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Abstract Despite their impressive performance, deep
convolutional neural networks (CNN) have been shown
to be sensitive to small adversarial perturbations. These
nuisances, which one can barely notice, are powerful
enough to fool sophisticated and well performing classi-
fiers, leading to ridiculous misclassification results. In
this paper we analyze the stability of state-of-the-art
deep-learning classification machines to adversarial per-
turbations, where we assume that the signals belong to
the (possibly multi-layer) sparse representation model.
We start with convolutional sparsity and then proceed
to its multi-layered version, which is tightly connected
to CNN. Our analysis links between the stability of the
classification to noise and the underlying structure of the
signal, quantified by the sparsity of its representation
under a fixed dictionary. In addition, we offer similar
stability theorems for two practical pursuit algorithms,
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which are posed as two different deep-learning architec-
tures – the Layered Thresholding and the Layered Basis
Pursuit. Our analysis establishes the better robustness
of the later to adversarial attacks. We corroborate these
theoretical results by numerical experiments on three
datasets: MNIST, CIFAR-10 and CIFAR-100.

1 Introduction

Deep learning, and in particular Convolutional Neural
Networks (CNN), is one of the hottest topics in data
sciences as it has led to many state-of-the-art results
spanning across many domains [14,9]. Despite the ev-
ident great success of classifying images, it has been
recently observed that CNN are highly sensitive to ad-
versarial perturbations in the input signal [26,10,17].
An adversarial example is a corrupted version of a valid
input (i.e., one that is classified correctly), where the
corruption is done by adding a perturbation of a small
magnitude to it. This barely noticed nuisance is designed
to fool the classifier by maximizing the likelihood of an
incorrect class. This phenomenon reveals that state-of-
the-art classification algorithms are highly sensitive to
noise, so much so that even a single step in the direction
of the sign of the gradient of the loss function creates a
successful adversarial example [10]. Furthermore, it has
been shown that adversarial examples that are generated
to attack one network are powerful enough to fool other
networks of different architecture and database [17], be-
ing the key to the so-called ”black-box" attacks that
have been demonstrated in some real-world scenarios
[13].

Adversarial training is a popular approach to im-
prove the robustness of a given classifier [10]. It aims
to train a robust model by augmenting the data with
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adversarial examples generated for the specific model
and/or transferred from other models. Preprocessing
[16] is another defense strategy, suggesting to denoise
the input signal first, and then feed this purified version
of the signal to the classifier. Indeed, the above defense
methods improve the stability of the network; however,
these are trained based on adversarial examples that
are generated in specific ways. It is quite likely that
future work could offer a different generation of adver-
sarial examples that question again the reliability and
robustness of such given networks.

In this paper we provide a principled way to analyze
the robustness of a classifier using the vast theory devel-
oped in the field of sparse representations. We do so by
analyzing the classifier’s robustness to adversarial per-
turbations, providing an upper bound on the permitted
energy of the perturbation, while still safely classifying
our data. The derived bounds are affected by the clas-
sifier’s properties and the structure of the signal. Our
analysis assumes that the signals of interest belong to
the sparse representation model, which is known for its
successful regression and classification performance [19,
6], and was recently shown to be tightly connected to
CNN [21]. We commence by analyzing a shallow convo-
lutional sparse model and then proceed to its multi-layer
extension. More concretely, suppose we are given a clean
signal that is assigned to the correct class. How much
noise of bounded energy can be added to this signal and
still guarantee that it would be classified accurately?
Our work shows that the bound on the energy of the
noise is a function of the sparsity of the signal and the
characteristics of the dictionaries (weights).

We proceed by considering specific and practical
pursuit algorithms that aim to estimate the signal’s
representations in order to apply the classification. Our
work investigates two such algorithms, the non-negative
Layered Thresholding (L-THR), which amounts to a
conventional feed-forward CNN, and the non-negative
Layered Basis-Pursuit (L-BP), which is reminiscent of
an RNN (Residual Neural Network) architecture. Our
analysis exposes the ingredients of the data model gov-
erning the sensitivity to adversarial attacks, and clearly
shows that the later pursuit (L-BP) is more robust.

The bounds obtained carry in them practical impli-
cations. More specifically, our study indicates that a
regularization that would take the dictionaries’ coher-
ence into account can potentially improve the stability
to noise. Interestingly, a regularization that aligns well
with our findings was tested empirically by Parseval
Networks [20] and indeed shown to improve the classifi-
cation stability. As such, one can consider our work as a
theoretical explanation for the empirical success of [20].
Another approach that is tightly connected to our anal-

ysis is the one reported in [27,18]. Rather than relying
on a simple L-THR, these papers suggested solving a
variant of the L-BP algorithm, in an attempt to promote
sparse feature maps. Interestingly, it was shown in [18]
that the ”fooling rate" in the presence of adversarial per-
turbation is significantly improved, serving as another
empirical evidence to our theoretical conclusions. As will
be shown in this paper, promoting sparse solutions and
incoherent dictionaries is crucial for robust networks, as
evidenced empirically in the above two papers [20,18].

We should note that this work does not deal with
the learning phase of the networks, as we assume that
we have access to the true model parameters. Put on
more practical terms, our work analyzes the sensitivity
of the chosen inference architectures to malicious noise,
by imposing assumptions on the filters/dictionaries and
the incoming signals. These architectures follow the
pursuit algorithms we explore, and their parameters are
assumed to be known, obtained after learning.

Moving to the experimental part, we start by demon-
strating the derived theorems on a toy example, in order
to better clarify the message of this work. Our simula-
tions carefully illustrate how the L-BP is more stable
to adversarial noise, when compared with the regular
feed-forward neural network (i.e., the L-THR), and this
is shown both in theoretical terms (showing the actual
bounds) and in empirical performance. In order to fur-
ther support the theoretical claims made in this paper,
we numerically explore the stability of the L-THR and
the L-BP architectures on actual data and learned net-
works. Note that in these experiments the theoretical
assumptions do not hold, as we do not have an access
to the true model. In this part we consider three com-
monly tested datasets: MNIST [15], CIFAR-10 [12] and
CIFAR-100 [12]. Our experiments show that the L-BP
is indeed more robust to noise attacks, where those are
computed using the Fast Gradient Sign Method (FGSM)
[10].

This paper is organized as follows: In Section 2 we
start by reviewing the basics of the convolutional sparse
coding model and then proceed to its multi-layered ver-
sion, which is tightly connected to CNN. Then, using
Sparseland tools we establish a connection between the
stability of the classification to adversarial noise and
the underlying structure of the signal, quantified by the
sparsity of its representation. We commence by analyz-
ing shallow networks in Section 3 and then continue to
deeper settings in Section 4. In addition, we offer similar
stability theorems for two pursuit algorithms, which are
posed as two different deep-learning architectures – the
L-THR and the L-BP. In Section 5 we numerically study
the stability of these architectures demonstrating the
theoretical results, starting with a toy example using
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simulated data, and then continuing with tests on real
data. We conclude in Section 6 by delineating further
research directions.

