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Abstract
Avariational model for learning convolutional image atoms from corrupted and/or incomplete data is introduced and analyzed
both in function space and numerically. Building on lifting and relaxation strategies, the proposed approach is convex and
allows for simultaneous image reconstruction and atom learning in a general, inverse problems context. Further, motivated by
an improved numerical performance, also a semi-convex variant is included in the analysis and the experiments of the paper.
For both settings, fundamental analytical properties allowing in particular to ensure well-posedness and stability results for
inverse problems are proven in a continuous setting. Exploiting convexity, globally optimal solutions are further computed
numerically for applications with incomplete, noisy and blurry data and numerical results are shown.

Keywords Variational methods · Learning approaches · Inverse problems · Functional lifting · Convex relaxation ·
Convolutional Lasso · Machine learning · Texture reconstruction

Mathematics Subject Classification 94A08 · 49M29 · 65F22 · 49K30

1 Introduction

An important task in image processing is to achieve an appro-
priate regularization or smoothing of images or image-related
data. In particular, this is indispensable for most application-
driven problems in the field, such as denoising, inpainting,
reconstruction, segmentation, registration or classification.
Also beyond imaging, for general problem settings in the
field of inverse problems, an appropriate regularization of

The Institute of Mathematics and Scientific Computing is a member of
NAWI Graz (http://www.nawigraz.at) and BioTechMed Graz (http://
www.biotechmed.at).

B M. Holler
martin.holler@uni-graz.at

A. Chambolle
antonin.chambolle@cmap.polytechnique.fr

T. Pock
pock@icg.tugraz.at

1 Centre de Mathématiques Appliquées, École Polytechnique,
Paris, France

2 Institute of Mathematics and Scientific Computing,
University of Graz, Graz, Austria

3 Institute of Computer Graphics and Vision, Graz University
of Technology, Graz, Austria

unknowns plays a central role as it allows for a stable inver-
sion procedure.

Variational methods and partial-differential-equation-
based methods can now be regarded as classical regular-
ization approaches of mathematical image processing (see,
for instance, [5,42,54,62]). An advantage of such methods
is the existence of a well-established mathematical theory
and, in particular for variational methods, a direct applica-
bility to general inverse problems with provable stability and
recovery guarantees [31,32]. While in particular piecewise
smooth images are typically well described by suchmethods,
their performance for oscillatory- or texture-like structures,
however, is often limited to predescribed patterns (see, for
instance, [27,33]).

Data-adaptive methods such as patch- or dictionary-based
methods (see, for instance, [2,13,22,23,37]) on the other hand
are able to exploit redundant structures in images indepen-
dent of an a priori description and are, at least for some
specific tasks, often superior to variational- and PDE-based
methods. In particular, methods based on (deep) convolu-
tional neural networks are inherently data adaptive (though
data adaptation takes place in a preprocessing/learning step)
and have advanced the state of the art significantly in many
typical imaging applications in the past years [38].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10851-019-00919-7&domain=pdf
http://orcid.org/0000-0002-9465-4659
http://orcid.org/0000-0002-2895-2375
http://orcid.org/0000-0001-6120-1058
http://www.nawigraz.at
http://www.biotechmed.at
http://www.biotechmed.at


418 Journal of Mathematical Imaging and Vision (2020) 62:417–444

Still, for data-adaptive approaches, neither a direct appli-
cability to general inverse problems nor a corresponding
mathematical understanding of stability results or recovery
guarantees are available to the extend they are with vari-
ational methods. One reason for this lies in the fact that,
for both classical patch- or dictionary-based methods and
neural-network-based approaches, data adaptiveness (either
online or in a training step) is inherently connected to the
minimization of a non-convex energy. Consequently, stan-
dard numerical approaches such as alternating minimization
or (stochastic) gradient descent can, at best, only be guaran-
teed to deliver stationary points of the energy, hence suffering
from the risk of delivering suboptimal solutions.

The aim of this work is to provide a step toward bridg-
ing the gap between data-adaptive methods and variational
approaches. As a motivation, consider a convolutional Lasso
problem [39,65] of the form

min
(ci )i ,(pi )i

λD
(

k∑
i=1

ci ∗ pi , u0

)
+

k∑
i=1

‖ci‖1 s.t. pi ∈ C.

(1)

Here, the goal is to learn image atoms (pi )i (constrained
to a set C) and sparse coefficient images (ci )i which, via a
convolution, synthesize an image corresponding to the given
data u0 (with data fidelity being measured by D). This task
is strongly related to convolutional neural networks in many
ways, see [46,61,65] and the paragraph Connections to deep
neural networks below for details. A classical interpretation
of this energy minimization is that it allows for a sparse
(approximate) representation of (possible noisy) image data,
but wewill see that this synopsis can be extended to include a
forwardmodel for inverse problems and a second image com-
ponent of different structures. In any case, the difficulty here
is non-convexity of the energy in (1), which complicates both
analysis and its numerical solution. In order to overcome this,
we build on a tensorial-lifting approach and subsequent con-
vex relaxation. Doing so and starting from (1), we introduce
a convex variational method for learning image atoms from
noisy and/or incomplete data in an inverse problems context.
We further extend this model by a semi-convex variant that
improves the performance in some applications. For both
settings, we are able to prove well-posedness results in func-
tion space and, for the convex version, to compute globally
optimal solutions numerically. In particular, classical stabil-
ity and convergence results for inverse problems such as the
ones of [31,32] are applicable to our model, providing a sta-
ble recovery of both learned atoms and images from given,
incomplete data.

