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Abstract
The use of orthogonal projections on high-dimensional input and target data in learning frameworks is studied. First, we
investigate the relations between two standard objectives in dimension reduction, preservation of variance and of pairwise
relative distances. Investigations of their asymptotic correlation as well as numerical experiments show that a projection does
usually not satisfy both objectives at once. In a standard classification problem, we determine projections on the input data
that balance the objectives and compare subsequent results. Next, we extend our application of orthogonal projections to
deep learning tasks and introduce a general framework of augmented target loss functions. These loss functions integrate
additional information via transformations and projections of the target data. In two supervised learning problems, clinical
image segmentation and music information classification, the application of our proposed augmented target loss functions
increases the accuracy.

Keywords Orthogonal Projection · Dimension reduction · Preservation of data characteristics · Supervised learning · Target
features

1 Introduction

Linear dimension reduction is commonly used for prepro-
cessing of high-dimensional data in complicated learning
frameworks to compress and weight important data features.
In contrast to nonlinear approaches, the use of orthogonal
projections is computationally cheap, since it corresponds
to a simple matrix multiplication. Conventional approaches
apply specific projections that preserve essential information
and complexity within a more compact representation. The
projector is usually selected by optimizing distinct objec-
tives, such as information preservation of the sample variance
or of pairwise relative distances. Widely used orthogonal
projections for dimension reduction are variants of the prin-
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cipal component analysis (PCA) that maximize the variance
of the projected data [37]. Preservation of relative pairwise
distances asks for a near-isometric embedding, and random
projections guarantee this embeddings with high probabil-
ity, cf. [5,15] and see also [1,6,12,27,30,35]. The use of
random projections is especially favorable for large, high-
dimensional data [48], since the computational complexity
is just O(dkm), e.g., using the construction in [1], with
d, k ∈ N being the original and lower dimensions and
m ∈ N the number of samples. In contrast, PCA needs
O(d2m) + O(d3) operations [24]. Moreover, tasks that do
not have all data available at once, e.g., data streaming, ask
for dimension reduction methods that are independent of the
data.

In the presentmanuscript,we studyorthogonal projections
regarding the interplay between

(O1) preservation of variance,
(O2) preservation of pairwise relative distances,

aiming for a sufficient lower-dimensional data representa-
tion. We shall consider the Euclidean distance exclusively
since it is most widely used in applications, especially
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for error estimation. On manifolds, the geodesic distance
is locally equivalent to the Euclidean distance. The two
objectives (O1) and (O2) are directly addressed by PCA
(O1) and random projections (O2). We achieve the fol-
lowing goals: First, we clarify mathematically and numer-
ically that the two objectives are competing, i.e., PCA
and random projections preserve different kinds of infor-
mation. Depending on the objectives, we discuss bene-
ficial choices of orthogonal projections and numerically
find a balancing projector for a given data set. Finally,
we define a general framework of augmented target (AT)
loss functions for deep neural networks that integrate
information about target characteristics via features and
projections. We observe that our proposed methodology
can increase the accuracy in two deep learning prob-
lems.

In contrast to conventional approaches, we study the joint
behavior of the two objectives with respect to the entire set of
orthogonal projectors. By analyzing the correlation between
the variance and pairwise relative distances of projected data,
weobserve that (O1) and (O2) are competing andusually can-
not be reached at the same time. In classification experiments
with support vector machine and shallow neural networks,
we investigate heuristic choices of projections applied to the
input features.

In view of learning frameworks, we utilize features and
projections on target data. The class of augmented target
loss functions incorporates suitable transformations and pro-
jections that provide beneficial representations of the target
space. It is applied in two supervised deep learning problems
dealing with real-world data.

Thefirst experiment is a clinical image segmentation prob-
lem in optical coherence tomography (OCT) data of the
human retina. Related principles of dimension reduction for
other clinical classification problems in OCT have already
been successfully applied in [9]. In the second experiment,
we aim to categorizemusical instruments based on their spec-
trogram; see [19] for related results. Our utilized augmented
target loss functions can increase the accuracy in both exper-
iments.

The outline is as follows. In Sect. 2, we address the anal-
ysis of the competing objectives and Theorem 2.5 yields
the asymptotic correlation between variance and pairwise
relative distances of projected data. Section 3 prepares for
the numerical investigations by recalling t-designs as con-
sidered in [10], enabling subsequent numerics. Heuristic
investigations on projected input used in a straightforward
classification task are presented in Sect. 4. Our framework
of augmented target loss functions as modified standard loss
functions for deep learning is introduced in Sect. 5. Finally, in
Sects. 6 and 7 we present classification experiments on OCT
images and musical instruments using aligned augmented
target loss functions.

2 Dimension Reduction with Orthogonal
Projections

To reduce the dimension of a high-dimensional data set x =
{xi }mi=1 ⊂ R

d , we map x onto a lower-dimensional affine
linear subspace x̄ + V , where x̄ := 1

m

∑m
i=1 xi is the sample

mean and V is a k-dimensional linear subspace of Rd with
k < d. Thismapping is performed by an orthogonal projector
p ∈ Gk,d , where

Gk,d := {p ∈ R
d×d : p2 = p, p� = p, rank(p) = k}

denotes the Grassmannian, so that the lower-dimensional
data representation is

{x̄ + p(xi − x̄)}mi=1 ⊂ x̄ + V , (2.1)

with range(p) = V . A suitable choice of p within Gk,d
depends on further objectives, i.e., which kind of informa-
tion preservation shall be favored for subsequent analysis
tasks. In the following, we consider two objectives associated
with popular choices of orthogonal projectors for dimension
reduction, in particular, random projectors and PCA.Wewill
first observe that the two objectives are competing, especially
in high dimensions, and then discuss consequences.

2.1 Objective (O1)

The total sample variance tvar(x) of x = {xi }mi=1 ⊂ R
d is

the sum of the corrected variances along each dimension:

tvar(x) := 1

m − 1

m∑

i=1

‖xi − x̄‖2. (2.2)

PCA aims to construct p ∈ Gk,d , such that the total sample
variance of (2.1) is maximized among all projectors in Gk,d .
For other equivalent optimality criteria, we refer to [49].

The total sample variance of px = {pxi }mi=1 ⊂ V coin-
cides with the one of (2.1) and satisfies

tvar(px) ≤ tvar(x)

for all p ∈ Gk,d . Thus, PCAachieves optimal variance preser-
vation. The total variance (2.2) can also be expressed via
pairwise absolute distances:

tvar(x) = 1

m(m − 1)

∑

i< j

∥
∥xi − x j

∥
∥2 . (2.3)

Equally, it holds that

tvar(px) = 1

m(m − 1)

∑

i< j

∥
∥p(xi ) − p(x j )

∥
∥2 , (2.4)
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which reveals that PCA maximizes the sample mean of the
projected pairwise absolute distances.