2 Background and problem setup

Consider a set
{
sj
}
j
=
{(

Xj , yj
)}
j
of high dimensional

signals Xj ∈ X ⊆ RN and their associated labels yj ∈ Y .
Suppose that each signal Xj = DΓj belongs to the (pos-
sibly multi-layer convolutional [21]) sparse representa-
tion model, where D is a dictionary and Γj is a sparse
vector. Suppose further that we are given a linear clas-
sifier that operates on the sparse representation Γj and
successfully discriminates between the different classes.

Ignoring the superscript j for clarity, given the input
s = (X, y) the adversary’s goal is to find an example
Y = X+E, such that the energy of E is small, and yet
the model would misclassifyY. Figure 1 depicts this clas-
sification scheme. We consider the class of `p bounded
adversaries, in the sense that for a given energy ε, the
adversarial example satisfies ‖Y −X‖p = ‖E‖p ≤ ε.

Fig. 1: The classification scheme consists of a sparse
coding block and a linear classifier. The adversarial
noise E aims to fail the classification, ŷ 6= y, while
having of the smallest possible energy.

How much perturbation E ∈ RN of bounded energy ε
can be added toX so as the measurementY = X+E will
still be assigned to the correct class? What is the effect
of the sparsity of the true representation? What is the
influence of the dictionary D on these conclusions? How
can we design a system that will be robust to noise based
on the answers to the above questions? These questions
are the scope of this paper. Before addressing these, in
this section we provide the necessary background on
several related topics.

2.1 Convolutional sparse coding

The convolutional sparse coding (CSC) model assumes
that a signal X ∈ RN can be represented as X = DΓ,
where D ∈ RN×Nm is a given convolutional dictionary
and Γ ∈ RNm is a sparse vector. The dictionary D is
composed of m local unique filters of length n, where
each of these is shifted at every possible location (see
Figure 2 left, here ignore the subscript ’1’ for clarity).

The special structure of this matrix implies that the
i-th patch xi ∈ Rn extracted from the global signal
X has an underlying shift-invariant local model [22].
Concretely, xi = ΩSiΓ, where Ω is a fixed matrix
shared by all the overlapping patches, multiplied by
the corresponding stripe vector SiΓi ∈ R(2n−1)m, where
Si ∈ R(2n−1)m×mN extracts the stripe from the global
Γ.

Building upon the local structure of this model, it
was shown in [22] that measuring the local sparsity
of Γ rather than the global one is much more infor-
mative. The notion of local sparsity is defined by the
`0,∞ pseudo-norm, expressed by ‖Γ‖S0,∞ = maxi ‖SiΓ‖0,
which counts the maximal number of non-zeros in the
stripes (and hence the superscript S) of length (2n−1)m

extracted from Γ.
In the setting of this paper, we are given a noisy

measurement of X = DΓ, formulated as Y = X + E,
where E is an `p-bounded adversarial perturbation. In
the `2 case, the pursuit problem of estimating Γ given
Y,D and the energy of E (denoted by ε) is defined as

(PE
0,∞) : min

Γ
‖Γ‖S0,∞ s.t. ‖Y −DΓ‖22 ≤ ε2. (1)

The stability of the above problem and practical algo-
rithms (Orthogonal Matching Pursuit – OMP, and Basis
Pursuit – BP) that aim to tackle it were analyzed in [22].
Under the assumption that Γ is “locally sparse enough”,
it was shown that one can obtain an estimate Γ̂ that
is close to the true sparse vector Γ in an `2-sense. The
number of non-zeros in Γ that guarantees such a stable
recovery is a function of ε and the characteristics of the
convolutional dictionary D.

Two measures that will serve us in our later analysis
are (i) the extension of the Restricted Isometry Property
(RIP) [5] to the convolutional case, termed SRIP [22],
and (ii) the mutual coherence. The SRIP of a dictio-
nary D of cardinality k is denoted by δk. It measures
how much the multiplication of a locally sparse vector
v, ‖v‖S0,∞ = k by D changes its energy (see definition 14
in [22]). A small value of δk(� 1) implies thatD behaves
almost like an orthogonal matrix, i.e. ‖Dv‖2 ≈ ‖v‖2.

The second measure that we will rely on is the mutual
coherence of a dictionary with `2 normalized columns,
which is formulated as µ(D) = maxi 6=j |dTi dj |, where
dj stands for the j-th column (atom) from D. In words,
µ(D) is the maximal inner product of two distinct atoms
extracted from D.

2.2 Multi-layer CSC

The multi-layer convolutional sparse coding (ML-CSC)
model is a natural extension of the CSC to a hierarchi-
cal decomposition. Suppose we are given a CSC signal
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Fig. 2: Left: The global convolutional system X = D1Γ1, along with the representation of the i-th patch S1,iΓ1.
Right: The second layer of the multi-layer CSC model, given by Γ1 = D2Γ2.

X = D1Γ1, where D1 ∈ RN×Nm1 is a convolutional
dictionary and Γ1 ∈ RNm1 is the (local) sparse represen-
tation of X over D1 (see Figure 2 left). The ML-CSC
pushes this structure forward by assuming that the rep-
resentation itself is structured, and can be decomposed
as Γ1 = D2Γ2, where D2 ∈ RNm1×Nm2 is another a con-
volutional dictionary, multiplied by the locally sparse
vector Γ2 ∈ RNm2 (see Figure 2 right). Notice that Γ1

has two roles, as it is the representation of X, and a
signal by itself that has a CSC structure. The second
dictionary D2 is composed of m2 local filters that skip
m1 entries at a time, where each of the filters is of
length n2m1. This results in a convolution operation in
the spatial domain of Γ1 but not across channels (Γ1

has m1 channels), as in CNN. The above construction
is summarized in the following definition (Definition 1
in [21]):

Definition 1 For a global signal X, a set of convolu-
tional dictionaries {Di}Ki=1, and a vector λ, define the
ML-CSC model as:

Γi−1 = DiΓi, ‖Γi‖S0,∞ ≤ λi ∀ 1 ≤ i ≤ K

where Γ0 = X, and the scalar λi is the i-th entry in λ.

Turning to the pursuit problem in the noisy regime,
an extension of the CSC pursuit (see Equation (1)) to
the multi-layer setting (of depth K) can be expressed
as follows:

Definition 2 (Definition 2 in [21]) For a global signal
Y, a set of convolutional dictionaries {Di}Ki=1, sparsity
levels λ and noise energy ε, the deep coding problem is
given by

(DCPE
λ ) : find {Γi}Ki=1

s.t. ‖Y −D1Γ1‖2 ≤ ε,
Γi−1 = DiΓi,

‖Γi‖S0,∞ ≤ λi, ∀ 1 ≤ i ≤ K.

How can one solve this pursuit task? The work re-
ported in [21] has shown that the forward pass of CNN
is in fact a pursuit algorithm that is able to estimate
the underlying representations Γ1, . . . , ΓK of a signal
X that belongs to the ML-CSC model. Put differently,
the forward pass was shown to be nothing but a non-
negative layered thresholding pursuit, estimating the
representations Γi of the different layers. To better see
this, let us set Γ̂0 = Y and define the classic thresholding
pursuit [6], Γ̂i = S+βi

(DT
i Γ̂i−1), for 1 ≤ i ≤ K. The term

DT
i Γ̂i−1 stands for convolving Γ̂i−1 (the feature map)

with the filters of Di (the weights), and the soft non-
negative thresholding function S+βi

(v) = max{0,v− βi}
is the same as subtracting a bias βi from v and applying
a ReLU nonlinearity. In a similar fashion, the work in
[21] offered to replace the Thresholding algorithm in
the sparse coding blocks with Basis-Pursuit, exposing
a recurrent neural network architecture that emerges
from this approach.