Our approach allows for a joint learning of image atoms
and image reconstruction in a single step. Nevertheless, it can
also be regarded purely as an approach for learning image

atoms from potentially incomplete data in a training step,
after which the learned atoms can be further incorporated
in a second step, e.g., for reconstruction or classification. It
should also be noted that, while we show some examples
where our approach achieves a good practical performance
for image reconstruction compared to the existing methods,
the main purpose of this paper is to provide a mathematical
understanding rather than an algorithm that achieves the best
performance in practice.

Related Works Regarding the existing literature in the
context of data-adaptive variational learning approaches in
imaging, we note that there are many recent approaches that
aim to infer either parameter or filters for variational methods
from given training data, see, e.g., [14,30,36]. A continuation
of such techniquesmore toward the architecture of neural net-
works is so-called variational networks are so-called [1,35]
where not only model parameters but also components of
the solution algorithm such as stepsizes or proximal map-
pings are learned. We also refer to [41] for a recent work on
combining variational methods and neural networks. While
for some of those methods also a function space theory is
available, the learning step is still non-convex and the above
approaches can in general only be expected to provide locally
optimal solutions.

In contrast to that, in a discrete setting, there are many
recent directions of research which aim to overcome sub-
optimality in non-convex problems related to learning. In
the context of structured matrix factorization (which can be
interpreted as the underlying problem of dictionary learn-
ing/sparse coding in a discrete setting), the authors of [29]
consider a general setting of which dictionary learning can
be considered as a special case. Exploiting the existence
of a convex energy which acts as lower bound, they pro-
vide conditions under which local optima of the convex
energy are globally optimal, thereby reducing the task of
globally minimizing a non-convex energy to finding local
optima with certain properties. In a similar scope, a series
of works in the context of dictionary learning (see [4,55,59]
and the references therein) provide conditions (e.g., assum-
ing incoherence) under whichminimization algorithms (e.g.,
alternating between dictionary and coefficient updates) can
be guaranteed to converge to a globally optimal dictionary
with high probability. Regarding these works, it is impor-
tant to note that, as discussed in Sect. 2.1 (see also [26]), the
problem of dictionary learning is similar but yet rather dif-
ferent to the problem of learning convolutional image atoms
as in (1) in the sense that the latter is shift-invariant since it
employs a convolution to synthesize the image data (rather
than comparing with a patch matrix). While results on struc-
tured matrix decomposition that allow for general data terms
(such as [29]) can be applied also to convolutional sparse
coding by including the convolution in the data term, this is
not immediate for dictionary learning approaches.
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Although having a different motivation, the learning of
convolutional image atoms is also related to blind deconvo-
lution, where one aims to simultaneously recover a blurring
kernel and a signal from blurry, possibly noisy measure-
ments. While there is a large literature on this topic (see
[15,20] for a review), in particular lifting approaches that aim
at a convex relaxation of underlying bilinear problem in a dis-
crete setting are related to ourwork. In this context, the goal is
often to obtain recovery guarantees under some assumptions
on the data. We refer to [40] for a recent overview, to [3] for a
lifting approach that poses structural assumptions on both the
signal and the blurring kernel and uses a nuclear-norm-based
convex relaxation, and to [21] for a more generally applica-
ble approach that employs the concept of atomic norms [19].
Moreover, the work [40] studies the joint blind deconvolu-
tion and demixing problem, which has the same objective as
(1) of decomposing a signal into a sum of convolutions but
is motivated in [40] from multiuser communication. There,
the authors again pose some structural assumptions on the
underlying signal but, in contrast to previous works, deal
with recovery guarantees of non-convex algorithms, which
are computationally more efficient than those addressing a
convex relaxation.
Connections to Deep Neural Networks Regarding a deeper
mathematical understanding of deep convolutional neural
networks, establishing a mathematical theory for convolu-
tional sparse coding is particularly relevant due to a strong
connection of the two methodologies. Indeed, it is easy to
see that for instance in case D(u, u0) = 1

2‖u − u0‖22 and
(pi )i is fixed, the numerical solution of the convolutional
sparse coding problem (1) via forward-backward splitting
with a fixed number of iterations is equivalent to a deep
residual network with constant parameters. Similarly, recent
results (see [46,47,58]) show a strong connection of thresh-
olding algorithms for multilayer convolutional sparse coding
with feed-forward convolutional neural networks. In partic-
ular, this connection is exploited to transfer reconstruction
guarantees from sparse coding to the forward pass of deep
convolutional neural networks.

In this context, we also highlight [61], which very success-
fully employs filter learning in convolutional neural networks
as regularization prior in image processing tasks. That is,
[61] uses simultaneous filter learning and image synthesis
for regularization, without prior training. The underlying
architecture is strongly related to the energy minimization
approach employed here, and again we believe that a deeper
mathematical analysis of the latter will be beneficial to
explain the success of the former.

Another direct relation todeepneural networks is givenvia
deconvolutional neural networks as discussed in [65], which
solve a hierarchy of convolutional sparse coding problems to
obtain a feature representation of given image data. Last but
not least, we also highlight that the approach discussed in this

paper can be employed as feature encoder (again potentially
also using incomplete/indirect data measurements), which
provides a possible preprocessing step that is very relevant
in the context of deep neural networks.

1.1 Outline of the Paper

In Sect. 2, we present the main ideas for our approach in a
formal setting. This is done from two perspectives, once from
the perspective of a convolutional Lasso approach and once
from the perspective of patch-based methods. In Sect. 3, we
then carry out an analysis of the proposed model in function
space, wherewemotivate our approach via convex relaxation
and derivewell-posedness results. Section 4 then presents the
model in a discrete setting and the numerical solution strat-
egy, and Sect. 5 provides numerical results and a comparison
to the existing methods. At last, an “Appendix” provides a
brief overview on some results for tensor spaces that are used
in Sect. 3. We note that, while the analysis of Sect. 3 is an
important part of our work, the paper is structured in a way
such that readers only interested in the conceptual idea and
the realization of our approach can skip Sect. 3 and focus on
Sects. 2 and 4.