2.2 Objective (O2)

In contrast to pairwise absolute distances, the Johnson–
Lindenstrauss lemma targets the global property of preser-
vation of pairwise relative distances:

Lemma 2.1 (Johnson–Lindenstrauss, cf. [15,35]). For any
0 < ε < 1, any k ≤ d,m ∈ N, with

4 log(m)

ε2/2 − ε3/3
≤ k,

and any set {xi }mi=1 ⊂ R
d , there is a projector p ∈ Gk,d such

that

(1−ε)
∥
∥xi − x j

∥
∥2 ≤ d

k

∥
∥p(xi ) − p(x j )

∥
∥2 ≤ (1+ε)

∥
∥xi − x j

∥
∥2

(2.5)

holds for all i < j .

For small ε > 0, the projector p in Lemma 2.1 yields that
all of the m(m−1)

2 pairwise relative distances

{
d

k

‖p(xi ) − p(x j )‖2
‖xi − x j‖2 : i < j

}

(2.6)

are close to 1, i.e., the projection p preserves all scaled pair-
wise relative distanceswell.Agood choice of p inLemma2.1
is based on randomprojectors1 P ∼ λk,d , whereλk,d denotes
the unique orthogonally invariant probability measure on
Gk,d . The following theorem is essentially proved by follow-
ing the lines of the proof of Lemma 2.1 in [15] after replacing
the constant 4 with (2 + τ)2 in the respective bound on k.

Theorem 2.2 For any 0 < ε < 1, any k ≤ d,m ∈ N and
any 0 < τ with

(2 + τ)2 log(m)

ε2/2 − ε3/3
≤ k,

and any set {xi }mi=1 ⊂ R
d , the random projector P ∼ λk,d

satisfies

{
d

k

‖P(xi ) − P(x j )‖2
‖xi − x j‖2 : i < j

}

∈ [1 − ε, 1 + ε] (2.7)

with probability at least 1 − 1
mτ + 1

mτ+1 .

1 Weuse lower case letters for samples andupper case letters for random
vectors/matrices.

Fig. 1 A trivial example of PCA distorting smaller distances. Choosing
the first principal component, PCA projects the two-dimensional data
points * onto the plane of the first eigendirection (−−). The Euclidean
distances of the points lying on the diagonal are preserved, whereas the
two points with smaller distances are projected onto a single point (the
origin)

The theorem tells that the preservation property of pair-
wise relative distances is achievedwith high probabilitywhen
choosing a random projection according to k;d. Note that the
random choice is completely independent from the actual
data set.

2.3 Competing Objectives

A projector p satisfying the near-isometry property (2.5)
implies

(1 − ε) kd tvar(x) ≤ tvar(px) ≤ (1 + ε) kd tvar(x),

so that the total variance of the projected data px is not
preserved for k < d. In particular, with high probability
a random projector P ∼ λk,d does not suit the objec-
tive of maximizing the total variance, and we even observe
E tvar(Px) = k

d tvar(x); see (A.2) in the Appendix. PCA
does not guarantee any local geometric property, and dis-
tances between pairs of points can be arbitrarily distorted
[1]; see [39] for more robust PCA. The preservation of larger
distances is favored since PCA maximizes (2.4) among all
p ∈ Gk,d and ‖p(xi ) − p(x j )‖ ≤ ‖xi − x j‖ holds for all
i < j . Close but distinct points could even be projected onto
a single point, which violates the preservation of pairwise
relative distances; see Fig. 1.

To more quantitatively understand the relation between
the two competing objectives, we consider the sample mean
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Fig. 2 Competing properties:
10,000 random projections
p ∼ λk,50 versus PCA (∗),
plotted concerning tvar(px),
M(p, x) and V(p, x). The
normal distributed fixed data set
x has total variance
tvar(x) = 49.5. Random
projections cluster around their
expectation values (2.10), (2.11)
and (2.12), marked by + (a) k = 10 (b) k = 20

(c) k = 30 (d) k = 40

(e) k = 10 (f) k = 20

(g) k = 30 (h) k = 40

and the uncorrected sample variance of the pairwise relative
distances (2.6):

M(p, x) := 2

m(m − 1)

∑

i< j

d

k

‖p(xi − x j )‖2
‖xi − x j‖2 , (2.8)

V(p, x) := 2

m(m − 1)

∑

i< j

d2

k2
‖p(xi − x j )‖4

‖xi − x j‖4 − M(p, x)2.

(2.9)

Recall that good preservation of the relative pairwise dis-
tances in (2.6) asks for M(p, x) being close to 1 and the
variance V(p, x) being small. In the following, we analyze
tvar(px), M(p, x) and V(p, x) and their expectations for
random P ∼ λk,d .

In Fig. 2, we see a simple numerical experiment, where
wefirst create an independent, normally distributedfixed data

set {xi }mi=1 with xi ∈ R
d for i = 1, . . . ,m and m = 100,

d = 50. We then compute PCA, for k = 10, 20, 30, 40,
as well as n = 10,000 random projections p distributed
according to λk,50. In Fig. 2a–d, we can see that the more the
k differs from d, the more the PCA and random projections
differ concerning tvar(px) and M(p, x). Those differences
may lead to diverse behavior in subsequent data analysis.
Moreover, we compare M(p, x) and V(p, x) in Fig. 2e–h
for the different k. We can see that again when k is much
smaller than d, random projections and PCA differ more
concerning the variance of pairwise distances V(p, x). For
k = 10, the variance for PCA is higher in comparison with
random projections (Fig. 2e); for k = 40 vice versa (Fig. 2h).
Note that the theoretical bounds stated in Theorem 2.1 are
much higher than the dimensions k used in the experiments,
but the projections still preserve relative pairwise distances
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very well. In [7], similar observations were made on empiric
experiments with image and text data.

The amount of variance kept in the principal components
comparing real-world and random data has been experimen-
tally studied, e.g., in [29] and [46]. Both studies determine
that the difference occurs mainly in the first principal com-
ponent.

Remark 2.3 In the numerical example, we compare random
projections and PCA directly, serving as the correspond-
ing projections to the objectives (O1) and (O2). We observe
that even for not so high-dimensional (d = 50) data x and
k 	 d/2, PCA severely loses information in terms of total
variance, i.e., more than 50% for k = 10, and more impor-
tantly loses much more information on pairwise relative
distances than random projections. If both types of infor-
mation are of interest, pairwise relative distances and high
total variance, one should therefore favor random projections
over PCA for k 	 d/2 to balance the two objectives (O1)
and (O2) and vice versa. Note that with a large amount of data
one might still want to favor random projectors since their
construction is computationally much cheaper and indepen-
dent from the data. On the other hand, if objective (O2) is
negligible, e.g., tasks with very noisy data, then PCA would
be the favorable choice for all k.

