2z ` θ
2
w.

3.3.2. Geodesics in the Shape Space of Framed Loops. We approximate geodesics in the
shape space Sc as follows. For framed loops pγ0, V0q and pγ1, V1q of the same mod-2 link-
ing number, let q0 “ pz0, w0q and q1 “ pz1, w1q denote lifts in the Stiefel manifold. We
align the quaternionic paths according to the SVD algorithm described above. Next we
approximate an optimal reparameterization by approximating the solution to (9) via dy-
namic programming. This is combined with an optimal seed search over the pure rotations
S1 Ă Diff`pS1q to obtain an approximate optimal reparameterization in Diff`pS1q. The
alignment and reparameterization procedures are iterated until a stopping condition is met,
then the geodesic is given explicitly in Gr2pVq by the procedure described in the previous
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section. Mapping the geodesic pointwise to framed curve space under H produces the ge-
odesic joining the equivalence classes of pγ0, V0q and pγ1, V1q in Sc. Examples of geodesics
between closed curves are provided in Section 5.

Just as in the setting of open framed curves, geodesics in the Grassmannian can leave the
open submanifold Gr˚2 pVq. This corresponds to singular framed curves along the geodesic
in closed loop space. Moreover, closed loop space is disconnected, but one can construct
a geodesic joining elements of different components by taking a path in the Grassmannian
Gr2pPCq.

4. Frame Twisting

4.1. The Frame Twisting Action. The Lie groups involved in the quotient constructions
of the previous sections are by now fairly standard in the elastic shape analysis literature.
On the other hand, there is another Lie group action which is genuinely unique for framed
space curves. This is the action of PS1 by frame-twisting.

We represent elements of PS1 by eiψ, where ψ is a real-valued function, specified up to

global addition of a multiple of 2π. Then a path eiψ acts on a framed curve pγ, V q P pSo
via rotating each vector V ptq in the normal plane to γptq by the angle ψptq, according to
the right hand rule. The path eiψ also acts on pz, wq P PC2 by pointwise scalar complex
multiplication under the identification S1 “ Up1q and these actions satisfy the equivariance
property

(13) Hpeiψ ¨ pz, wqq “ pe2iψq ¨Hpz, wq.

Clearly, these actions preserve pointwise norm (for quaternionic paths) and total length (for

framed curves) and so descend to equivariant actions on S?̊
2

and pS0{R`. It is immediately

obvious that the action on PC2 is by L2 isometries and it follows that the action on framed
loop space is isometric with respect to gS .

Similarly, the loop space LS1 acts isometrically on LC2YAC2 and on the space of framed
loops and this action is equivariant under the frame-Hopf map H in the sense of (13).

4.2. Principal Bundle Structures.

4.2.1. Open Curves. The space pSo of open framed curves is a principal bundle over the
space Imm0pI,R3q of immersed (unframed) curves based at the origin, with structure group
PS1. Local trivializations can be built in terms of cross-sections as follows. Consider
the subset U Ă Imm0pI,R3q containing curves γ with γ1p0q ‰ p1, 0, 0q. A cross-section is

defined by the map U Ñ pSo taking γ to pγ, V q where V is the unique vector field with no
intrinsic twisting around γ and such that V p0q is the normalized projection of p1, 0, 0q to the
orthogonal complement of γ1p0q—framings without intrinsic twisting are known as rotation
minimizing frames [38] or Bishop frames, after [6]. Similar charts can be used to cover all
of Imm0pI,R3q.

4.2.2. Closed Curves. Similarly, each component of the space pSc of closed framed curves is
an LS1-principal bundle over the space Imm0pS

1,R3q of immersed loops based at the origin.
The local trivializations are more complicated, since a rotation minimizing frame will not
necessarily close. Moreover, the standard Frenet framing is not well-defined for closed curves
with vanishing curvature. Nonetheless, local cross-sections can be constructed by adapting
the rotation minimizing frame idea. The principal bundle structure of

LS1 ãÑ pSc Ñ Imm0pS
1,R3q
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is described in detail in [30].