2 A Convex Approach to Image Atoms

In this section, we present the proposed approach to image-
atom-learning and texture reconstruction, where we focus on
explaining the main ideas rather than precise definitions of
the involved terms. For the latter, we refer to Sect. 3 for the
continuous model and Sect. 4 for the discrete setting.

Our starting point is the convolutional Lasso problem [18,
65], which aims to decompose a given image u as a sparse
linear combination of basic atoms (pi )

k
i=1 with coefficient

images (ci )
k
i=1 by inverting a sum of convolutions as follows

min
(ci )i ,(pi )i

k∑
i=1

‖ci‖1 s.t.

{
u = ∑k

i=1 ci ∗ pi ,

‖pi‖2 ≤ 1 for i = 1, . . . , k.

It is important to note that, by choosing the (ci )i to be com-
posed of delta peaks, this allows to place the atoms (pi )i at
any position in the image. In [65], this model was used in
the context of convolutional neural networks for generating
image atoms and other image-related tasks. Subsequently,
many works have dealt with the algorithmic solution of the
resulting optimization problem,where themain difficulty lies
in the non-convexity of the atom-learning step, and we refer
to [28] for a recent review.

Our goal is to obtain a convex relaxation of this model that
can be used for both, learning image atoms from potentially
noisy data and image reconstruction tasks such as inpainting,
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Image

u = K̂C

Active atoms

Lifted atoms

C

Atom-matrix and decomposition

= ⊗

c ⊗ p

Fig. 1 Visualization of the atom-lifting approach for 1D images. The green (thick) lines in the atom matrix correspond to nonzero (active) atoms
and are placed in the image at the corresponding positions

deblurring or denoising. To this aim, we lift the model to the
tensor product space of coefficient images and image atoms,
i.e., the space of all tensors C = ∑

i ci ⊗ pi with ci ⊗ pi

being a rank-1 tensor such that (ci ⊗ pi )(x, y) = ci (x)pi (y).
We refer to Fig. 1 for a visualization of this lifting in a
one-dimensional setting, where both coefficients and image
atoms are vectors and ci ⊗ pi corresponds to a rank-one
matrix. Notably, in this tensor product space, the convolu-
tion ci ∗ pi can be written as linear operator K̂ such that
K̂ C(x) = ∑

i K̂ (ci ⊗ pi )(x) = ∑
i

∫
pi (x − y)ci (y) dy.

Exploiting redundancies in the penalization of (‖ci‖1)i and
the constraint ‖pi‖2 ≤ 1, i = 1 . . . , k and rewriting the
above setting in the lifted tensor space, as discussed in Sect. 3,
we obtain the following minimization problem as convex
relaxation of the convolutional Lasso approach

min
C

‖C‖1,2 s.t. u = K̂ C,

where ‖·‖1,2 takes the 1-norm and 2-norm ofC in coefficient
and atom direction, respectively. Now while a main feature
of the original model was that the number of image atoms
was fixed, this is no longer the case in the convex relaxation
and would correspond to constraining the rank of the lifted
variable C (defined as the minimal number of simple tensors
needed to decompose C) to be below a fixed number. As
convex surrogate, we add an additional penalization of the
nuclear norm of C in the above objective functional (here we
refer to the nuclear norm of C in the tensor product space
which, in the discretization of our setting, coincides with the
classical nuclear norm of a matrix reshaping of C). Allowing
also for additional linear constraints onC via a linear operator
M̂ , we arrive at the following convex norm that measures the
decomposability of a given imageu into a sparse combination
of atoms as

Nν(u) = min
C

ν‖C‖1,2 + (1 − ν)‖C‖∗

s.t.

{
u = K̂ C,

M̂C = 0.

Interestingly, this provides a convexmodel for learning image
atoms, which for simple images admitting a sparse represen-
tation seems quite effective. In addition, this can in principle
also be used as a prior for image reconstruction tasks in the
context of inverse problems via solving for example

min
u

λ

2
‖Au − u0‖22 + Nν(u),

with u0 given some corrupted data, A a forward operator and
λ > 0 a parameter.

Both the original motivation for our model and its con-
vex variant have many similarities with dictionary learning
and patch-based methods. The next section strives to clarify
similarities and difference and provides a rather interesting,
different perspective on our model.

2.1 A Dictionary-Learning-/Patch-BasedMethods’
Perspective

In classical dictionary-learning-based approaches, the aim is
to represent a resorted matrix of image patches as a sparse
combination of dictionary atoms. That is, with u ∈ R

N M a
vectorized version of an image and D = (D1, . . . , Dl)

T ∈
R

l×nm a patchmatrix containing l vectorized (typically over-
lapping) images patches of size nm, the goal is to obtain a
decomposition D = cp, where c ∈ R

l×k is a coefficient
matrix and p ∈ R

k×nm is a matrix of k dictionary atoms
such that ci, j is the coefficient for the atom p j,· in the repre-
sentation of the patch Di . In order to achieve a decomposition
in this form, using only a sparse representation of dictionary
atoms, a classical approach is to solve

min
c,p

λ

2
‖cp − D‖22 + ‖c‖1 s.t. p ∈ C,

where C potentially puts additional constraints on the dictio-
nary atoms, e.g., ensures that ‖p j,·‖2 ≤ 1 for all j .