Information of data can be quantified and expressed in
different ways. One crucial part in dimension reduction is
the decision of what kind of information shall be kept, which
depends on several parameters including the quality of the
data and the analysis task. Variants of PCA, focusing on the
preservation of variance, have beenwidely used in real-world
problems with big success, especially in denoising, when the
preservation of all pairwise relative distancesmaybe counter-
productive, e.g., in dMRI imaging [51] and color filter array
images [56]. Drawbacks are the necessity for all data being
available from the start and the high computational costs.
For very high-dimensional and large data sets, the computa-
tion of PCA is often not feasible. Besides the huge benefit of
data independence and low computational cost when using
random projections, the near-isometry property often allows
to establish that the solution found in the low-dimensional
space is a good approximation to the solution in the original
space [1,34].

Algorithms in machine learning often need or benefit
from sufficient estimates of pairwise distances, e.g., approx-
imate nearest-neighbor problems, supervised classification
[27] and subspace clustering [26]. In [32], algorithmic appli-
cations of near-isometry embeddings have been introduced.
In [7], random projections have been successfully applied to
noisy and noiseless text and image data. The experimental
studies include the comparison of preservation of pairwise
distances between random projections and PCA. The results
coincide with our observations that for k > d/2 PCA is able

to preserve the pairwise distances sufficiently, whereas for
k < d/2 PCA distorts them. The smaller the k, the worse the
distortion, whereas random projections preserve similarities
still well for very small k, while being computationally much
cheaper than PCA. One should point out again that favoring
preservation of pairwise distances relies on the accuracy of
the original distances.

PCA and random projections are orthogonal projections
favoring two different aims. We want to study in the context
of the whole set of orthogonal projections if the two objec-
tives (O1) and (O2) could be reached at the same time. We
will see that the objectives act competing, and therefore we
suggest a balancing projector for tasks that benefit from both
objectives.

2.4 Covariances and Correlation Between
Competing Objectives

For further mathematical analysis, we first introduce a more
general class of probability measures on Gk,d that resemble
λk,d sufficiently well:

Definition 2.4 A Borel probability measure λ on Gk,d is
called a cubature measure of strength t if

∫

Gk,d

f (p)dλk,d (p) =
∫

Gk,d

f (p)dλ(p), for all f ∈ Polt (R
d2 ),

where Polt (Rd2) denotes the set of multivariate polynomials
of total degree t in d2 variables.

Existence of cubature measures is studied, for instance, in
[17]. For random P , we nowdetermine the expectation values
for our three quantities of interest: tvar(Px), M(P, x) and
V(P, x). If P ∼ λ and λ is a cubature measure of strength
at least 2, the identities (A.2) and (A.3) in the Appendix and
a short calculation yield

E tvar(Px) = k
d tvar(x), (2.10)

EM(P, x) = 1, (2.11)

EV(P, x) = ak,d
(
1 − 4

m2(m−1)2

∑

i< j
l<r

〈
xi−x j

‖xi−x j‖ ,
xl−xr‖xl−xr‖

〉2 )
,

(2.12)

where ak,d = 2d(d−k)
k(d−1)(d+2) . The expected sample variance in

(2.12) satisfies

EV(P, x) ≤ ak,d −→ 2

k
, for d → ∞.

This asymptotic bound relates to Theorem 2.2 and alludes to
a near-isometry property of the type (2.7) for k sufficiently
large.
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Fig. 3 For x = {xi }10i=1 ⊂ R
d

with independent, normal
distributed entries, we
independently sample 10,000
random projectors p from λ10,d
and plot M(p, x) versus
tvar(px). The expectation
values with respect to P ∼ λ are
marked with +. The correlation
is already 0.9916 for d = 50
and grows further when d
increases, namely with values
0.9961, 0.9985, 0.9996 for
d = 100, 200, 500

(a) d = 50 (b) d = 100

(c) d = 200 (d) d = 500

The following theoremprovides a lower bound for random
P on the population correlation

Corr(M(P, x), tvar(Px)) = Cov(M(P, x), tvar(Px))√
Var(M(P, x))

√
Var(tvar(Px))

.

(2.13)

Theorem 2.5 Let x = {xi }mi=1 ⊂ R
d be pairwise different

and let P ∼ λ, with λ being a cubature measure of strength
at least 2. For d ≥ m(m−1)

2 , the correlation (2.13) is bounded
from below by

mini �= j‖xi−x j‖2

maxi �= j‖xi−x j‖2 − m(m−1)
2d · maxi �= j‖xi−x j‖2

mini �= j‖xi−x j‖2 . (2.14)

If {xi }mi=1 ⊂ R
d are random points, whose entries are inde-

pendent, identically distributed with finite 4-th moments that
are uniformly bounded in d, then (2.14) converges towards
1 in probability for d → ∞.

The strong correlation for large dimensionsd in the second
part of Theorem 2.5 suggests that increasing tvar(Px) may
also lead to increasing M(P, x); see Fig. 3 for illustration.
Thus, large projected total variance tvar(Px) and the preser-
vation of scaled pairwise distances, i.e.,M(P, x) being close

to 1, are competing properties. As discussed in Sect. 2.3, the
choice of which kind of information is favorable to preserve
depends on the data and the task, e.g., denoising (O1) and
nearest-neighbor classification (O2). PCA and random pro-
jections are extreme in preserving either (O1) or (O2). We
will heuristically study the behavior of orthogonal projec-
tions balancing both objectives in the next section and will
state a numerical experiment where a balancing projector
yields the highest classification accuracy.

Remark 2.6 The second part of Theorem 2.5 relates to the
well-known fact that random vectors in high dimensions are
almost orthogonal [4], and standard concentration ofmeasure
arguments may lead tomore quantitative statements, cf. [52].

3 Preparations for Numerical Experiments

For the numerical experiments, we need finite sets of pro-
jectors that represent the overall space well, i.e., cover Gk,d
properly.
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3.1 Optimal Covering Sequences

Let the covering radius of a set {pl}nl=1 ⊂ Gk,d be denoted
by

�({pl}nl=1) := sup
p∈Gk,d

min
1≤l≤n

‖p − pl‖F, (3.1)

where ‖ · ‖F is the Frobenius norm. The smaller the covering
radius, the better the set {pl}nl=1 represents the entire space
Gk,d , i.e., there are smaller holes and the points {pl}nl=1 are
better distributed within Gk,d . Following Lemma 2.1, we can
connect finite sets of projections and their covering radius to
the near-isometry property:

Lemma 3.1 Let {pl}nl=1 ⊂ Gk,d and denote � := �({pl}nl=1).
For any 0 < ε < 1, any m, k, d ∈ N with

4 log(m)

ε2/2 − ε3/3
≤ k ≤ d,

and any {xi }mi=1 ⊂ R
d , there is l0 ∈ {1, . . . , n} such that

(1 − δ)
∥
∥xi − x j

∥
∥2 ≤ d

k

∥
∥pl0(xi ) − pl0(x j )

∥
∥2

≤ (1 + δ)
∥
∥xi − x j

∥
∥2 , i < j, (3.2)

where δ = ε + 2�
√

(1+ε)d
k + d

k �2.

Proof Given an arbitrary projector p ∈ Gk,d , there is an index
l0 ∈ {1, . . . , n} such that

‖pl0x − px‖ ≤ ‖pl0 − p‖F‖x‖ ≤ �‖x‖, x ∈ R
d .