This connection of CNN to the pursuit of ML-CSC
signals was leveraged [21] to analyze the stability of CNN
architectures. Their analysis concentrated only on the
feature extraction stage – the pursuit – and ignored the
classification step and the role of the labels. In this paper
we build upon this connection of Sparseland to CNN,
and extend the analysis to cover the stability of layered
pursuit algorithms when tackling the classification task
in the presence of noise. In Section 4 we shall consider
a classifier consisting of a chain of sparse coding blocks
and a linear classifier at its deepest layer, as depicted in
Figure 3. Our work aims to analyze the stability of such a
scheme, suggesting that replacing the pursuit algorithm
in the sparse coding blocks from Thresholding to Basis-
Pursuit yields a more stable architecture with respect
to adversarial noise, both theoretically and practically.

More specifically, we first study the stability to ad-
versarial noise of the feed-forward CNN classifier. Or
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Fig. 3: A deep classification scheme consisting of a chain
of sparse coding blocks and a linear classifier.

equivalently, where each of the pursuit algorithms in
Figure 3 is chosen to be the Thresholding. This archi-
tecture is depicted in Figure 4a. Then we switch to
the Basis-Pursuit as the sparse coding, serving better
the sparse model, and resulting a new deep-learning
architecture with the same number of parameters but
with additional feedback loops as illustrated in Figure1

4b. We now give more formal definitions of these two
schemes.

Definition 3 (L-THR) For an ML-CSC signal Y =

X+E with convolutional dictionaries {Di}Ki=1, thresh-
olds {βi}Ki=1, and a classifier (w, ω), define the Layered-
Thresholding (L-THR) algorithm as: Apply

Γ̂i = S+βi
(DT

i Γ̂i−1) for i = 1, 2, . . . ,K,

and assign y = sign
(
f(Γ̂K)

)
, where

f(Γ̂K) = wT Γ̂K + ω.

Definition 4 (L-BP) For an ML-CSC signal Y = X+

E with convolutional dictionaries {Di}Ki=1, Lagrangian
multipliers {εi}Ki=1, and a classifier (w, ω), define the
Layered-Basis-Pursuit (L-BP) algorithm as: Apply

Γ̂i = argmin
Γi

ξi‖Γi‖1 +
1

2
‖DiΓi − Γ̂i−1‖22

for i = 1, 2, . . . ,K,

and assign y = sign
(
f(Γ̂K)

)
, where

f(Γ̂K) = wT Γ̂K + ω.

3 First steps: shallow sparsity

3.1 Two-class (binary) setting

Herein we consider the a binary classification setting
(i.e. Y = {1,−1}) in which a linear classifier is given
to us, being part of the generative model. This classifier
is defined by the couple (w, ω), where w ∈ RNm is
a weight vector and ω is a bias term (a scalar). Put
formally, the model we shall study in this subsection is
given by the definition below.

1 Note that in this scheme, the number of iterations for each
BP pursuit stage is implicit, hidden by the number of loops
to apply. More on this is given in later sections.

Definition 5 A convolutional Sparseland signal X =

DΓ, ‖Γ‖S0,∞ ≤ k is said to belong to class y = 1 when the
linear discriminant function f (Γ) = wTΓ + ω satisfies
f(Γ) > 0, and y = −1 otherwise.

The expression wTΓ + ω defines a linear discriminant
function for which the decision surface f(Γ′) = 0 is
a hyperplane in the feature domain (but not in the
signal domain), where Γ′ is a point that lies on the
decision boundary. As such, one can express the distance
from the decision boundary in the feature domain as
OB(X, y) = yf(Γ) = y

(
wTΓ + ω

)
, where the subscript

B stands for Binary. Notice that the larger the value
of OB(X, y), the larger the distance to the decision
boundary, as it is defined by OB(X′, y) = 0. Following
this rational, OB(X, y) is often termed the score or the
output margin. The measure OB(X, y) is X-dependent,
and thus we have an interest in its extreme value,

O∗B = min
{Xj ,yj}j

OB(Xj , yj),

being a property of our data and the classifier’s parame-
ters, making our claims universal and not signal-specific.
As will be shown hereafter, classification robustness is
directly related to this quantity. Moreover, we emphasize
that there are two margins involved in our analysis: (i)
the above-described input data margin, which cannot be
controlled by any learning scheme, and (ii) the margin
that a classifier obtains when operating on a perturbed
input signal, resulting in the evaluated representation Γ̂.
The results in this work rely on these two measures, as
we aim to make sure that the former margin is not dimin-
ished by the practical classifier design or the adversarial
noise.

This takes us naturally to the adversarial setting.
The problem we consider is defined as follows:

Definition 6 For a signal Y = X+E with a true label
y, a convolutional dictionary D, a perturbation energy
ε, and a classifier (w, ω), define the binary classification
algorithm as:

Solve Γ̂ = argmin
Γ
‖Γ‖S0,∞

s.t. ‖Y −DΓ‖2 ≤ ε

and assign ŷ = sign
(
f(Γ̂)

)
where f(Γ̂) = wT Γ̂ + ω.

Notice that the signal is assigned to the correct class
if sign(f(Y)) = y, or, equivalently when OB(Y, y) =
yf(Y) = y(wT Γ̂ +ω) > 0. In words, the pursuit/sparse-
coding step projects the perturbed signal Y onto the
model by estimating the representation Γ̂, which in
turn is fed to a classifier as formulated by f(Y). In the
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(a) The Layered-Thresholding classifier (L-THR), corresponding to a CNN - a feed-forward convolutional neural network.

(b) The Layered-Basis-Pursuit classifier (L-BP), corresponding to a CNN with additional feedback loops.

Fig. 4: The deep classifier architectures considered in this work.

remaining of this paper we shall study the conditions
on X,D and ε which guarantee that OB(Y, y) > 0,
i.e., the input signal Y will be assigned to the correct
class despite of the adversarial perturbation and the
limitations of a specific pursuit algorithm. The model
assumptions that we are considering allow us to reveal
the underlying characteristics of the signal (e.g. the
properties of the dictionary and the sparsity level) that
are crucial for a successful prediction. Put differently,
we aim to reveal the ingredients that one should consider
when designing a robust classification system. Notice
that we concentrate on the inference stage only and do
not analyze the learning part. In fact, similarly to [8],
we see this as an advantage since it keeps the generality
of our findings.

Let us start our discussion by first studying the
stability of the binary classification algorithm to noise:

Theorem 7 (Stable Binary Classification of the CSC
Model): Suppose we are given a CSC signal X = DΓ,
‖Γ‖S0,∞ ≤ k, contaminated with perturbation E to create
the signal Y = X + E, such that ‖E‖2 ≤ ε. Suppose
further that O∗B > 0 and denote by Γ̂ the solution of
the PE

0,∞ problem (see Equation (1)). Assuming that

δ2k < 1−
(

2‖w‖2ε
O∗B

)2
, then sign(f(Γ)) = sign(f(Γ̂)).