A difficulty with such an approach is again the bilinear
and hence non-convex nature of the optimization problem,
leading to potentially many non-optimal stationary points
and making the approach sensitive to initialization.
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Fig. 2 Patch-based
representation of test images.
Left: original image, middle:
nine most important patches for
each method (top: patch
denoising, bottom: patch
reconstruction), right: section of
the corresponding patch
matrices

As a remedy, one strategy is to consider a convex variant
(see, for instance, [6]). That is, rewriting the aboveminimiza-
tion problem (and again using the ambiguity in the product
cp to eliminate the L2 constraint) we arrive at the problem

min
C :rank(C)≤k

λ

2
‖C − D‖22 + ‖C‖1,2,

where ‖C‖1,2 = ∑
i ‖Ci,·‖2. A possible convexification is

then given as

min
C

λ

2
‖C − D‖22 + ν‖C‖1,2 + (1 − ν)‖C‖∗, (2)

where ‖ · ‖∗ is the nuclear norm of the matrix C .
A disadvantage of such an approach is that the selection

of patches is a priori fixed and that the lifted matrix C has
to approximate each patch. In the situation of overlapping
patches, this means that individual rows of C have to repre-
sent different shifted versions of the samepatch several times,
which inherently contradicts the low-rank assumption.

It is now interesting to see our proposed approach in
relation to these dictionary learning methods and the above-
described disadvantage: Denote again by K̂ the lifted version
of the convolution operator,which in the discrete setting takes
a lifted patch matrix as input and provides an image com-
posed of overlapping patches as output. It is then easy to see
that K̂ ∗, the adjoint of K̂ , is in fact a patch selection operator
and it holds that K̂ K̂ ∗ = I . Now using K̂ ∗, the approach in
(2) can be rewritten as

min
C

λ

2
‖C − K̂ ∗u‖22 + ν‖C‖1,2 + (1 − ν)‖C‖∗, (3)

where we remember that u is the original image. Considering
the problem of finding an optimal patch-based representation
of an image as the problem of inverting K̂ , we can see that
the previous approach in fact first applies a right inverse of
K̂ and then decomposes the data. Taking this perspective,
however, it seems much more natural to consider instead an
adjoint formulation as

min
C

λ

2
‖K̂ C − u‖22 + ν‖C‖1,2 + (1 − ν)‖C‖∗. (4)

Indeed, this means that we do not fix the patch decomposi-
tion of the image a priori but rather allow the method itself
to optimally select the position and size of patches. In par-
ticular, given a particular patch at an arbitrary location, this
patch can be represented by using only one line of C and
the other lines (corresponding to shifted versions) can be left
empty. Figure 2 shows the resulting improvement by solv-
ing both of the above optimization problems for a particular
test image, where the parameters are set such that the data
error of both methods, i.e., ‖K̂ C − u‖22, is approximately
the same. As can be seen, solving (3), which we call patch
denoising, does not yield meaningful dictionary atoms as the
dictionary elements need to represent different, shifted ver-
sion of the single patch thatmakes up the image. In contrast to
that, solving (4), which we call patch reconstruction, allows
to identify the underlying patch of the image and the corre-
sponding patch matrix is indeed row sparse. In this context,
we also refer to [26] which makes similar observations and
differs between patch analysis (which is related to (3)) and
patch synthesis, which is similar to (4); however, it does not

123



422 Journal of Mathematical Imaging and Vision (2020) 62:417–444

consider a convolutional- but rather a matrix-based synthesis
operator.

2.2 TheVariational Model

Nowwhile the proposedmodel can, in principle, describe any
kind of image, in particular its convex relaxation seems best
suited for situationswhere the image canbe described byonly
a few, repeating atoms, as would be, for instance, the case
with texture images. In particular, since we do not include
rotations in the model, there are many simple situations, such
as u being the characteristic function of a disk, which would
in fact require an infinite number of atoms. To overcome this,
it seems beneficial to include an additional termwhich is rota-
tionally invariant and takes care of piecewise smooth parts
of the image. DenotingR to be any regularization functional
for piecewise smooth data and taking the infimal convolution
of this functional with our atom-based norm, we then arrive
at the convex model

min
u,v

λ

2
‖Au − u0‖22 + μ1R(u − v) + μ2Nν(v),

for learning image data and image atom kernels from poten-
tially noisy or incomplete measurements.

A particular example of this model can be given when
choosing R = TV, the total variation function [51]. In this
setting, a natural choice for the operator M in the definition
of Nν is to take the pointwise mean of the lifted variable
in atom direction, which corresponds to constraining the
learned atoms to have zero mean and enforces some kind of
orthogonality between the cartoon and the texture part in the
spirit of [43]. In our numerical experiments, in order to obtain
an even richer model for the cartoon part, we use the second-
order total generalized variation function (TGV2

α) [7,9] as
cartoon prior and, in the spirit of a dual TGV2

α norm, use M
to constrain the 0th and 1st moments of the atoms to be zero.

We also remark that, as shown in the analysis part of
Sect. 3, while an �1/�2-type norm on the lifted variables
indeed arises as convex relaxation of the convolutional Lasso
approach, the addition of the nuclear norm is to some extent
arbitrary and in fact, in the context of compressed sensing,
it is known that a summation of two norms is suboptimal for
a joint penalization of sparsity and rank [44]. (We refer to
Remark 5 for an extended discussion.) Indeed, our numer-
ical experiments also indicate that the performance of our
method is to some extent limited by a suboptimal relaxation
of a joint sparsity and rank penalization. To account for that,
we also tested with semi-convex potential functions (instead
of the identity) for a penalization of the singular values in the
nuclear norm. Since this provided a significant improvement
in some situations, we also include this more general setting
in our analysis and the numerical results.