From here, standard computations imply Lemma 3.1. We
omit the details. ��

The accuracy of the near-isometry property in (3.2)
depends on the covering radius. Therefore, a set {pl}nl=1 ∈
Gk,d with a small covering radius � is more likely to contain
a projector with better preservation of pairwise relative dis-

tances. According to [11], it holds that2 � � n− 1
k(d−k) and we

shall see next how to achieve this lower bound.
A set of projectors {pl}nl=1 ⊂ Gk,d is called a t-design

if the associated normalized atomic measure 1
n

∑n
l=1 δpl is

a cubature measure of strength t (see Definition 2.4); see
[44] for general existence results. Any sequence of ti -designs
{pil }nil=1 ⊂ Gk,d with ti → ∞ satisfies

�i � t−1
i , (3.3)

2 We use the symbols � and � to indicate that the corresponding
inequalities hold up to a positive constant factor on the respective right-
hand side. The notation � means that both relations � and � hold.

and moreover, the bound ni � tk(d−k)
i holds, cf. [11,17]. To

relate ni to �i via ti , a sequence of ti -designs {pil }nil=1 ⊂ Gk,d
is called a low-cardinality design sequence if ti → ∞ and

ni � tk(d−k)
i , i = 1, 2, . . . . (3.4)

For their existence and numerical constructions, we refer to
[21] and [10,11]. According to [11], see also (3.3) and (3.4),
any low-cardinality design sequence {pil }nil=1 covers asymp-
totically optimal, i.e.,

�i � n
− 1

k(d−k)
i .

Benefiting from the covering property, we will use low-
cardinality design sequences as a representation of the overall
space of orthogonal projectors Gk,d .

3.2 Linear Least Squares Fit

With the linear least squares fit, we can directly gain infor-
mation about the relation betweenM(p, x) and tvar(px) for
a given data set x = {xi }mi=1 ⊂ R

d when p varies. Given the
two samples

{tvar(p1x), . . . , tvar(pnx)}, {M(p1, x), . . . ,M(pn, x)},
(3.5)

the linear least squares fitting provides the best fitting straight
line,

tvar(pl x) ≈ s · M(pl , x) + γ, l = 1, . . . , n,

where s and γ are determined by the sample variances and
the sample covariance. If {pl}nl=1 is a 2-design, then the sam-
ple (co)variances coincide with the respective population
(co)variances for P ∼ λk,d ; see Appendix A.3 for further
details. It follows that

s = Cov(M(P, x), tvar(Px))

Var(M(P, x))
with P ∼ λk,d , (3.6)

γ = k
d tvar(x) − s. (3.7)

The quantities s and γ can be directly computed, where
tvar(x) is given by (2.2) and the covariances are stated in
Corollary A.1. Note that (3.6) and (3.7) are now independent
of the particular choice of {pl}nl=1.

The correlation between the two samples (3.5) yields addi-
tional information about their relation. As before, if {pl}nl=1
is a 2-design, then the sample correlation coincides with the
population correlation (2.13) for P ∼ λk,d , cf. Appendix
A.3. High correlation for a specific data set x suggests that
random projections and PCA preserve competing properties,
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whose benefits need to be assessed for the specific subsequent
task.

4 Numerical Experiments in Pattern
Recognition

We investigate the impact on classification accuracy when
applying specific orthogonal projections to input data. The
chosen real-world data yields a straightforward classification
task, serving as a toy example for comparing the accuracy of
several projected input data in simple learning frameworks.
Projectors are chosen from a t-design in view of tvar(px)
and M(p, x). For all computations made in this section,
the ‘Neural Network’ and ‘Statistics and Machine Learning’
toolboxes in MATLAB R2017a are used.

We use the publicly available iris data set from the UCI
Repository ofMachine LearningDatabase suitable for super-
vised classification learning. It consists of three classes with
50 instances each, where each class refers to a type of iris
plant. The instances are described by four features result-
ing in the input samples {xi }150i=1 ⊂ R

4 and target samples
{yi }150i=1 ⊂ {0, 1}3. For comparison, we classify the diverse
input data with support vector machine (SVM) and three-
layer neural networks (NN) with 5 and 10 hidden units (HU).

4.1 Choice of Orthogonal Projection

In the experiment, we use projections p ∈ G2,4 reducing the
original dimension from d = 4 to k = 2. As a finite repre-
sentation of the overall space, we use a t-design of strength
14 from a low-cardinality sequence (see Sect. 3.1) consist-
ing of 8475 orthogonal projectors. Note that the dimension
reduction in practice takes place by applying q ∈ Vk,d with
q�q = p ∈ Gk,d , where

Vk,d := {q ∈ R
k×d : qq� = Ik}

denotes the Stiefel manifold. When taking norms, p and q
are interchangeable, i.e., ‖q(x)‖2 = ‖p(x)‖2, for all x ∈ R

d .
Therefore, we can use w.l.o.g. the theory developed for p.

The projections are chosen in a deterministic manner
viewing the previously described competing properties. In
Fig. 4, the quantities tvar(px) andM(p, x) are pairwise plot-
ted for all projectors in {pl}8475l=1 . For comparison, we choose
the following projections p ∈ {pl}8475l=1 ⊂ G2,4; see Fig. 4a
for a visualization.

p× closest to the expected values 1 and k
d tvar(x) (see

(2.10) and (2.11)),
p♦ preservingM(p, x) ≈ 1 and maximizing tvar(px),
p� preservingM(p, x) ≈ 1 and minimizing tvar(px),
p© tvar(px) ≈ tvar(p♦x) and maximizing M(p, x),
p� minimal tvar(px),
p∗ maximal tvar(px) (PCA).

4.2 Results

In Fig. 4b, we see the linear least squares fitting line, com-
puted directly and via the slope and intercept as stated in
(3.6) and (3.7). The correlation coefficient (2.13) is 0.98,
which suggests that preserving the two properties is highly
competing and needs to be balanced.

In Table 1, the classification results of the iris data are pre-
sented. We can see that in this comparison the projector p♦,
which corresponds to preserving M(p, x) ≈ 1 and maxi-
mizing tvar(px), yields the highest and most robust results.
It even yields better results than working with the original
input data. The projections that preserve M(p, x) ≈ 1 but
do not take care of the magnitude of the total variance yield
much worse results. On the other hand, the projections that
just focus on high total variance still do not yield as high
results as the projection p♦ that balances both properties.