Considering the more conservative bound that relies
on µ(D), and assuming that

‖Γ‖S0,∞ < k =
1

2

(
1 +

1

µ(D)

[
1−

(
2‖w‖2ε
O∗B

)2
])

,

then sign(f(Γ)) = sign(f(Γ̂)).

The proof of this theorem and the remaining ones are
given in the Appendix. Among various implications, the
above theorem shows the effect ofD and its properties on
the stability of the classifier. A dictionary with δ2k � 1

tends to preserve the distance between any pair of locally
k-sparse vectors (defined by the `0,∞ norm), which turns
to be crucial for robust classification. The benefit of
switching from the SRIP to µ(D) is that the latter
is trivial to compute, but with the cost of weakening

the result. The expected and somewhat unsurprising
conclusion of Theorem 7 is that the score of the classifier
plays a key role for a stable classification – the larger the
distance to the decision boundary in the feature space
the more robust the classifier is to noise. This stands in
a line with the conclusion of [8]. Another alignment with
previous work (e.g. [3,23]) is the effect of the norm of w.
Notice that in the proposed theorem, ‖w‖2 is multiplied
by the noise energy ε and both have a negative effect on
the stability. As a result, one should promote a weight
vector of low energy (this is often controlled via a weight
decay regularization) as it is capable of increasing the
robustness of the sparsity-inspired classification model
to noise.

The added value of Sparseland is that a “well be-
haved" dictionary, having a small SRIP constant or low
mutual coherence, is the key for stable recovery, which,
in turn, would increase the robustness of the classier.
Interestingly, implied from the proof of the obtained
results is the fact that a successful classification can be
achieved without recovering the true support (i.e., the
locations of non-zeros in Γ). This might be counter in-
tuitive, as the support defines the subspace that the
signal belongs to. That is, even if the noise in Y leads
to an estimation Γ̂ that belongs to slightly different
subspace than the one of X, the input signal could be
still classified correctly as long as the dimension of the
subspace that it belongs to is small enough (the sparsity
constraint).

Our results and perspective on the problem are very
different from previous work that studies the robustness
to adversarial noise. Fawzi et al. [8] suggested a measure
for the difficulty of the classification task, where in the
linear setting this is defined as the distance between the
means of the two classes. Our results differ from these
as we heavily rely on a generative model, and so are
capable of linking the intrinsic properties of the signal
– its sparsity and filters’ design – to the success of the
classification task. This enables us to suggest ways to
increase the desired robustness.
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A recent work [7] relies on a generative model (similar
to ours) that transforms normally-distributed random
representation to the signal domain. Their goal was to
prove that there exists an upper bound on the robustness
that no classifier can exceed. Still, the authors of [7]
did not study the effect of the filters nor the network’s
depth (or the sparsity). Their analysis is very different
from ours as we put an emphasis on the stability of
sparsity-inspired model and its properties.

As already mentioned, the margin of the data has
an impact on the stability as well. Denoting by X′ a
point on the boundary decision, the work reported in
[23] connected the input margin, given by ‖X′−X‖2, to
the output distance ‖f(Γ′)− f(Γ)‖2 = ‖f(Γ)‖2 through
the Jacobian of the classifier f(·). This connection is of
importance as the input margin is directly related to
the generalization error. In the scope of this paper, the
distance between the signal and its cleaned version in
the input space is nothing but the energy of the noise
perturbation ‖X − Y‖2 = ε. This, in turn, is linked
to the score of the classifier distance ‖f(Γ̂)− f(Γ)‖2 =

‖wT Γ̂ −wTΓ‖2 ≤ ‖w‖2‖Γ̂ − Γ‖2 (refer to the proof of
Theorem 7 for more details).

We should clarify the term stability used in this sec-
tion: This refers to any solver of the pursuit task that
satisfies the following two constraints (i) ‖DΓ−Y‖2 ≤ ε,
and (ii) ‖Γ‖S0,∞ = k. Later on we shall refer to actual
pursuit methods and extend this result further. Con-
cretely, suppose we run the Thresholding pursuit (or
the BP) to estimate the representation Γ̂ of a given Y.
Then, we feed the obtained sparse vector to our linear
classifier and hope to assign the input signal to its true
label, despite the existence of the adversarial pertur-
bation. Can we guarantee a successful classification in
such cases? While this question can be addressed in the
CSC case, we shall study the more general multi-layer
model. Before doing so, however, we expand the above
to the multi-class setting.

3.2 Multi-class setting

In order to provide a complete picture on the factors
that affect the stability of the classification procedure,
we turn to study multi-class linear classifiers. Formally,
the discriminant function is described by the following
definition:

Definition 8 A CSC signal X = DΓ, ‖Γ‖S0,∞ ≤ k, is
said to belong to class y = u if the linear discriminant
function satisfies ∀v 6= u fu (Γ) = wT

u Γ +ωu > wT
v Γ +

ωv = fv(Γ), where u stands for the index of the true
class, and v is in the range of [1, L]\v.

Analogously to the binary case, the decision bound-
ary between class u and v is given by fu(Γ′) = fv(Γ

′).
Therefore, we formalize the distance to the decision
boundary of the class y = u in the feature space as
OM(X, y) = minv:v 6=u fu (Γ)− fv (Γ) , which measures
the distance between the classification result of the u-
classifier to the rest L − 1 ones for a given point X.
Similarly to the binary setting, we obtain the minimal
distance over all the classes and examples by

O∗M = min
{Xj ,yj}j

OM(Xj , yj),

where we assume that OM(Xj , yj) > 0. Notice that this
assumption aligns with the practice, as the common
setting in CNN-based classification assumes that a per-
fect fit of the data during training is possible. Another
measure that will be found useful for our analysis is the
distance between the weight vectors. Put formally, we
define the multi-class weight matrix W of size mN × L
as W = [w1;w2; · · · ;wL] , which stores the weight vec-
tors as its columns. The following measure quantifies
the mutual Euclidean distance between the classifiers,
given by

φ(W) = max
u6=v

‖wu −wv‖2.

The analogous of this measure in the the binary classifi-
cation, when L = 2, is the norm of the classifier being
‖w‖2, as in this case one can define w1 = −w2 = 1

2w.

Theorem 9 (Stable Multi-Class Classification of the
CSC Model): Suppose we are given a CSC signal X =

DΓ, ‖Γ‖S0,∞ ≤ k, contaminated with perturbation E

to create the signal Y = X + E, such that ‖E‖2 ≤ ε.
Suppose further that fu(Γ) = wT

u Γ+ωu correctly assigns
X to class y = u. Suppose further that O∗M > 0, and
denote by Γ̂ the solution of the PE

0,∞ problem. Assuming

that δ2k < 1 −
(

2φ(W)ε
O∗M

)2
, then Y will be assigned to

the correct class.
Considering the more conservative bound that relies

on µ(D) and assuming that

‖Γ‖S0,∞ < k =
1

2

(
1 +

1

µ(D)

[
1−

(
2φ(W)ε

O∗M

)2
])

,

then Y will be classified correctly.