3 TheModel in a Continuous Setting

The goal of this section is to define and analyze the model
introduced in Sect. 2 in a continuous setting. To this aim, we
regard images as functions in the Lebesgue space Lq (�)with
a bounded Lipschitz domain� ⊂ R

d , d ∈ N and 1 < q ≤ 2.
Image atoms are regarded as functions in Ls(�), with � ⊂
R

d a second (smaller) bounded Lipschitz domain (either a
circle or a square around the origin) and s ∈ [q,∞] an expo-
nent that is a priori allowed to take any value in [q,∞], but
will be further restricted below. We also refer to “Appendix”
for further notation and results, in particular in the context of
tensor product spaces, that will be used in this section.

As described in Sect. 2, the main idea is to synthesize
an image via the convolution of a small number of atoms
with corresponding coefficient images, where we think of
the latter as a sum of delta peaks that define the locations
where atoms are placed. For this reason, and also due to
compactness properties, the coefficient images are modeled
asRadonmeasures in the spaceM(��), the dual ofC0(��),
where we denote

�� := {x ∈ R
d | there exists y ∈ � s.t. x − y ∈ �},

i.e., the extension of � by �. The motivation for using this
extension of � is to allow atoms also to be placed arbitrarily
close to be boundary (see Fig. 1). We will further use the
notation r ′ = r/(r − 1) for an exponent r ∈ (1,∞) and
denote duality pairings between Lr and Lr ′

and between
M(�) and C0(�) by (·, ·), while other duality pairings (e.g.,
between tensor spaces) are denoted by 〈·, ·〉. By ‖ · ‖r , ‖ ·
‖M, we denote standard Lr and Radon norms whenever the
domain of definition is clear from the context, otherwise we
write ‖ · ‖Lr (��), ‖ · ‖M(��), etc.

3.1 The Convolutional Lasso Prior

As a first step, we deal with the convolution operator that
synthesizes an image from a pair of a coefficient image and
an image atom in function space. Formally, we aim to define
K : M(��) × Ls(�) → Lq(�) as

K (c, p)(x) :=
∫

��

p(x − y) dc(y),

where we extend p by zero outside of �. An issue with
this definition is that, in general, p is only defined Lebesgue
almost everywhere and sowe have to give a rigorousmeaning
to the integration of p with respect to an arbitrary Radon
measure. To this aim, we define the convolution operator via
duality (see [52]). For c ∈ M(��), p ∈ Ls(�) we define
by Kc,p the functional on C(�) as dense subset of Lq ′

(�)

as
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Kc,p(h) :=
∫
Rd

∫
Rd

h̃(z + y) p̃(z) dz dc̃(y),

where g̃ always denotes the zero extension of the function or
measure g outside their domain of definition. Now we can
estimate with � > 0

∣∣Kc,p(h)
∣∣ ≤

∫
Rd

∫
Rd

|h̃(z + y)|| p̃(z)| dz d|c̃|(y)

≤ ‖h̃‖Lq′
(Rd )

‖ p̃‖Lq (Rd )‖c̃‖M(Rd )

≤ �‖p‖s‖c‖M‖h‖q ′ .

Hence, by density we can uniquely extend Kc,p to a func-
tional in Lq ′

(�)∗  Lq(�) and we denote by [Kc,p] the
associated function in Lq(�). Now in case p is integrable
w.r.t. c and x �→ ∫

��
p(x − y) dc(y) ∈ Lq(�), we get

by a change of variables and Fubini’s theorem that for any
h ∈ C(�)

Kc,p(h) =
∫
Rd

∫
Rd

h̃(x) p̃(x − y) dx dc̃(y)

=
∫

�

h(x)

(∫
��

p(x − y) dc(y)

)
dx .

Hence we get that in this case, [Kc,p](x) = ∫
��

p(x −
y) dc(y) and defining K : M(��) × Ls(�) → Lq(�)

as

K (c, p) := [Kc,p]

we get that K (c, p) coincides with the convolution of c and
p whenever the latter is well defined. Note that K is bilinear
and, as the previous estimate shows, there exists � > 0 such
that ‖K (c, p)‖q ≤ �‖c‖M‖p‖s . Hence, K ∈ B(M(��)×
Ls(�), Lq(�)), the space of bounded bilinear operators (see
“Appendix”).

Using the bilinear operator K and denoting by k ∈ N

a fixed number of atoms, we now define the convolutional
Lasso prior for an exponent s ∈ [q,∞] and for u ∈ Lq(�)

as

Ncl,s(u) = inf
(ci )

k
i=1⊂M(��)

(pi )
k
i=1⊂Ls (�)

k∑
i=1

‖ci‖M

s.t.

⎧⎪⎪⎨
⎪⎪⎩

‖pi‖s ≤ 1, Mpi = 0 i = 1, . . . , k,

u =
k∑

i=1

K (ci , pi ) in �,

(5)

and set Ncl,s(u) = ∞ if the constraint set above is empty.
Here, we include an operator M ∈ L(Ls(�),Rm) in our
model that optionally allows to enforce additional constraints
on the atoms. A simple example of M that we have in mind is

an averaging operator, i.e., Mp := |�|−1
∫
�

p(x) dx ; hence,
the constraint that Mp = 0 corresponds to a zero-mean con-
straint.

3.2 A Convex Relaxation

Our goal is now to obtain a convex relaxation of the con-
volutional Lasso prior. To this aim, we introduce by K̂ and
M̂ := I ⊗ M the lifting of the bilinear operator K and the
linear operators I and M , with I ∈ L(M(��),M(��))

being the identity, to the projective tensor product space
Xs := M(��) ⊗π Ls(�) (see “Appendix”). In this space,
we consider a reformulation as

Ncl,s(u) = inf
C∈Xs

‖C‖π,k,M s.t. u = K̂ C in �, (6)

where

‖C‖π,k,M := inf

{
k∑

i=1

‖ci‖M‖pi‖s | C

=
k∑

i=1

ci ⊗ pi with Mpi = 0 for i = 1, . . . , k

}
.