4.3. Optimal Frame Registration.

4.3.1. Frame Registration Theorem. The elastic shape analysis framework proposes that a
geodesic between a pair of unparameterized curves can be realized as a geodesic in the
total space of parameterized curves which is horizontal with respect to the action of the
reparameterization group. The takeaway of the discussion in the previous section is that a
geodesic between a pair of unframed curves can be obtained by finding a geodesic between
framed curves which is horizontal with respect to the frame-twisting action. Finding such a
horizontal geodesic once again involves an optimization over an infinite-dimensional group.
Unlike the parameterization registration, the problem of optimization over PS1 or LS1 can
be solved explicitly, at least for generic curves.

More precisely, given q0 “ pz0, w0q and q1 “ pz1, w1q in S?̊
2
, we seek pq1 in the PS1–orbit

of q1 so that the geodesic qu joining q0 and pq1 is PS1–horizontal. This means that the
tangent d

duqu contains no component in the PS1–orbit direction for all u. The image of this
geodesic under H is a path of framed curves pγu, Vuq such that the variation fields along
the geodesic are always orthogonal to the PS1-orbits. Thus γu represents a geodesic in the

space pSo{pR` ˆ PS1q of unframed curves.

Theorem 4.1. Let q0 “ pz0, w0q and q1 “ pz1, w1q be elements of P S?̊
2

which do not lie

in the same PS1–orbit and such that 〈pz0ptq, w0ptqq, pz1ptq, w1ptqq〉C2 ‰ 0 for all t P I. Then
the spherical geodesic joining q0 and

(14) pq1 “
〈pz0, w0q, pz1, w1q〉C2

|〈pz0, w0q, pz1, w1q〉C2 |
q1

is PS1–horizontal.

The proof of this theorem is given in Section 7.3.

4.3.2. Horizontal Geodesics for Framed Curves. The theorem can be rephrased as follows.

Let pγ0, V0q, pγ1, V1q P pS0{R` denote framed paths with quaternionic representatives q0 “
pz0, w0q, q1 “ pz1, w1q P S?̊2

. Then the framed curve in the PS1-orbit of pγ1, V1q which is

closest in geodesic distance to pγ0, V0q is the one corresponding to pq1, as defined by (14).

4.4. Optimal Frame Registration for Closed Framed Curves. We wish to extend
the optimal framing theorem of the previous section to closed framed curves. Let

S?2,l “
 

q P LH | }q}2L2 “ 2
(

denote the Hilbert sphere in the loop space LH. Similarly, let S?2,a denote the Hilbert

sphere in the antiloop space. For x “ l or a, we denote by S?̊
2,x

the open submanifold of

S?2,x containing quaternionic curves which do not pass through the origin. It is easy to see

that these manifolds are invariant under the action of the loop group LS1. Moreover, going
through the proof of Theorem 4.1 (see Section 7.3), one sees that it applies to these spheres
as well. We record this in the following corollary.

Corollary 4.2. Let q0 “ pz0, w0q and q1 “ pz1, w1q denote elements of S?̊
2,x

, for x “ l or

a, which do not lie in the same LS1–orbit and such that 〈pz0ptq, w0ptqq, pz1ptq, w1ptqq〉C2 ‰ 0
for all t P I. Then the spherical geodesic joining q0 and

(15) pq1 “
〈pz0, w0q, pz1, w1q〉C2

|〈pz0, w0q, pz1, w1q〉C2 |
q1
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Figure 1. Geodesic between framed spirals on a torus of revolution. The
framed curves are visualized as a thickened base curve, together with a blue
line along the surface indicating the twisting of the framing. In the example
in the first row, the endpoints of the geodesic are endowed with their Frenet
frames and the geodesic is computed via the algorithm in Section 3.3.2. In
the example in the second row, the curve at the beginning of the geodesic
has its Frenet frame, while the framing on the second curve is optimized
with respect to the first curve, using the algorithm in Section 4.5.1, and
in particular Corollary 4.2. The Geodesic distance in the first example is
0.29 and geodesic distance in the second example is 0.18—distances have
been normalized so that the Grassmannian has maximum diameter equal
to one. The distance in the second example represents geodesic distance in
the space of unframed curves.

is LS1–horizontal.