As one might predict, the same ingredients as in
Theorem 7 (coherence of D or its SRIP) play a key role
here as well. Moreover, in the two-class setting φ(W) =

‖w‖2, and so the two theorems align. The difference
becomes apparent for L > 2, when the mutual Euclidean
distance between the different classifiers influences the
robustness of the system to noise. In the context of



8 Yaniv Romano∗ et al.

multi class support vector machine, it was shown [4]
that the separation margin between the classes u and v is
2/‖wu−wv‖2. This observation motivated the authors of
[4] to minimize the distance ‖wu−wv‖2,∀u 6= v during
the training phase. Interestingly, this quantity serves
our bound as well. Notice that our theorem also reveals
the effect of the number of classes on the robustness.
Since φ(W) measures the maximal distance between
the L weight vectors, it is a monotonically increasing
function of L and thereby stiffening our conditions for a
successful classification. This phenomenon was observed
in practice, indicating that it is easier to “fool” the
classifier when the number of classes is large, compared
to a binary setting [7].

4 Robustness bounds for CNN

We now turn to extend the above results to a multi-
layer setting, and this way shed light on the stability of
classic CNN architectures. For simplicity we return to
the binary setting, as we have seen that the treatment
of multiple classes has a similar analysis. We commence
by defining the model we aim to analyze in this part:

Definition 10 An ML-CSC signal X (see definition 1)
is said to belong to class y = 1 when the linear discrimi-
nant function f (X) = wTΓK + ω satisfies f(ΓK) > 0,
and y = −1 otherwise.

Notice that the classifier operates on the representation
of the last layer, and so the definition of the signal-
dependent score OB(X, y) and the universal O∗B are
similar to the ones defined in Section 3.1. We now turn
to the noisy regime, where the adversarial perturbation
kicks in:

Definition 11 For a corrupted ML-CSC signal Y =

X + E with a true label y, convolutional dictionaries
{Di}Ki=1, a perturbation energy ε, sparsity levels λ, and
a classifier (w, ω), define the multi-layer binary classifi-
cation algorithm as:

find {Γ̂}Ki=1 by solving the DCPE
λ problem;

and assign y = sign
(
f(Γ̂K)

)
,

where f(Γ̂K) = wT Γ̂K + ω.

Above, an accurate classification is achieved when
sign(f(Γ̂K)) = sign (f(ΓK)). The stability of the multi-
layer binary classification algorithm can be analyzed
by extending the results of [21] as presented in Section
2. Therefore, rather than analyzing the properties of
the problem, in this section we concentrate on specific
algorithms that serve the ML-CSC model – the L-THR
algorithm (i.e. the forward pass of CNN), and its L-BP

counterpart. To this end, differently from the previous
theorems that we presented, we will assume that the
noise is locally bounded (rather than globally2) as sug-
gested in [21]. Put formally, we use the `2,∞-norm to
measure the energy of the noise in a vector E, denoted
by ‖E‖P2,∞, which is defined to be the maximal energy
of a n1-dimensional patch extracted from it.

Theorem 12 (Stable Binary Classification of the L-
THR): Suppose we are given an ML-CSC signal X

contaminated with perturbation E to create the signal
Y = X+ E, such that ‖E‖P2,∞ ≤ ε0. Denote by |Γmin

i |
and |Γmax

i | the lowest and highest entries in absolute
value in the vector Γi, respectively. Suppose further that
O∗B > 0 and let {Γ̂i}Ki=1 be the set of solutions obtained
by running the layered soft thresholding algorithm with
thresholds {βi}Ki=1, i.e. Γ̂i = Sβi

(DT
i Γ̂i−1) where Sβi

is
the soft thresholding operator and Γ̂0 = Y. Assuming
that ∀ 1 ≤ i ≤ K

a) ‖Γi‖S0,∞ < 1
2

(
1 + 1

µ(Di)
|Γmin

i |
|Γmax

i |

)
− 1

µ(Di)
εi−1

|Γmax
i | ;

b) The threshold βi is chosen according to

|Γmin
i | − Ci − εi−1 > βi

> ‖Γi‖S0,∞µ(Di)|Γmax
i |+ εi−1,

where

Ci = (‖Γi‖S0,∞ − 1)µ(Di)|Γmax
i |,

εi =
√
‖Γi‖P0,∞

(
εi−1 + Ci + βi

)
;

and
c) O∗B > ‖w‖2

√
‖ΓK‖0

(
εK−1 + CK + βK

)
,

then sign(f(Γ̂K)) = sign(f(ΓK)).

Some of the ingredients of the above theorem are simi-
lar to the previous results, but there are several major
differences. First, while the discussion in Section 3 con-
centrated on the stability of the problem, here we get
that the forward pass is an algorithm that is capable
of recovering the true support of the representations
Γi. Still, this perfect recovery does not guarantee a suc-
cessful classification, as the error in the deepest layer
should be smaller than O∗B. Second, the forward pass is
sensitive to the contrast of the non-zero coefficients in Γi
(refer to the ratio |Γmin

i |/|Γmax
i |), which is a well known

limitation of the thresholding algorithm [6]. Third, we
see that without a careful regularization (e.g. promoting
the coherence to be small) the noise can be easily ampli-
fied throughout the layers (εi increases as a function of
i). Practitioners refer to this as the error amplification
effect [16].

2 Locally bounded noise results exist for the CSC as well
[22], and can be leveraged in a similar fashion.
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In fact, a similar regularization force is used in Par-
seval Networks [20] to increase the robustness of CNN
to adversarial perturbations. These promote the con-
volutional layers to be (approximately) Parseval tight
frames, which are extensions of orthogonal matrices to
the non-square case. Specifically, the authors in [20]
suggested to promote the spectral norm of the weight
matrix DT

i to be close to 1, i.e. ‖DiD
T
i − I‖22, where I

is the identity matrix. This regularization encourages
the average coherence of Di to be small. As our anal-
ysis suggests, it was shown that such a regularization
significantly improves the robustness of various models
to adversarial examples.

Suppose that our data emerges from the ML-CSC
model, can we offer an alternative architecture that is
inherently better in handling adversarial perturbations?
The answer is positive and is given in the form of the
L-BP that was suggested and analyzed in [21]. Consider
an ML-CSC model of depth two, the LBP algorithm
suggests estimating Γ1 and Γ2 by solving a cascade of
basis pursuit problems. The first stage of this method
provides an estimate for Γ1 by minimizing

Γ̂1 = argmin
Γ1

‖Y −D1Γ1‖22 + ξ1‖Γ1‖1.

Then, an approximation for the deeper representation
Γ2 is given by

Γ̂2 = argmin
Γ2

‖Γ̂1 −D2Γ2‖22 + ξ2‖Γ2‖1.

Finally, the recovered Γ̂2 is fed into a classifier, resulting
in the predicted label.