Note that this reformulation is indeed equivalent. Next we
aim to derive the convex relaxation of Ncl,s in this tensor
product space. To this aim, we use the fact that for a general
function g : Xs → R, its convex, lower semi-continuous
relaxation can be computed as the biconjugate g∗∗ : Xs →
R, where g∗(x∗) = supx∈Xs

〈x∗, x〉 − g(x) and g∗∗(x) =
supx∗∈X∗

s
〈x∗, x〉 − g∗(x∗).

First we consider a relaxation of the functional ‖ · ‖π,k,M .
In this context, we need an additional assumption on the
constraint set ker(M), which is satisfied, for instance, if s = 2
or for M = 0, in particular will be fulfilled by the concrete
setting we use later on.

Lemma 1 Assume that there exists a continuous, linear,
norm-one projection onto ker(M). Then, the convex, lower
semi-continuous relaxation of ‖ · ‖π,k,M : Xs → R is given
as

C �→ ‖C‖π + Iker(M̂)
(C),

where Iker(M̂)
(C) = 0 if M̂C = 0 and Iker(M̂)

(C) = ∞ else,
and ‖ · ‖π is the projective norm on Xs given as

‖C‖π = inf

{ ∞∑
i=1

‖ci‖M‖pi‖s | C =
∞∑

i=1

ci ⊗ pi

}
.
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Proof. Our goal is to compute the biconjugate of ‖ · ‖π,k,M .
First we note that

‖ · ‖π + Iker(M̂)
≤ ‖ · ‖π,k,M ≤ ‖ · ‖π,1,M ,

and consequently

‖ · ‖π + Iker(M̂)
≤ (‖ · ‖π,k,M

)∗∗ ≤ (‖ · ‖π,1,M
)∗∗

.

Hence, the assertion follows if we show that
(‖ · ‖π,1,M

)∗∗ ≤
‖ · ‖π + Iker(M̂)

. To this aim, we first show that ‖ · ‖π,M ≤
‖ · ‖π + Iker(M̂)

, where we set ‖C‖π,M = ‖C‖π,∞,M . Let

C ∈ Xs be such that M̂C = 0 and take (ci )i , (pi )i be such
that ‖C‖π ≥ ∑∞

i=1 ‖ci‖M‖pi‖s − ε for some ε > 0 and
C = ∑∞

i=1 ci ⊗ pi . Then, with P the projection to ker(M)

as in the assumption, we get that

0 = M̂C =
∞∑

i=1

ci ⊗ Mpi =
∞∑

i=1

ci ⊗ M(pi − Ppi ).

Now remember that, according to [53, Theorem 2.9], we
have (M(��)⊗π R

m)∗ = B(M(��)×R
m)with the norm

‖B‖B := sup{|B(x, y)| | ‖x‖M ≤ 1, ‖y‖2 ≤ 1}. Taking
arbitraryψ ∈ M(�)∗, φ ∈ (Rm)∗, we get that B : (c, p) �→
ψ(c)φ(p) ∈ B(M(��) × R

m) and hence

0 = B̂(M̂C)

=
∞∑

i=1

B̂(ci ⊗ M(pi − Ppi ))

=
∞∑

i=1

ψ(ci )φ(M(pi − Ppi ))

= φ

( ∞∑
i=1

ψ(ci )M(pi − Ppi )

)

= φ

(
M

( ∞∑
i=1

ψ(ci )(pi − Ppi )

))

and since φ was arbitrary, it follows that M(
∑∞

i=1 ψ(ci )

(pi − Ppi )) = 0. Finally, by closedness of Rg(I − P) we
get that

∑∞
i=1 ψ(ci )(pi − Ppi ) = 0 and, since M(��)

has the approximation property (see [24, Section VIII.3]),
from [53, Proposition 4.6], it follows that

∑∞
i=1 ci ⊗ (pi −

Ppi ) = 0, hence C = ∑∞
i=1 ci ⊗ Ppi and by assumption∑∞

i=1 ‖ci‖M‖pi‖s ≥ ∑∞
i=1 ‖ci‖M‖Ppi‖s . Consequently,

‖ · ‖π + Iker(M̂)
≥ ‖ · ‖π,M − ε, and since ε was arbitrary,

the claimed inequality follows.
Now we show that

(‖ · ‖π,M
)∗ ≤ (‖ · ‖π,1,M

)∗, from
which the claimed assertion follows by the previous esti-
mate and taking the convex conjugate on both sides. To this
aim, take (Cn)n ⊂ Xs such that

(‖ · ‖π,M
)∗

(B) = sup
C∈Xs

〈B, C〉 − ‖C‖π,M

= lim
n

〈B, Cn〉 − ‖Cn‖π,M

and take (cn
i )i , (pn

i )i such that Mpn
i = 0 for all n, i and

Cn =
∞∑

i=1

cn
i ⊗ pn

i and
∞∑

i=1

‖cn
i ‖M‖pn

i ‖s ≤ ‖Cn‖π,M + 1/n.