The Stiefel manifold St2pVq is a submanifold of the appropriate Hilbert sphere S?2,x

(with x “ l for V “ LC and x “ a for V “ AC). Furthermore, the submanifold is invariant
under the action of LS1. We therefore have the following interpretation of the corollary. Let
pγ0, V0q, pγ1, V1q denote framed loops of the same mod-2 linking number, with quaternionic
representatives q0 “ pz0, w0q, q1 “ pz1, w1q P St2pVq. The quaternionic curve in the LS1-
orbit of q1 which is closest to q0 with respect to geodesic distance in S?2,x is pq1, as defined by

(15). Since St2pVq is an LS1-invariant submanifold of S?2,x with the induced Riemannian

metric, pq1 also minimizes distance to q0 over the LS1-orbit in the Stiefel manifold. It follows
that the framed loop in the LS1-orbit of pγ1, V1q which is closest in geodesic distance to
pγ0, V0q is the one corresponding to pq1. See Figure 1 for an example of the effect of optimizing
the frame.

4.5. Geodesics for Unframed Curves. We can incorporate the frame optimization idea
described above into our algorithms to produce new algorithms for approximating geodesics
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between unframed curves. The case of closed curves will be described in detail here, but
geodesics for open curves can be treated similarly.

4.5.1. Geodesics for Closed Space Curves. Let γ0 and γ1 denote parameterized closed space
curves, preprocessed so that lengthpγjq “ 2. Choose a framing Vj for γj so that the resulting
framed curves have the same mod-2 linking number (e.g., start with Frenet framings or min-
imal twist framings of [38], then adjust as necessary to meet the linking number condition).
Let qj “ pzj , wjq denote the Stiefel manifold representation of pγj , Vjq. Then

(1) the SVD alignment of Section 3.3.1 is applied to produce Up2q-aligned curves q˚0
and q˚1 ,

(2) a distance-minimizing reparameterization pq1 of q˚1 is approximated via dynamic
programming, and

(3) the optimal point rq1 in the LS1–orbit of pq1 is computed explicitly via Corollary 4.2.

This procedure is iterated until a stopping condition is met to produce optimally parame-
terized and framed curves. The explicit geodesic joining the resulting curves in Gr2pVq is
computed via the procedure described in Section 3.3.1, and applying the frame-Hopf map

at each point along the geodesic produces a geodesic
´

rγu, rVu

¯

between framed curves. The

homotopy of the base curve rγu represents a geodesic in the space of closed curves between
the pSOp3q ˆDiff`pS1qq–orbits of the initial curves γ0 and γ1.

5. Numerical Examples

5.1. Geodesic Examples. Figure 2 shows a basic example of a geodesic between open
framed curves, visualized in the context of trajectory blending. A common animation tech-
nique, known as motion blending, is to produce a new animation via interpolation between
existing ones—see [23] for a general introduction and [3, 8] for applications of the elastic
shape analysis framework to the topic. Adapted framed curves give a natural way to describe
trajectories of rigid bodies such as aircraft, and our results provide a method of blending
such trajectories.

Figure 3 shows a geodesic in the space of (unframed) closed curves, using the algorithm of
Section 4.5.1. The endpoints of the geodesic are curves representing closed DNA molecules.
See Section 5.2 for a description of the dataset these curves were taken from.

More examples of geodesics between open and closed framed curves are provided in
Figures 4 and 5. For comparison, we also compute geodesics via the SRVT algorithm 1 of
[20, 34].

5.2. DNA Minicircles. In [18], the authors study short (336 bp), circular DNA molecules,
referred to as DNA minicircles. The shape data from their experiment consists of parameter-
ized space curves representing the centerlines of DNA minicircle double-helices, obtained via
electron cryo-tomography. There are nine subcollections of such space curves, corresponding
to different degrees of supercoiling in the molecules. For example, one of the subcollections
contains samples of relaxed DNA molecules. In its relaxed state, the two strands of a DNA
minicircle wrap around one another 32 times to form the familiar double-helix structure.
The remaining subcollections contain DNA molecules with different numbers of wrappings of
the two strands; we refer to this distinguishing feature as a link defecit. The subcollections
provided to us contain space curves corresponding to DNA minicircles with link defecits
∆Lk “ ´6, ´4, ´3, ´2, ´1, 0, 1, 2 and 3, respectively. In [18], it was observed by human

1In particular, we used the Matlab implementation available on the FSU Statistical Shape Analysis and

Modeling Group website http://ssamg.stat.fsu.edu

http://ssamg.stat.fsu.edu
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Figure 2. A geodesic between framed curves, illustrating an application
to trajectory blending. Each framed curve is visualized as a spatiotemporal
trajectory of a rigid object. The starting point (top left) is a “barrel roll”
trajectory, the finishing point (bottom right) is a more complicated trajec-
tory, and intermediate points along the geodesic are blended trajectories.
Geodesic representing trajectory blending. Geodesic distance is 0.16, where
the space of open curves (i.e., the Hilbert sphere) has been normalized to
have diameter one.