In what follows we build upon the analysis in [21] and
show how our theory aligns with the increased stability
that was empirically observed by replacing the L-THR
algorithm with the L-BP [18]:

Theorem 13 (Stable Binary Classification of the L-
BP): Suppose we are given an ML-CSC signal X that
is contaminated with noise E to create the signal Y =

X + E, such that ‖E‖P2,∞ ≤ ε0. Suppose further that
O∗B > 0, and let {Γ̂i}Ki=1 be the set of solutions obtained
by running the L-BP algorithm with parameters {ξi}Ki=1,
formulated as Γ̂i = argmin

Γi

ξi‖Γi‖1 + 1
2‖DiΓi − Γ̂i−1‖22,

where Γ̂0 = Y. Assuming that ∀ 1 ≤ i ≤ K,

a) ‖Γi‖S0,∞ ≤ 1
3

(
1 + 1

µ(Di)

)
;

b) ξi = 4εi−1,
where εi = ‖E‖P2,∞ · 7.5i

∏i
j=1

√
‖Γj‖P0,∞;

and
c) O∗B > 7.5‖w‖2

√
‖ΓK‖0 εK ,

then sign(f(Γ̂K)) = sign(f(ΓK)).

The proof can be derived by relying on the steps of Theo-
rem 12, combined with Theorem 12 from [21]. Note that
the conditions for the stable classification of the L-BP
are not influenced by the ratio |Γmin

i |/|Γ
max
i |. Moreover,

the condition on the cardinality of the representations
in the L-BP case is less strict than the one of the L-
THR. As such, while the computational complexity of
the BP algorithm is higher than the thresholding one,
the former is expected to be more stable than the latter.
This theoretical statement is supported in practice [18].
Note that both methods suffer from a similar problem –
the noise is propagated thorough the layers. A possible
future direction to alleviate this effect could be to har-
ness the projection (onto the ML-CSC model) algorithm
[25], whose bound is not cumulative across the layers.

5 Numerical experiments

Our study of the stability to bounded noise, in particu-
lar Theorems 12 and 13, introduces a better guarantee
for the L-BP, when compared to the well-known L-THR
architecture (=CNN). In this section, we aim to numer-
ically corroborate these findings by exploring the actual
robustness to adversarial noise of these two architectures.
We achieve this by introducing two sets of experiments:
(i) We start with a toy example using synthetically gen-
erated data, and show the actual behavior of the L-THR
and the L-BP versus their theoretical bounds; and (ii)
We proceed by testing these two architectures and ex-
ploring their robustness to adversarial noise on actual
data, exposing the superiority of the L-BP.

As described in [21,1,24] and depicted in Figure 4b,
the L-BP is implemented by unfolding the projected
gradient steps of the iterative thresholding algorithm. By
setting the number of unfolding iterations to zero, the L-
BP becomes equivalent to the L-THR architecture. Note
that both pursuit methods contain the same number of
filters, and those are of the same dimensions. Therefore,
the same number of free parameters govern both their
computational paths. Nonetheless, more unfoldings in
the L-BP lead to a higher computational complexity
when compared to L-THR.

5.1 Synthetic experiments

We start our experimental section with a toy example
using synthetically generated data, where we have com-
plete access to the generative model and its parameters.
This allows us to (i) Compute the theoretical bounds
on the permitted noise; and (ii) Compare these predic-
tions with an evaluation of the practical behavior. Our
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emphasis in this part is on the single layer Threshold-
ing and Basis-Pursuit classifiers, as synthesizing signals
from the multi-layered model is far more challenging.
Our goal is to show the differences between the the-
oretical bounds and the measured empirical stability.
For completeness, we include experiments with both
an undercomplete (having less atoms than the signal
dimension) and overcomplete (where the dictionary is
redundant) dictionaries.

As already mentioned, we consider the bounds from
Theorems 12 and 13 with K = 1, corresponding to a
one hidden layer neural network with a non convolu-
tional (fully connected) dictionary. The two following
corollaries describe the bounds of the L-THR and the
L-BP in such simplified case.

Corollary 1 (Stability of one hidden layer L-THR)
Suppose that Y = DΓ + E, where D is a general dic-
tionary with normalized atoms, ‖E‖2 ≤ ε, and (w, ω) is
the linear classifier. Suppose also that

‖Γ‖0 ≤
1

2

(
1 +
|Γmin|
|Γmax|

1

µ(D)

)
− ε

µ(D) |Γmax|
,

and that the threshold β set to satisfy:

‖Γ‖0 µ(D) |Γmax|+ ε < β <

|Γmin| − (‖Γ‖0 − 1)µ(D) |Γmax| − ε.

Then, the support of Γ̂
THR

is contained in the support
of Γ, and∥∥∥Γ̂THR

− Γ
∥∥∥
2
≤
√
‖Γ‖0 (ε+ (‖Γ‖0 − 1)µ(D) |Γmax|+ β) .

Therefore, as long as

ε <
OB√
‖Γ‖0‖w‖2

− (‖Γ‖0 − 1)µ(D) |Γmax| − β, (2)

the classification is accurate, i.e., sign(f(Γ̂
THR

)) =

sign(f(Γ)).

Corollary 2 (Stability of one hidden layer L-BP)
Suppose that Y = DΓ +E, where D is a general dictio-
nary with normalized atoms, ‖E‖2 ≤ ε, and (w, ω) is a
linear classifier. Suppose also that ‖Γ‖0 ≤

1
3

(
1 + 1

µ(D)

)
,

and that the Lagrangian multiplier is set to ξ = 4ε. Then,
the support of Γ̂

BP
is contained in the support of Γ, and∥∥∥Γ̂BP

− Γ
∥∥∥
2
≤ 7.5ε. Therefore, as long as

ε <
OB

7.5 ‖Γ‖0 ‖w‖2
, (3)

the classification is accurate, i.e., sign(f(Γ̂
BP

)) =

sign(f(Γ)).

(a) Simulation with an undercomplete dictionary.

(b) Simulation with an overcomplete dictionary.

Fig. 5: Accuracy of the THR and the BP versus adversar-
ial noise level, computed on synthetic data. Dashed lines:
theoretical bounds; solid lines: empirical performance.

Figure 5 presents the theoretical bounds on the ad-
versarial noise amplitude ε for the Thresholding (Equa-
tion (2)) and the Basis-Pursuit (Equation (3)) classi-
fiers in dash lines. It also shows the empirical stabil-
ity to adversarial noise under the FGSM (Fast Gradi-
ent Sign Method) attack [10]. In these simulations we
generate a random normalized and unbiased (ω = 0)
classifier w, and a random dictionary with normalized
atoms and with a low mutual-coherence. Then, we ran-
domly produce sparse representations with four nonze-
ros in the range

[
|Γmin|, |Γmax|

]
= [1, 2]. In order to

create a margin OB of 1, we project Γ on the clas-
sifier w and keep only the representations satisfying∣∣wTΓ

∣∣ ≥ OB = 1. Figure 5a presents the undercomplete
case with D ∈ R100×40. One can draw three important
conclusions from this result: 1) The theoretical stability
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bound for the BP is better than the THR one; 2) the
empirical performance of the BP and THR align with
the theoretical predictions; and 3) the bounds are not
tight due to the worst-case assumptions used in our
work. Note that in this experiment the performance of
the two methods is quite close – this is due to very low
mutual-coherence of the chosen dictionary.