Remark 4.1 Given a data set x , the projector p♦ is a good
choice to balance both objectives (O1) and (O2). It can be
computed by directly analyzing {tvar(p1x), . . . , tvar(pnx)}

Fig. 4 Projections
{pl }8475l=1 ⊂ G2,4 from a t-design
of strength 14 evaluated on the
iris data set x ⊂ R

4×150
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Table 1 Classification results of iris data, when using projected input
data in support vector machine (SVM) and shallow neural networks
(NN)

Input/method NN (10 HU) NN (5 HU) SVM

x (97.6, 1.25) (97.5, 2.29) (96.7, 0.15)

p♦x (98.4, 0.42) (98.3, 2.15) (97.3, 0.06)

p×x (88, 1.73) (87.9, 1.92) (87.6, 0.63)

p�x (87.3, 9.56) (86.9, 10.81) (87.7, 0.42)

p©x (96.8, 2.74) (96.7, 1.77) (96, 0.17)

p∗x (PCA) (96.9, 1.36) (96.5, 4.07) (96, 0.37)

p�x (62.1, 44.30) (58.9, 70.78) (56, 0.61)

Mean and variance (×10−4) of 1000 independent NN runs and 100
independent runs with tenfold cross-validation in SVM
Bold values indicate corresponding to the highest (= best) classification
accuracy

and {M(p1, x), . . . ,M(pn, x)} of a finite covering {pl}nl=1
of Gk,d . For higher dimensions, an accurate representation
of Gk,d , in order to heuristically select p♦, requires large
computational costs. The least squares regression line for a
2-design, as stated in 3.7, can be directly computed with low
computational cost. This offers helpful information about the
interplay between (O1) and (O2).

5 Augmented Target Loss Functions

In the previous section, projectors were applied to input
features of shallow neural networks. In more complex archi-
tectures, such as deep neural networks, the adaption of
weights can be viewed as optimization of input features,
e.g., arising features can be used for transfer learning [54].
Whereas the input data are processed and optimized in each
iteration, the target data stay usually unchanged during the
whole learningprocess, serving as ameasure of accuracy.The
representation of the target data is one key property for suc-
cessful approximation with neural networks. Here, we will
introduce a general class of loss functions, i.e., augmented
target (AT) loss functions, that use projections and features
to yield beneficial representations of the target space, empha-
sizing important characteristics.

In optimization problems, additional penalty terms are
used for regularization or to enforce other constraints. In
deep learning, weight decay (i.e., Tikhonov regularization) is
a standard adaption of the loss function to that effect. Incor-
porating additional underlying information via features of
the output/target data has been studied in diverse settings
tailored to particular imaging applications. Perceptual loss
functions have been used in [31] for image super-resolution,
incorporating the comparison of high-level image features
that arise from pretrained convolutional neural networks, i.e.,
the VGG network [45]. Deep perceptual similarity metrics

have been proposed in [20] for generating images, compar-
ing image features instead of the original images. In [28], a
similar approach was successfully used for style transfer and
super-resolution, adding a network that defines loss func-
tions. Anatomically constrained neural networks (ACNN)
have been introduced in [40] and applied to cardiac image
enhancement and segmentation. Their loss functions incor-
porate structural information by using autoencoders to gain
features about lower-dimensional parametrization of the seg-
mentation. Brain segmentation was studied in [22], where
information about the desired structure has been added in the
loss function via an adjacency matrix. It was used for fine-
tuning the supervised learned network with unlabeled data,
reducing the number of abnormalities in the segmentation.

The information of certain target characteristics can be
very powerful and even replace the need of annotations in
some tasks. In [47], label-free learning is approached by
using just structural information of the desired output in the
loss function instead of annotated target values.

In the following, we will define a general framework of
loss functions that add information of target characteristics
via features and projections in supervised learning tasks.

5.1 General Framework

Let the training data be input vectors {xi }mi=1 ⊂ R
r with

associated target values {yi }mi=1 ⊂ R
s . We consider training

a neural network

fθ : Rr → R
s,

where θ ∈ R
N corresponds to the vector of all free parame-

ters of a fixed architecture. In each optimization step for θ ,
the network’s output {ŷi = fθ (xi )}mi=1 ⊂ R

s is compared
with the targets {yi }mi=1 via an underlying loss function L .

In contrast to ordinary learning problems with highly
accurate target data, complicated learning tasks arising in
many real-world problems do not yield sufficient results
when optimizing neural networks with standard loss func-
tions L , such as the widely used mean least squares error

LMSE({yi }mi=1, {ŷi }mi=1) := 1

m

m∑

i=1

∥
∥yi − ŷi

∥
∥2 . (5.1)

The training data may include important information that
is obvious for humans, but poorly represented within the
original target data and therefore lacks consideration in the
learning process. To overcome this issue, we propose to add
information tailored to the particular learning problem rep-
resented by additional features of the outputs and targets.

First, we select transformations

Tj : Rs → R
t , j = 1, . . . , d,
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to enable error estimation in transformed output/target
spaces. Note that the transformations Tj are not required to
be linear. However, they should be piecewise differentiable to
enable subsequent optimization of the loss function with gra-
dient methods.We shall allow for additional weighting of the
transformations T1, . . . , Td to facilitate the selection of fea-
tures for a specific learning problem. The previous sections
suggest that orthogonal projections can provide favorable
feature combinations, which essentially turns into a weight-
ing procedure.

To enable suitable projections,we stack thed output/target
features

T (yi ) :=
⎛

⎜
⎝

T1(yi )�
...

Td(yi )�

⎞

⎟
⎠ ∈ R

d×t ,

so that applying a projector p ∈ Gk,d to each column of T (yi )
yields p(T (yi )) ∈ R

d×t . We now define the augmented tar-
get loss function with projections by

L p
({yi }, {ŷi }

) := L({yi }, {ŷi }) + α · L̃({p(T (yi ))}, {p(T (ŷi ))}
)
,

(5.2)

where α > 0 and L and L̃ correspond to conventional loss
functions. Apparently, L p depends on the choice of p ∈
Gk,d . The projection p(T (yi )) weighs the previously chosen
feature transformations T (yi ). Standard choices of L and L̃
are LMSE, in which case L p becomes

L p
({yi }, {ŷi }

) = 1

m

m∑

i=1

∥
∥yi − ŷi

∥
∥2 + α · 1

m

m∑

i=1

‖p(T (yi ))

−p(T (ŷi ))‖2F. (5.3)

Remark 5.1 For k = d, the projector p is the identity. In this
case, the transformations can map onto different spaces, i.e.,

Tj : Rs → R
t j , j = 1, . . . , d,

and we can now write the standard augmented target loss
function by

LAT
({yi }, {ŷi }

) =
d∑

j=1

α j · L j ({Tj (yi )}, {Tj (ŷi )}
)
, (5.4)

where T1 corresponds to the identity function, L1, . . . , Ld are
common loss functions and α1, . . . , αd > 0 are weighting
parameters.

It should be mentioned that α resembles a regulariza-
tion parameter. The actual minimization of (5.1) among θ

is usually performed through Tikhonov-type regularization

in many standard deep neural network implementations. The
formulation (5.2) adds one further variational step for bene-
ficial output data representation.

Remark 5.2 Our proposed structure with target feature maps
T1, . . . , Td as in (5.4) relates to multitask learning, which has
been successfully used in deep neural networks [13]. It han-
dles multiple learning problems with different outputs at the
same time. In contrast to multitask learning, we aim to solve
a single problem but also penalize the error in transformed
spaces enhancing certain target characteristics.