Figure 3. A geodesic in the space of (unframed) closed curves between
circular DNA molecules. The geodesic is calculated by initializing the al-
gorithm with Rotation Minimizing Frames, then optimizing the framing
for the ending curve. The geodesic distance between the molecules is 0.21,
where the space has been rescaled to have diameter 1. The curves were
initialized with arclength parameterization, then the optimal reparameter-
ization of the ending curve was approximated via dynamic programming.
The plot on the right shows the optimal reparameterization. It illustrates
the matching of common features between the curves at the endpoints of
the geodesic.

classification of the space curves into various shape motifs that link defecit plays a role in
the shapes of the centerline curves. Roughly, larger link defecits correspond to molecule
centerlines which are more compact and twisted.

To get a better picture of the shape variation accross link defecit categories, we performed
the following clustering experiment. We computed the distance matrix within each ∆Lk
class, then ran a k-medoid clustering algorithm with k “ 8 (the authors of [18] classify
DNA minicircles into 8 shape categories). The centers of the largest medoid clusters for
each link defecit category are shown in Figure 6. This picture agrees qualitatively with the
conclusions of [18].



18 TOM NEEDHAM

Figure 4. Geodesics between a helix of 2 turns and a helix of 3 turns. Each
row shows curves evenly spaced along the geodesic so that the curve in the
middle is Fréchet mean of the endpoints. The last figure in each row shows
the optimal reparameterization (approximated via dynamic programming)
of the 3 turn helix, which was initialized with arclength parameterization.
The geodesics in the first two rows are in framed curve space and framed
curves are visualized as thickened base curves with a blue line on their
surfaces indicating twisting of the framing. The first row shows a geodesic
where the helices on the endpoints are endowed with their Frenet framings.
The second row shows a geodesic where the helix on the left is given its
Frenet framing, and the helix on the right has its optimal framing given by
Theorem 4.1, and the figure therefore represents a geodesic in (unframed)
curve space. For comparison, the geodesic in the third row is computed
according to the standard SRVT algorithm.

5.3. Flag Means. In the context of shape classficiation, a useful calculation is the Karcher
mean of a collection of shapes. The standard procedure in the elastic shape analysis frame-
work for computing Karcher means is an iterative algorithm utilizing the logarithm map to
do calculations in linear tangent spaces. There is an extra numerical step in this approach,
because the logarithm and exponential maps for the submanifold of closed curves do not
have an explicit form.
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Figure 5. Geodesics between a circle and a trefoil knot in the space of
closed curves. In the geodesic in the top row, the circle is endowed with
its Frenet frame and the trefoil is endowed with the corresponding optimal
frame. For comparison, the geodesic between the curves with respect to the
SRVT algorithm is shown in the bottom row. Note that the SRVT geodesic
passes through a singular curve, while the framed curve geodesic does not.

Figure 6. Centers of the largest medoids for each collection of DNA mini-
circles in the k-medoid clustering experiment. From left to right, the centers
correspond to DNA minicircles with ∆Lk “ ´6,´4,´3,´2,´1, 0, 1, 2, 3.
The percentage of samples contained in the largest medoid for the ∆Lk “
´6 collection is 25%. The respective percentages for the remaining col-
lections are 38.9%, 39.1%, 35.0%, 35.0%, 46.7%, 40.4%, 37.9%, 29.4%. This
figure illustrates the qualitative description of shape variation with respect
to ∆Lk given in [18] .