We then get

(‖ · ‖π,M
)∗

(B) = lim
n

〈B, Cn〉 − ‖Cn‖π,M ≤ lim
n

〈B,

∞∑
i=1

cn
i ⊗ pn

i 〉

−
∞∑

i=1

‖cn
i ‖M‖pn

i ‖s + 1/n

= lim
n

lim
m

〈B,

m∑
i=1

cn
i ⊗ pn

i 〉

−
m∑

i=1

‖cn
i ‖M‖pn

i ‖s + 1/n

≤ lim
n

sup
m

sup
(ci )

m
i=1,(pi )

m
i=1

Mpi =0

〈B,

m∑
i=1

ci ⊗ pi 〉

−
m∑

i=1

‖ci‖M‖pi‖s + 1/n

= sup
m

sup
(ci )

m
i=1,(pi )

m
i=1

Mpi =0

m∑
i=1

B(ci , pi ) − ‖ci‖M‖pi‖s

= sup
m

m sup
c,p

Mp=0

(B(c, p) − ‖c‖M‖p‖s) .

Now it can be easily seen that the last expression equals 0 in
case |B(c, p)| ≤ ‖c‖M‖p‖s for all c, p withMp = 0. In the
other case, we can pick ĉ, p̂ with M p̂ = 0 and � > 1 such
that B(ĉ, p̂) > �‖ĉ‖M‖ p̂‖s and get for any λ > 0 that

sup
c,p

Mp=0

B(c, p) − ‖c‖M‖p‖s

≥ B(λĉ, p̂)−‖λĉ‖M‖ p̂‖s ≥ λ(� − 1)→∞ as λ → ∞.

Hence, the last line of the above equation is either 0 or infinity
and equals

sup
c,p

Mp=0

(B(c, p) − ‖c‖M‖p‖s) = sup
C

〈B, C〉 − ‖C‖π,1,M

= (‖ · ‖π,1,M
)∗

.

This result suggests that the convex, lower semi-continuous
relaxation of (6) will be obtained by replacing ‖·‖π,k,M with
the projective tensor norm ‖ · ‖π on Xs and the constraint
M̂C = 0.Our approach to show thiswill in particular require
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us to ensure lower semi-continuity of this candidate for the
relaxation, which in turn requires us to ensure a compact-
ness property of the sublevel sets of the energy appearing in
(6) and closedness of the constraints. To this aim, we con-
sider a weak* topology on Xs and rely on a duality result
for tensor product spaces (see “Appendix”), which states
that, under some conditions, the projective tensor product
Xs = M(��) ⊗π Ls(�) can be identified with the dual
of the so-called injective tensor product C0(��) ⊗i Ls′

(�).
The weak* topology on Xs is then induced by pointwise
convergence in Xs as dual space of C0(��) ⊗i Ls′

(�).
Different from what one would expect from the individ-
ual spaces, however, this can only be ensured for the case
s < ∞ which excludes the space L∞(�) for the image
atoms. This restriction will also be required later on in
order to show well-posedness of a resulting regularization
approach for inverse problems, and hence, we will hence-
forth always consider the case that s ∈ [q,∞) and use the
identification (C0(��)⊗iLs′

(�))∗=̂M(��)⊗π Ls(�) (see
“Appendix”).

As a first step toward the final relaxation result, and also
as a crucial ingredient for well-posedness results below, we
show weak* continuity of the operator K̂ on the space Xs .

Lemma 2 Let s ∈ [q,∞). Then, the operator K̂ : Xs →
Lq(�) is continuous w.r.t. weak* convergence in Xs and
weak convergence in Lq ′

(�). Also, for any φ ∈ C0(�) ⊂
Lq ′

(�) it follows that K̂ ∗φ ∈ C0(��) ⊗i Ls′
(�) and, via

the identification C0(��) ⊗i Ls′
(�)=̂C0(��, Ls′

(�)) (see
“Appendix”), can be given as K ∗φ(t) = [x �→ φ(t + x)].

Proof First we note that for any ψ ∈ Cc(�), the function ψ̂

defined as ψ̂(t) = [x �→ ψ(t + x)] (where we extend ψ by
0 to Rd ) is contained in Cc(��, Ls′

(�)). Indeed, continuity
follows since by uniform continuity for any ε > 0 there exists
a δ > 0 such that for any r ∈ R

d with |r | ≤ δ and t ∈ ��

with t + r ∈ ��

‖ψ̂(t + r) − ψ̂(t)‖s′ =
(∫

�

|ψ(t + r + x) − ψ(t + x)|s′
dx

)1/s′

≤ ε|�|1/s′
.

Also, taking K ⊂ � to be the support of ψ we get, with
K� the extension of K by �, for any t ∈ �� \ K� that
ψ(t + x) = 0 for any x ∈ � and hence ψ̂ = 0 in Ls′

(�) and
ψ̂ ∈ Cc(��, Ls′

(�)).
Now for φ ∈ C0(��), taking (φn)n ∈ Cc(��) to be a

sequence converging to φ, we get that

‖φ̂ − φ̂n‖C0(��,Ls′ (�))
= sup

t

(∫
�

|φ(t + x) − φn(t + x)|s′
dx

)1/s′

≤ ‖φ − φn‖∞|�|1/s′ → 0.

Thus, φ̂ can be approximated by a sequence of compactly
supported functions and hence φ̂ ∈ C0(��, Ls′

(�)). Fix-
ing now u = c ⊗ p ∈ Xs , we note that for any ψ ∈
C0(��, Ls′

(�)), the function t → ∫
�

ψ(t)(x)p(x) dx is
continuous; hence, we can define the linear functional

Fu(ψ) :=
∫

��

∫
�

ψ(t)(x)p(x) dx dc(t)

and get that Fu is continuous on C0(��, Ls′
(�)). Then,

since φ̂ ∈ C0(��) ⊗i Ls′
(�) it can be approximated by a

sequence of simple tensors (
∑mn

i=1 xn
i ⊗ yn

i )n in the injective

norm, which coincides with the norm in C0(��, Ls′
(�))

and, using Lemma 22 in “Appendix”, we get

〈u, φ̂〉 = lim
n

〈u,

mn∑
i=1

xn
i ⊗ yn

i 〉 = lim
n

mn∑
i=1

(c, xn
i )(p, yn

i )