For the projected feature transformations in the augmented
target loss function, it is not possible to identify a balancing
projection p heuristically (such as p♦ in Sect. 4), because
the output y changes in each iteration when the loss func-
tion is called. In the following clinical numerical experiment
we overcome this issue by choosing random projections in
each optimization step and compare it to prior deterministic
choices of projections, including PCA.

6 Application to Clinical Image Data

The first experiment is a clinical problem in retinal image
analysis of the human eye, where the disruptions of the so-
called photoreceptor layers need to be quantified in optical
coherence tomography (OCT) images. The photoreceptors
have been identified as the most important retinal biomarker
for prediction of vision fromOCT in various clinical publica-
tions, see e.g., [23]. As OCT technology advances, clinicians
are not able to look at each slice ofOCT themselves. (Inmean,
they get 250 slices per patient and have 3–5 minutes/patients
including their clinical examination.) Therefore, automated
classification of, for example, photoreceptor status is neces-
sary for clinical guidance.

6.1 Data and Objective

In this application, OCT images of different retinal diseases
(diabetic macular edema and retinal vein occlusion) were
provided by the Vienna Reading Center recorded with the
SpectralisOCTdevice (Heidelberg Engineering,Heidelberg,
Germany). Each patient’s OCT volume consists of 49 cross
sections/slices (496 × 512 pixels) recorded in an area of
6 × 6 mm in the center of the human retina, which is the
part of the retina responsible for vision. Each of the slices
was manually annotated by a trained grader of the reading
center. This is a challenging and time-consuming procedure
that is not feasible in clinical routine but only in a research
setting. The binary pixelwise annotations serve as target val-
ues, enabling a supervised learning framework (Fig. 5).

The objective is to accurately detect the photoreceptor
layers and their disruptions pixelwise in each OCT slice by
training a deep convolutional neural network with a suitable
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Fig. 5 OCT provides
cross-sectional visualization of
the human retina

(a) Healthy photoreceptor region (b) OCT slice plus manual annotation

(c) Disrupted photoreceptor region (d) OCT slice plus manual annotation

loss function. The learning problem is complicated by poten-
tially inaccurate target annotations, as studies have shown
that inconsistencies between trained graders are common,
cf. [50]. Moreover, the learning task is unbalanced in the
sense that there are many more slices showing none or very
little disruptions. We shall observe that optimization with
respect to standard loss functions performs poorly in regards
to detecting disruptions. The augmented target loss function
proposed in the previous section can enhance the detection.

6.2 Convolutional Neural Network Learning

We implemented our experiments using Python 3.6 with
Pytorch 1.0.0. A deep convolutional neural network fθ is
trained by applying the U-Net architecture reported in [43]
with a sigmoid activation function and Tikhonov regulariza-
tion. A set of 20 OCT volumes (980 slices) from different
patients with corresponding annotations are used for train-
ing, where four volumeswere used for calibration (validation
set). Another two independent test volumes were identified
for evaluating the results, one without any disruptions in the
photoreceptor layers, whereas the other one includes a high
number of disruptions.

Each OCT slice is represented by a vector xi ∈ R
r with

r = 496 · 512. The collection {xi }mi=1 corresponds to all
slices from the training volumes, i.e., m = 20 · 49. Further
matching the notation of the previous section, we have r = s
and fθ : Rr → R

r with binary target vectors yi ∈ {0, 1}r .
We observe that disruptions are not identified reliably when
using the least squared loss function (5.1). To overcome this
issues, we use the proposed augmented target loss function
with least squared losses as stated in (5.3).

To enhance disruptions within the output/target space, we
heuristically choose d = 4 local features of the original rep-

Table 2 Comparison of AUC values for photoreceptors segmentation
and disruption detection

Loss function Photoreceptors Disruptions

LMSE 0.9720 0.4399

L p

p = I4 0.9736 0.4686

pλ2,4 0.9746 0.4720

pPCA 0.9716 0.5331

p12 0.9755 0.5558

Bold values correspond to the highest AUC value, which serves us as a
measure of accuracy

resentation. They are derived from convolutions with two
edge filters, T1 (Prewitt) and T2 (Laplacian of Gaussian),
and from two Gaussian high-pass filters, yielding T3 and T4.
Note that these feature transformations keep the same size,
i.e., Tj : Rr → R

r for j = 1, . . . , d. See Fig. 6 for example
images.

We can derive several augmented target loss functions L p

by choosing different p ∈ Gk,d . In this experiment, we use
the following projections:

• p = I4,
• {pl}15l=1, all projections from a t-design of strength 2 ⊂

G2,4 (see [10]),
• pPCA ∈ G2,4, projection determined by PCA on the train-

ing data,
• pλ2,4 , random projection chosen according to λ2,4 in each

mini-batch.

123



Journal of Mathematical Imaging and Vision (2020) 62:376–394 387

Fig. 6 Features on output and
targets that enhance edges in
different ways. It is not obvious
which transformations are of
most importance; weighting by
projections can overcome this
issue

(a) Prewitt

(b) Laplacian of Gaussian (LoG)

(c) Gaussian highpass (threshold = 40)

(d) Gaussian highpass (threshold = 100)

6.3 Results

Since the detection problem is highly unbalanced, we use
precision/recall curves [16] for evaluating the overall perfor-
mance of each loss function model. The area under the curve
(AUC) was used as a numerical indicator of the success rate
[41]. The higher the AUC, the better the classification.

The results of the different loss functions on the inde-
pendent test set are stated in Table 2. Due to the imbalance
within the data, the photoreceptor region is identified well,
but disruptions are not identified reliablywhen using the least
squared loss function (5.1). For α = 0.1, all proposed aug-
mented target loss functions L p clearly increase the success
rate of the disruption quantification. Note that all projections
are independent from the actual data set, except PCA that
was computed beforehand on the training data.

The features itself (i.e., p = I4) improve the quantifica-
tion, and weighting them by projections increases the results
even more: using the fixed projection p12 from the t-design
sequence {pl}15l=1 on the output/target features yields the
highest accuracy for photoreceptors and disruptions. This

corresponds to the results of the previous sections, stating
that depending on the particular data there are projections
in the overall space acting beneficially. Since this projection
generally cannot be found beforehand, using random projec-
tions in each loss function’s evaluation step is easier, possible
in practice, and independent from the data. The computation
is efficient and randomization can have regularization effects
that yield more robust results, cf. [34]. In the following, we
will view a second classification problem based on spectro-
grams, where augmented target loss functions with random
projections can improve the accuracy.

7 Application toMusical Data

Here, the learning task is a prototypical problem in Music
Information Retrieval, namely multi-class classification of
musical instruments. In analogy to the MNIST problem in
image recognition, this classification problem is commonly
used as a basis of comparison for innovative methods, since
the ground truth is unambiguous and sufficiently many anno-
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tated data are available. The input to the neural network is
spectrograms of audio signals, which is the standard choice
in audiomachine learning. Spectrograms are calculated from
the time signal using a short-time Fourier transform and tak-
ing the absolute value squared of the resulting spectra, thus
yielding a vector for each time step and a two-dimensional
array, like an image, cf. [18].