In the setting presented here, computations can be done explicitly on the submanifold
of closed curves, as spaces of closed (planar or framed space) curves are identified with
Grassmannians. There is a recently proposed alternative notion of average for a collec-
tion of samples of a Grassmann manifold called the flag mean [10]. Let trqjs “ rzj , wjsu,
j “ 1, . . . , N , be a collection of points in one of the Grassmannians Gr2pLRq, Gr2pLCq or
Gr2pACq. The flag mean rqs “ rz, ws of the samples is given by first finding

argminrzs

N
ÿ

j“1

dpF przs, rqsq
2,
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Samples Flag Mean

Figure 7. Averages for collections of planar curves computed according
to the Flag Mean algorithm. Curve samples are taken from the popular
MPEG7 computer vision shape database.

where rzs is the one-dimensional subspace spanned by z and dfP is projection-Frobenius
distance. Next rws is obtained as

argmin
N
ÿ

j“1

dpF prws, rqsq
2,

where the minimum is taken over w such that rws is orthogonal to rzs. While the flag mean
is not, in general, equal to the Karcher mean, it does give a good approximation for well-
clustered data. Moreover, there is a simple algorithm for computing the flag mean in finite-
dimensional Grassmannians [10] which extends without issue to our infinite-dimensional
setting.

We choose to utilize the flag mean in our algorithm for computing curve averages, since
it allows us to work explicitly and directly on the submanifold of closed curves as often as
possible. We will describe the details of our curve averaging algorithm in the case of closed
space curves. Similar algorithms work for closed plane curves and for closed framed curves
in R3.

Let tγju, j “ 1, . . . , N be a collection of closed curves, preprocessed to have length 2.
Choose an arbitrary framing Vj for each γj so that all framed curves have the same mod-2
linking number and let qj “ pzj , wjq be a Stiefel manifold representative of pγj , Vjq. We
initialize with q˚ “ q1. For each j, align qj with q˚ via SVD, find an optimal reparam-
eterization pqj with respect to q˚ (approximated via dynamic programming), then find an
optimal element rqj of the LS1–orbit of pqj with respect to q1 (this is done explicitly via 4.2).
Iterate this subloop for each j until a stopping condition is met to obtain a collection of rqj
which have been aligned over rotations, reparameterizations and framings to q˚. Next set
q˚ to be the flag mean of the samples rqj and iterate the whole procedure until a stopping
condition is met. The final flag mean is then mapped to the average closed curve γ˚ via the
first coordinate of H.

Examples of flag means for plane curves and DNA minicircles are shown in Figures 7 and
8, respectively.
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Samples Flag Mean

Figure 8. Averages of DNA minicircle samples computed via the Flag
Mean algorithm.

6. Discussion

There are several interesting directions in which to pursue further research. In [24], the
square root transform of Younes et. al. is extended to give simplifications of all elastic met-
rics on open planar curves. The extended transforms once again leverage the ability to
perform complex arithmetic pointwise. It seems likely that a similar generalization could
be performed in the framed curve setting using quaternionic arithmetic to provide simplifi-
cations of all framed curve elastic metrics. Another avenue for future research would be to
develop algorithms for statistics on the space of closed (planar or space) curves by utilizing
the Grassmannian correspondence, as we have begun to do here by utilizing the flag mean.
The necessary exponential maps on the relevant infinite-dimensional Stiefel manifolds have
already been worked out in [16, 30]. Finally, precise results on the existence of optimal
reparameterizations in the SRVT framework were provided in the recent paper [7]. The
results there rely on the existence of explicit geodesics, and therefore only apply to open
curves. It would be interesting to try to extend these results to the metrics used in this
paper, since they are so far the only metrics where explicit geodesics can be described for
closed curves.
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7. Appendix

7.1. Proof of Theorem 2.1. Let gSOp3q denote the standard bi-invariant metric on SOp3q

induced by the Euclidean metric on sop3q « R3, let gR
`

denote the bi-invariant metric on
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R` induced by

pr1, r2q ÞÑ r1r2

on T1R` “ R and let gSOp3q b gR
`

denote the product metric on SOp3q ˆ R`. A natural
L2-type metric on PpSOp3q ˆ R`q is given by

gpA,rqp¨, ¨q “
1

4

ż 2

0

´

gSOp3q b gR
`
¯

pAptq,rptqq
p¨, ¨qds.

where pA, rq P PpSOp3q ˆ R`q, the arguments of gpA,rq are elements of

TpA,rqPpSOp3q ˆ R`q « Psop3q ˆ PR

and ds “ rptqdt. It is straightforward to show that the pullback of g to pSo via (1) is exactly
the metric gS .