This motivates the next experiment, in which we
examine a more challenging setting that relies on an
overcomplete dictionary. Figure 5b demonstrates this
case with D ∈ R100×150 and with representations having
the same properties as before. In this case, the Thresh-
olding bound collapses to zero as the mutual coherence
is too high, and as can be seen, the practical differ-
ence between the THR and the BP classifiers becomes
apparent.

5.2 Real data experiments

The goal of the following set of experiments is to show
that moving from the traditional feed-forward network
(i.e., L-THR) to L-BP can potentially improve stability,
not only for simulated data (where the dictionaries and
the signals are generated exactly to meet the theorem
conditions), but also for real data such as MNIST and
CIFAR images. Note that one could wonder whether
these images we are about to work with belong to the
(possibly multi-layered) sparse representation model.
Our approach for answering this question is to impose
the model on the data and see how the eventual pursuit
(such as the forward-pass) performs. This line of rea-
soning stands behind many papers that took the sparse
representation model (or any of its many variants) and
deployed it to true data in order to address various
applications.

The networks we are about to experiment with are
obtained as unfoldings of the L-THR (Figure 4a) and the
L-BP (Figure 4b) pursuit algorithms, and each is trained
in a supervised fashion using back-propagation for best
classification performance. Our tested architectures are
relatively simple and use a small number of parameters
in order to isolate the effect of their differences [24,2].

Ideally, in order to demonstrate Theorems 12 and
13, one should require that the same set of dictionaries
is used by the two architectures, in a way that fits our
multi-layered model assumptions. However, such setup
leads to various difficulties. First, as obtaining these
dictionaries calls for training, we should decide on the
loss to use. Trained for representation error, these archi-
tectures would lead to inferior classification performance
that would render our conclusions irrelevant. The alter-
native of training for classification accuracy would lead
to two very different sets of dictionaries, violating the

above desire. In addition, as we know from the analysis
in [11], the learned dictionaries are strongly effected by
the finite and small number of unfoldings of the pursuit.
In the experiments we report hereafter we chose to let
each architecture (e.g. pursuit) to learn the best set of
dictionaries for its classification result.

Given the two pre-trained networks, our experiments
evaluate the stability by designing noise attacks using
the Fast Gradient Sign Method (FGSM) [10] with an
increasing amplitude ε. We preform this evaluation on
three popular datasets – MNIST [15], CIFAR-10 [12] and
CIFAR-100 [12]. For the MNIST case, we construct an
ML-CSC model composed of 3 convolutional layers with
64, 128 and 512 filters, respectively, and kernel sizes of
6×6, 6×6 and 4×4, respectively, with stride of 2 in the
first two layers. In addition, the output of the ML-CSC
model is followed by a fully-connected layer producing
the final estimate. Training is done with the Stochastic
Gradient Descent (SGD), with a mini-batch size of 64
samples, learning rate of 0.005 and a momentum weight
of 0.9. We decrease the learning rate ten-fold every 30
epochs.

For CIFAR-10 and CIFAR-100 we define an ML-CSC
model as having 3 convolutional layers with 32, 64 and
128 filters, respectively, and kernel sizes of 4 × 4 with
stride of 2. In addition, we used a classifier function
as a CNN with 4 layers where the first 3 layers are
convolutional and the last layer is fully-connected. This
effectively results in a 7 layers architecture, out of which
the first three are unfolded in the context of the L-BP
scheme. As before, all models are trained with SGD and
with a decreasing learning rate.

Figure 6 presents the results for the two architectures
and the three datasets. It is clear that the L-BP scheme is
consistently more robust to adversarial interference. This
evidence is in agreement with the theoretical results we
introduced earlier, suggesting that the L-THR is more
sensitive to bounded noise. We note again, however,
that the theoretical guarantees presented earlier are
not fully applicable here as the dictionaries of each
model are different and as some of the assumptions are
violated. For example, the minimal distance between
classes O∗M is not guaranteed to be nontrivial in real
images scenario. However, these experiments do support
our earlier analysis about the superiority of the L-BP
to handle noise attacks.

6 Conclusions

This paper presents a general theory for the classifica-
tion robustness when handling sparsity-modeled signals.
In the context of CSC, we studied the stability of the
classification problem to adversarial perturbations both
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(a)

(b)

(c)

Fig. 6: Comparison of Layered Thresholding (L-THR)
and Layered Basis Pursuit (L-BP) schemes under FGSM
attack on (a) MNIST, (b) CIFAR-10 and (c) CIFAR-100
datasets.

for the binary- and multi-class settings. Then, we ana-
lyzed the stability of a classifier that operates on signals
that belong to the ML-CSC model, which was recently
shown to be tightly connected to CNN. This leads to a
novel analysis of the sensitivity of the classic forward
pass algorithm to adversarial perturbations and ways
to mitigate its vulnerability (which was empirically val-
idated in [20]). Next, we showed that by relying on
the BP algorithm, one can theoretically improve the
robustness to such perturbations, a phenomenon that
was observed in practice [18].

The bounds obtained are all referring to the case
where the dictionaries {Di}Ki=1 and the classification
weights {(wu, ωu)}Lu=1 are perfectly known, and thus
learning is not covered by this theory. As such, the
margin for making an error in our work considers only
two prime forces. First, the separability of the data, as
manifested by O∗B (or O∗M). Second, the chance that
our estimated Γ deviates from its true value. This can
happen due to noise in the input (getting Y instead of
X), and/or limitation of the pursuit algorithm. Further
work is required in order to bring into account distortions
in Γ caused by an imperfect estimate of D’s and w’s –
this way considering the learning phase as well.

A Proof of Theorem 5: stable binary
classification of the CSC model

Theorem 5 (Stable Binary Classification of the CSC
Model): Suppose we are given a CSC signal X, ‖Γ‖S0,∞ ≤
k, contaminated with perturbation E to create the sig-
nal Y = X + E, such that ‖E‖2 ≤ ε. Suppose fur-
ther that O∗B > 0 and denote by Γ̂ the solution of the

PE
0,∞ problem. Assuming that δ2k < 1−

(
2‖w‖2ε
O∗B

)2
, then

sign(f(X)) = sign(f(Y)).
Considering the more conservative bound that relies

on µ(D), and assuming that

‖Γ‖S0,∞ < k =
1

2

(
1 +

1

µ(D)

[
1−

(
2‖w‖2ε
O∗B

)2
])

,

then sign(f(X)) = sign(f(Y)).

Proof Without loss of generality, consider the case where
wTΓ + ω > 0, i.e. the original signal X is assigned to
class y = 1. Our goal is to show that wT Γ̂ + ω > 0. We
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start by manipulating the latter expression as follows:

wT Γ̂ + ω = wT
(
Γ + Γ̂ − Γ

)
+ ω

=
(
wTΓ + ω

)
+wT

(
Γ̂ − Γ

)
≥
(
wTΓ + ω

)
−
∣∣∣wT

(
Γ̂ − Γ

)∣∣∣
≥
(
wTΓ + ω

)
−
∥∥wT

∥∥
2

∥∥∥Γ̂ − Γ
∥∥∥
2
, (4)

where the first inequality relies on the relation a+ b ≥
a − |b| for a > 0, and the last derivation leans on the
Cauchy-Schwarz inequality. Using the SRIP [22] and the
fact that both ‖Y −DΓ‖2 ≤ ε and ‖Y −DΓ̂‖2 ≤ ε, we
get

(1− δ2k)‖Γ̂ − Γ‖22 ≤ ‖DΓ̂ −DΓ‖22 ≤ 4ε2.