Reproducible code and more detailed information of our
computational experiments can be found in the online repos-
itory [25].

7.1 Data and Objective

The publicly available GoodSounds data set [42] contains
recordings of single notes and scales played by several sin-
gle instruments. To gain equally balanced input classes, we
restrict the classification problem to six instruments: clarinet,
flute, trumpet, violin, alto saxophone and cello. Note that the
recordings aremonophonic, so that each recording yields one
spectrogram that we aim to correctly assign to one of the six
instruments.

After removing the silence [3,38], segments from the raw
audio files are transformed into log-mel spectrograms [36],
so that we obtain images of time–frequency representations
with size 100×100. One example spectrogram for each class
of instruments is depicted in Fig. 7.

7.2 Convolutional Neural Network Learning

We implemented a fully convolutional neural network fθ :
R
r → [0, 1]s , cf. [33], where r = 100 × 100 and s = 6,

in Python 3.6 using Keras 2.2.4 framework [14] and trained
it on the Nvidia GTX 1080 Ti GPU. The data are split into
1, 40, 722 training, 36,000 validation and 36,000 indepen-
dent test samples. We heuristically choose d = 16 output
features arising directly from the particular output class.
The transformations T1, . . . , T16, with Tj : R

6 → R for
j = 1, . . . , 16, are then given by the inner product of the
output/target and the feature vectors. Among others, the fea-
tures are chosen from the enhanced scheme of taxonomy [53]
and from the table of frequencies, harmonics and under tones
[57]. We use the proposed augmented target loss function Lp
(5.2), where L1 corresponds to the categorical cross-entropy

(a) Clarinet (b) Flute (c) Trumpet

(d) Violin (e) Alto Saxophone (f) Cello

Fig. 7 Log-mel spectrograms of the six different instruments. Intensities range from 0 (black) to 1 (yellow) (Color figure online)
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Table 3 Classification results with different parameter choices

α β p Training Test data

0 0 – 0.5541 0.5716

0.01 0 I16 0.5650 0.5683

0.01 0 pλ6,16 0.7722 0.7657

0 0.05 – 0.9771 0.9729

0.01 0.05 I16 0.9849 0.9802

0.01 0.05 pλ6,16 0.9857 0.9833

The standard inbuilt Tikhonov regularization (�2-norm of θ) is weighted
by β. For α > 0, the feature transformations {Tj }16j=1 are used in the loss
function, either directly or weighted by a random projection pλ6,16 . The
accuracy of the model is measured by the number of correctly classified
samples divided by the number of all samples
Bold values correspond to the highest classification accuracy

loss [55] and L2 to the mean squared error as in (5.3). We
consider here two choices of p: the identity I16 and random
projectors p ∼ λ6,16 in G6,16.

The deep learning model is sensitive to various hyper-
parameters, including α and p, in addition to conventional
parameters, such as the number of convolutional kernels,
learning rate and the parameter β for Tikhonov regulariza-
tion. Tofind the best choices in a fair trial, we utilize a random
hyper-parameter search approach, where we train 60 models
and select the three best ones for a more precise search over
different α in the augmented target loss function and β for
Tikhonov regularization. This results in 212 models that are
evaluated on the training and validation set. Finally, we select
the best model based on the accuracy of the validation set and
evaluate it on the independent test set. For comparison, we
also evaluate this model with no Tikhonov regularization,
i.e., β = 0; see Table 3.

7.3 Results

Table 3 shows that no regularization and no features provide
the poorest results. It seems that adding features with random
projections has a regularizing effect and improves the results
significantly.As expected, it is important to includeTikhonov
regularization on θ . Further enhancement happens by adding
features via themodified augmented target loss function with
or without additional weighting from projections. All results
are very stable and are generalizing very well from training
to the independent test set; see [25] for further details.
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Appendix A: Proof of Theorem 2.5

A.1 Proof of (2.14) in Theorem 2.5

For {yi }Mi=1 ⊂ R
d and p ∈ Gk,d , we define

f (p, {yi }Mi=1) := 1
M

M∑

i=1

d
k ‖p(yi )‖2. (A.1)

Given two sets, {yi }M1
i=1, {z j }M2

j=1 ⊂ R
d , suppose that P ∈

Gk,d is a random matrix, distributed according to a cubature
measure of strength at least 2. The covariance is given by

Cov( f (P, {yi }M1
i=1), f (P, {z j }M2

j=1))

= E[( f (P, {yi }) − E[ f (P, {yi })])( f (P, {zi })
− E[ f (P, {zi })]

Using the identity, cf. [2],

d
kE

[ ‖Py‖2 ] = ‖y‖2 (A.2)

directly yields

Cov( f (P, {yi }M1
i=1), f (P, {z j }M2

j=1))

= E

[(

1
M1

M1∑

i=1

d
k ‖P(yi )‖2 − 1

M1

M1∑

i=1

‖yi‖2
)

(

1
M2

M2∑

i=1

d
k ‖P(zi )‖2 − 1

M2

M2∑

i=1

‖zi‖2
)]

.

Following [8, Theorem 2.4, Sect. 3.1], we use that

E
[ ‖Py‖2 ‖Pz‖2] = 1

q
(α1 ‖y‖2 ‖z‖2 + α2〈y, z〉2), y, z ∈ R

d ,

(A.3)

holds, where q = (d − 1)d(d + 2), α1 = (d + 1)k2 − 2k
and α2 = 2k(d − k). This leads to the explicit formula of the
population covariance

Cov
(
f
(
P, {yi }M1

i=1

)
, f

(
P, {z j }M2

j=1

))

= ak,d
M1M2

M1∑

i=1

M2∑

j=1

〈yi , z j 〉2
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− ak,d
d

(
1

M1

M1∑

i=1

‖yi‖2
)⎛

⎝ 1

M2

M2∑

j=1

∥
∥z j

∥
∥2

⎞

⎠ , (A.4)

with ak,d = 2d(d−k)
k(d−1)(d+2) .

For y := {yi }Mi=1 ⊂ R
d\{0}, we set ŷi := yi

‖yi‖ , for
i = 1, . . . , M . The identity (A.4) enables us to compute
the population correlation

Corr( f (P, y), f (P, ŷ)) = Cov( f (P, y), f (P, ŷ))√
Var( f (P, y))

√
Var( f (P, ŷ))

(A.5)

by the explicit formulas

Cov
[
f (P, y), f (P, ŷ)

] = ak,d
M2

M∑

i, j=1

〈yi , ŷ j 〉2

− ak,d
d

· 1

M

M∑

i=1

‖yi‖2

Cov
[
f (P, y), f (P, y)

] = Var[ f (P, y)] = ak,d
M2

M∑

i, j=1

〈yi , y j 〉2

− ak,d
d

(
1

M

M∑

i=1

‖yi‖2
)2

Cov
[
f (P, ŷ), f (P, ŷ)

] = Var[ f (P, ŷ)] = ak,d
M2

M∑

i, j=1

〈ŷi , ŷ j 〉2

− ak,d
d

.