Now let h denote the classical Hopf map (3) and let sq denote the squaring map r ÞÑ r2

for r P R`. It is a classical fact that h satisfies h˚gSOp3q “ 4gSUp2q, where gSUp2q is the

standard metric on SUp2q, which is isometric to the round metric gS
3

on S3 « SUp2q. It
follows that

phˆ sqq˚
´

gSOp3q b gR
`
¯

“ 4gSUp2q b gR
`

“ 4gS
3

b gR
`

,

where gS
3

b gR
`

is the product metric on S3 ˆ R`. Let f : Hzt~0u Ñ S3 ˆ R` denote the
polar coordinate map q ÞÑ pq{}q}H, }q}Hq. An elementary computation shows

f˚
´

gS
3

b gR
`
¯

q
“ Re 〈¨, ¨〉H {}q}

2
H.

Note that the map H is obtained by applying phˆ sqq ˝ f pointwise and then composing the
result with the inverse of (1). The proof is then concluded by the following calculation, in
which q P PH˚ satisfies Hpqq “ pγ, V q and pγ, V q ÞÑ pA, rq under (1):

gL
2

q “

ż

I

Re 〈¨, ¨〉H dt

“

ż

I

f˚
´

gS
3

b gR
`
¯

q
}q}2H dt

“

ż

I

f˚phˆ sqq˚
´

gSOp3q b gR
`
¯

pA,rq
rptqdt

“
1

4

ż

I

pphˆ sqq ˝ fq
˚
´

gSOp3q b gR
`
¯

pA,rq
ds

“ H˚gSpγ,V q

7.2. Proof of Proposition 2.2. Since SUp2q acts by L2 isometries, we seek the minimizer
pA of arccos 〈q0, q1 ¨A〉L2 , which is equivalent to finding the maximizer of 〈q0, q1 ¨A〉L2 . The
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latter quantity is equal to

Re

ż

I

q0 ¨ q1 ¨A dt “ Re

ż

I

q0 ¨A ¨ q1 dt

“ ReA ¨

ż

I

q1 ¨ q0 dt

“

〈
A,

ż

I

q1 ¨ q0 dt

〉
H
,

where the second equality follows by cyclic permutation-invariance of the real part of quater-

nionic arithmetic. The quantity is therefore maximized by pA P S3 « SUp2q with conjugate
in the same direction as

ş

I
q1 ¨ q0 dt, and this completes the proof.

7.3. Proof of Theorem 4.1. Let q P S?2. The horizonal tangent space to q is the subset
of tangent vectors in

TqS?2 “ tp P PH | 〈q, p〉L2 “ 0u

which are L2–orthogonal to the PS1–orbit directions at q. These orbit directions are of the
form iξ ¨ q, where ξ : RÑ R is a smooth function. A tangent vector p is therefore horizontal
if and only if 〈p, iξq〉L2 “ 0 for all ξ. Switching to complex coordinates q “ pz, wq and
p “ pu, vq, this condition becomes

0 “

ż

I

Re 〈pu, vq, iξpz, wq〉C2 dt

“

ż

I

´ξIm 〈pu, vq, pz, wq〉C2 dt

for all smooth ξ. By the standard argument from the calculus of variations, we conclude
that p “ pu, vq is horizontal if and only if Im 〈pu, vq, pz, wq〉C2 is identically zero.

Consider elements q0 “ pz0, w0q and q1 “ pz1, w1q of S?̊
2

which do not lie in the same

PS1–orbit and with

〈pz0ptq, w0ptqq, pz1ptq, w1ptqq〉C2 ‰ 0

for all t. We seek pq1 “ eiψ ¨ q1 in the PS1–orbit of q1 such that the geodesic qu joining q0
and pq1 in S?2 is horizontal for all u. Since PS1 acts by isometries, if the geodesic starts

horizontal then it will stay horizontal—that is, it suffices to find pq1 so that d
du

ˇ

ˇ

u“0
qu is

PS1–horizontal at q0.
The geodesic joining q0 and pq1 is given by (10). The derivative at u “ 0 of this geodesic

is given by

´
θ cos θ

sin θ
q0 `

θ

sin θ
pq1.

Writing q0 “ pz0, w0q, q1 “ pz1, w1q and recalling that pq1 “ eiψ ¨ q1 for some ψ : RÑ R, the
desired horizontality condition reduces to

Im eiψ ¨ 〈pz1, w1q, pz0, w0q〉C2 “ 0,

and this condition is achieved by taking

eiψ “
〈pz0, w0q, pz1, w1q〉C2

|〈pz0, w0q, pz1, w1q〉C2 |
.
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