Thus,

‖Γ̂ − Γ‖22 ≤
4ε2

1− δ2k
.

Combining the above with Equation (4) leads to (recall
that y = 1):

OB(Y, y) = wT Γ̂ + ω ≥ wTΓ + ω − ‖w‖2
2ε√

1− δ2k
.

Using the definition of the score of our classifier, satis-
fying

0 < OB(X, y) = wTΓ + ω

we get

OB(Y, y) ≥ OB(X, y)− ‖w‖2
2ε√

1− δ2k
.

We are now after the condition for OB(Y, y) > 0, and
so we require:

0 < OB(X, y)− ‖w‖2
2ε√

1− δ2k

≤ O∗B − ‖w‖2
2ε√

1− δ2k
.

where we relied on the fact that OB(X, y) ≥ O∗B. The
above inequality leads to

δ2k < 1−
(
2‖w‖2ε
O∗B

)2

. (5)

Next we turn to develop the condition that relies
on µ(D). We shall use the relation between the SRIP
and the mutual coherence [22], given by δ2k ≥ (2k −
1)µ(D) for all k < 1

2

(
1 + 1

µ(D)

)
. Plugging this bound

into Equation (5) results in

0 < O∗B −
2‖w‖2ε√

1− (2k − 1)µ(D)
,

which completes our proof.

B Proof of Theorem 7: stable multi-class
classification of the CSC model

Theorem 7 (Stable Multi-Class Classification of the
CSC Model): Suppose we are given a CSC signal X,
‖Γ‖S0,∞ ≤ k, contaminated with perturbation E to create
the signal Y = X + E, such that ‖E‖2 ≤ ε. Suppose
further that fu(X) = wT

u Γ + ωu correctly assigns X to
class y = u. Suppose further that O∗M > 0, and denote
by Γ̂ the solution of the PE

0 problem. Assuming that

δ2k < 1 −
(

2φ(W)ε
O∗M

)2
, then Y will be assigned to the

correct class.
Considering the more conservative bound that relies

on µ(D) and assuming that

‖Γ‖S0,∞ < k =
1

2

(
1 +

1

µ(D)

[
1−

(
2φ(W)ε

O∗M

)2
])

,

then Y will be assigned to the correct class.

Proof Given that fu(Γ) = wT
u Γ + ωu > fv(Γ) = wT

v Γ +

ωv for all v 6= u, i.e. X belongs to class y = u, we shall
prove that fu(Γ̂) > fv(Γ̂) for all v 6= u. Denoting ∆ =

Γ̂−Γ, we bound from below the difference fu(Γ̂)−fv(Γ̂)
as follows:[
wT
u Γ̂ + ωu

]
−
[
wT
v Γ̂ + ωv

]
=
[
wT
u (Γ +∆) + ωu

]
−
[
wT
v (Γ +∆) + ωv

]
=
[
wT
u Γ + ωu

]
−
[
wT
v Γ + ωv

]
+
(
wT
u −wT

v

)
∆

≥ fu(Γ)− fv(Γ)−
∣∣(wT

u −wT
v

)
∆
∣∣

≥ fu(Γ)− fv(Γ)− ‖wT
u −wT

v ‖2‖∆‖2.

(6)

Similarly to the proof of Theorem 7, the first inequality
holds since a + b ≥ a − |b| for a = fu(Γ) − fv(Γ) > 0,
and the last inequality relies on the Cauchy-Schwarz
formula. Relying on φ(W) that satisfies

φ(W) ≥ ‖wu −wv‖2,

and plugging ‖∆‖22 ≤ 4ε2

1−δ2k into Equation (6) we get

fu(Γ̂)− fv(Γ̂) ≥ fu(Γ)− fv(Γ)− φ(W)
2ε√

1− δ2k

≥ OM(X, y)− φ(W)
2ε√

1− δ2k

≥ O∗M − φ(W)
2ε√

1− δ2k
,

where the second to last inequality holds since fu(Γ)−
fv(Γ) ≥ OM(X, y), and the last inequality follows the
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definition of O∗M. As such, we shall seek for the following
inequality to hold:

0 < O∗M − φ(W)
2ε√

1− δ2k

→ δ2k < 1−
(
2φ(W)ε

O∗M

)2

.

Similarly to the binary setting, one can readily write
the above in terms of µ(D).

C Proof of Theorem 10: stable binary
classification of the L-THR

Theorem 10 (Stable Binary Classification of the L-
THR): Suppose we are given an ML-CSC signal X

contaminated with perturbation E to create the signal
Y = X+ E, such that ‖E‖P2,∞ ≤ ε0. Denote by |Γmin

i |
and |Γmax

i | the lowest and highest entries in absolute
value in the vector Γi, respectively. Suppose further that
O∗B > 0 and let {Γ̂i}Ki=1 be the set of solutions obtained
by running the layered soft thresholding algorithm with
thresholds {βi}Ki=1, i.e. Γ̂i = Sβi

(DT
i Γ̂i−1) where Sβi

is
the soft thresholding operator and Γ̂0 = Y. Assuming
that ∀ 1 ≤ i ≤ K

a) ‖Γi‖S0,∞ < 1
2

(
1 + 1

µ(Di)
|Γmin

i |
|Γmax

i |

)
− 1

µ(Di)
εi−1

|Γmax
i | ;

b) The threshold βi is chosen according to

|Γmin
i | − Ci − εi−1 > βi > Ki + εi−1,

where

Ci = (‖Γi‖S0,∞ − 1)µ(Di)|Γmax
i |,

Ki = ‖Γi‖S0,∞µ(Di)|Γmax
i |,

εi =
√
‖Γi‖P0,∞

(
εi−1 + Ci + βi

)
;

and
c) O∗B > ‖w‖2

√
‖ΓK‖0

(
εK−1 + CK + βK

)
,

then sign(f(Y)) = sign(f(X)).

Proof Following Theorem 10 in [22], if assumptions (a)–
(c) above hold ∀ 1 ≤ i ≤ K then

1. The support of the solution Γ̂i is equal to that of Γi;
and

2. ‖Γi − Γ̂i‖P2,∞ ≤ εi, where εi defined above.

In particular, the last layer satisfies

‖ΓK − Γ̂K‖∞ ≤ εK−1 + CK + βK . (7)

Defining ∆ = Γ̂K − ΓK , we get

‖∆‖2 ≤ ‖∆‖∞
√
‖∆‖0 = ‖∆‖∞

√
‖ΓK‖0,

where the last equality relies on the successful recovery
of the support. Having the upper bound on ‖∆‖2, one
can follow the transition from Equation (4) to Equation
(5) (see the proof of Theorem 7), leading to the following
requirement for accurate classification:

O∗B − ‖w‖2‖∆‖∞
√
‖ΓK‖0 > 0.

Plugging Equation (7) to the above expression results in
the additional condition that ties the propagated error
throughout the layers to the output margin, given by

O∗B > ‖w‖2
√
‖ΓK‖0

(
εK−1 + CK + βK

)
.
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