Since the variance is always nonnegative and ak,d
d > 0, the

denumerator of Corr( f (P, y), f (P, ŷ)) in (A.5) satisfies
√
Var( f (P, y))

√
Var( f (P, ŷ))

≤

√
√
√
√
√

⎛

⎝ak,d
M2

M∑

i, j=1

〈yi , y j 〉2
⎞

⎠

⎛

⎝ak,d
M2

M∑

i, j=1

〈ŷi , ŷ j 〉2
⎞

⎠

≤ ak,d
M2

√
√
√
√
√

⎛

⎝
M∑

i, j=1

〈yi , y j 〉2
⎞

⎠

⎛

⎝ 1

mini (‖yi‖)4
M∑

i, j=1

〈yi , y j 〉2
⎞

⎠

≤ 1

mini (‖yi‖)2
ak,d
M2

M∑

i, j=1

〈yi , y j 〉2.

The enumerator of Corr( f (P, y), f (P, ŷ)) in (A.5) is esti-
mated by

Cov( f (P, y), f (P, ŷ)) ≥ ak,d
maxi (‖yi‖)2

1

M2

M∑

i, j=1

〈yi , y j 〉2

− ak,d
d

max
i

(‖yi‖)2.
Ford ≥ M , a short calculationyieldsCov( f (P, y), f (P, ŷ))
≥ 0, so that we obtain

Corr( f (P, y), f (P, ŷ)) ≥ mini (‖yi‖)2
maxi (‖yi‖)2

− mini (‖yi‖)2 maxi (‖yi‖)2
d
M2

∑M
i, j=1〈yi , y j 〉2

.

The lower bound
∑M

i, j=1〈yi , y j 〉2 ≥ M mini (‖yi‖)4 yields

Corr( f (P, y), f (P, ŷ)) ≥ mini (‖yi‖)2
maxi (‖yi‖)2

− M

d
· maxi (‖yi‖)2
mini (‖yi‖)2 .

Since the correlation is scaling invariant, the choice y =
{xi − x j : 1 ≤ i < j ≤ m} with M = m(m−1)

2 implies (2.14)
in Theorem 2.5. Incorporating the correct scaling yields the
following corollary:

Corollary A.1 For a given data set x = {xi }mi=1 and for
random P ∈ Gk,d the (co)variances of tvar(Px) (2.4) and
M(P, x) (2.8) are given by

Cov(M(P, x), tvar(Px)) = k

2d

⎛

⎝ak,d
M2

∑

i< j

∑

l<r

〈

xi − x j ,
xl − xr

‖xl − xr‖
〉2

−ak,d
d

· 1

M

∑

i< j

∥
∥xi − x j

∥
∥2

⎞

⎠ ,

Var(tvar(Px)) = k2

4d2

⎛

⎝ak,d
M2

∑

i< j

∑

l<r

〈
xi − x j , xl − xr

〉2

−ak,d
d

⎛

⎝ 1

M

∑

i< j

‖xi − x j‖2
⎞

⎠

2
⎞

⎟
⎠ ,

Var(M(P, x)) = ak,d
M2

∑

i< j

∑

l<r

〈
xi − x j

‖xi − x j‖ ,
xl − xr

‖xl − xr‖
〉2

− ak,d
d

,

where M = m(m−1)
2 and ak,d = 2d(d−k)

k(d−1)(d+2) .

A.2 Proof of the Second Part of Theorem 2.5

For fixed parameters μ > 0, σ 2 > 0, that do not depend on
d, let Y1 ∈ R

d be a random vector, whose squared entries are
independent, identically distributed with mean EY 2

1,l = μ

and variance Var(Y 2
1,l) = σ 2, for l = 1, . . . , d. We immedi-

ately observe

E

(‖Y1‖2√
d

)
= √

dμ, Var
(‖Y1‖2√

d

)
= σ 2.

For any c > 0, Chebyshev’s inequality yields

P

(∣
∣
∣
∣
‖Y1‖2√

d
− √

dμ

∣
∣
∣
∣ ≥ cσ

)

≤ 1

c2
.
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Suppose that Y2, . . . ,YM are copies of Y1, not necessarily
independent. Then, the union bound

P

(∣
∣
∣
‖Yi‖2√

d
− √

dμ

∣
∣
∣ ≥ cσ, for some i = 1, . . . , M

)
≤ M

c2

implies that

√
dμ − cσ ≤ mini (‖Yi‖)2√

d
≤ maxi (‖Yi‖)2√

d
≤ √

dμ + cσ

holds with probability at least 1− M
c2
. Provided that

√
dμ �=

cσ and 0 <
√
dμ − cσ , we deduce

√
dμ − cσ√
dμ + cσ

≤ mini (‖Yi‖)2
maxi (‖Yi‖)2 ≤

√
dμ + cσ√
dμ − cσ

.

We can choose c = μ
σ

4
√
d, since 0 < c ≤ 4√dμ

σ
≤

√
dμ
σ

. That
directly yields

1 − 1
4√d

1 + 1
4√d

≤ mini (‖Yi‖)2
maxi (‖Yi‖)2 ≤

1 + 1
4√d

1 − 1
4√d

and holds with probability at least 1 − μ2M
σ 2

√
d
.

It follows directly that mini (‖Yi‖)2
maxi (‖Yi‖)2 converges toward 1 in

probability for d → ∞,
The choice {Y1, . . . ,YM } = {Xi − X j : 1 ≤ i < j ≤ m}

implies the second part of Theorem 2.5.

A.3 Calculations for Population Covariances

We notice that ‖p(xi − x j )‖2 = trace(pxi x�
i − px j x�

j ) is a
polynomial of degree 1 in p. Hence, tvar(px) in (2.4) is also
a polynomial of degree 1 in p. If {pl}nl=1 is a 1-design, then
the sample mean of {tvar(p1x), . . . , tvar(pnx)} satisfies

1

n

n∑

l=1

tvar(pl x) = E tvar(Px),

which is the population mean of tvar(Px), with P ∼ λk,d .
Similarly, the term ‖p(xi − x j )‖4 is a polynomial of degree
2 in p, so that (M(p, x))2 in (2.8) is a polynomial of degree
2 in p. If {pl}nl=1 is a 2-design, then we derive

n∑

l=1

(M(pl , x))
2 −

⎛

⎝
n∑

j=1

M(pl , x)

⎞

⎠

2

= E(M(P, x))2 − E

⎛

⎝
n∑

j=1

M(P, x)

⎞

⎠

2

,

with P ∼ λk,d . In other words, the sample variance of
{M(p1, x), . . . ,M(pn, x)} coincides with the population
variance Var(M(P, x)). Analogously, we deduce that the
sample covariance of (3.5) coincides with the population
covariance Cov(M(P, x), tvar(Px)) with P ∼ λk,d .
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