= lim
n

mn∑
i=1

∫
��

∫
�

xn
i (a)yn

i (b)p(b) db dc(a)

= lim
n

Fu

(( mn∑
i=1

xn
i ⊗ yn

i

)
n

)
= Fu(φ̂)

=
∫

��

∫
�

φ(a + b)p(b) db dc(a)

= (K (c, p), φ) = (K̂ u, φ)

Now by density of simple tensors in the projective tensor
product, it follows that K ∗φ = φ̂. In order to show the
continuity assertion, take (un)n weak * converging to some
u ∈ Xs . Then by the previous assertion we get for any
φ ∈ Cc(��) that

(K un, φ) = 〈un, K ∗φ〉 → 〈u, K ∗φ〉 = (K u, φ),

hence (K un)n weakly converges to K u on a dense subset of
Ls′

(�)which, togetherwith boundedness of (K un)n , implies
weak convergence.

Wewill also needweak*-to-weak* continuity of M̂ , which
is shown in the following lemma in a slightly more general
situation than needed.

Lemma 3 Take s ∈ [q,∞) and assume that M ∈ L(Ls(�),

Z) with Z a reflexive space and define M̂ := I ⊗π M ∈
L(Xs,M(��) ⊗π Z), where I is the identity on M(��).
Then M̂ is continuous w.r.t. weak* convergence in both
spaces.

Proof Take (un)n ∈ X weak* converging to some u ∈ X
and write un = limk

∑k
i=1 xn

i ⊗ yn
i . We note that, since

Z is reflexive, it satisfies in particular the Radon Nikodým
property (see “Appendix”) and hence C(��) ⊗i Z∗ can be
regarded as predual ofM(��)⊗π Z andwe testwithφ⊗ψ ∈
C(��) ⊗i Z∗. Then
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〈M̂un, φ ⊗ ψ〉 = lim
k

k∑
i=1

(xn
i , φ)(Myn

i , ψ)

= lim
k

k∑
i=1

(xn
i , φ)(yn

i , M∗ψ)

= 〈un, φ ⊗ M∗ψ〉 → 〈u, φ ⊗ M∗ψ〉
= 〈M̂u, φ ⊗ ψ〉,

where the convergence follows since M∗ψ ∈ Ls′
(�), the

predual of Ls(�), and hence,φ⊗M∗ψ ∈ C(��)⊗iLq ′
(�).

Now we can obtain the convex, lower semi-continuous
relaxation of Ncl,s.

Lemma 4 With the assumptions of Lemma 1 and s ∈ [q,∞),
the convex, l.s.c. relaxation of Ncl,s is given as

N ∗∗
cl,s(u) = inf

C∈Xs
‖C‖π s.t.

{
u = K̂ C in �,

M̂C = 0.
(7)

Proof. Again we first compute the convex conjugate:

N ∗
cl,s(v) = sup

u
(u, v)−Ncl,s(u)= sup

C∈Xs

(K̂ C, v) − ‖C‖π,k,M

= sup
C∈Xs

〈C, K̂ ∗v〉 − ‖C‖π,k,M = ‖K̂ ∗v‖∗
π,k,M .

Similarly, we see that N ∗(v) =
(
‖ · ‖π + Iker(M̂)

)∗
(K̂ ∗v),

where

N (u) = inf
C∈Xs

‖C‖π s.t.

{
u = K̂ C in �,

M̂C = 0.

Now in the proof of Lemma 1, we have in particularly shown

that
(
‖ · ‖π + Iker(M̂)

)∗ = ‖ · ‖∗
π,k,M ; hence, if we show

that N is convex and lower semi-continuous, the assertion
follows from N (u) = N ∗∗(u) = N ∗∗

cl,s(u). To this aim, take
a sequence (un)n in Lq(�) converging weakly to some u for
which, without loss of generality, we assume that

lim
n

N (un) = lim inf
n

N (un) < ∞.

Nowwith (Cn)n such that ‖Cn‖π ≤ N (un)+n−1, M̂Cn = 0
and un = K̂ Cn we get that (‖Cn‖π )n is bounded. Since Xs

admits a separable predual (see “Appendix”), this implies
that (Cn)n admits a subsequence (Cni )i weak* converging
to some C . By weak* continuity of K̂ and M̂ we get that
u = K̂ C and M̂C = 0, respectively, and by weak* lower
semi-continuity of ‖ · ‖π , it follows that

N (u) ≤ ‖C‖π ≤ lim inf
i

‖Cni ‖π ≤ lim inf
i

N (uni )

+ni
−1 ≤ lim

i
N (uni ) = lim inf N (un),

which concludes the proof.

This relaxation results suggest to useN (·) as in Equation
(7) as convex texture prior in the continuous setting. There
is, however, an issue with that, namely that such a functional
cannot be expected to penalize the number of used atoms at
all. Indeed, taking some C = ∑l

i=1 ci ⊗ pi and assume that
‖C‖π = ∑l

i=1 ‖ci‖M‖pi‖s . Now note that we can split any
summand ci0 ⊗ pi0 as follows: Write ci0 = c1i0 + c2i0 with

disjoint support such that ‖ci0‖M = ‖c1i0‖M + ‖c2i0‖M.
Then, we can rewrite

ci0 ⊗ pi0 = c1i0 ⊗ pi0 + c2i0 ⊗ pi0

which gives a different representation of C by increasing the
number of atoms without changing the cost of the projective
norm. Hence, in order to maintain the original motivation of
the approach to enforce a limited number of atoms, we need
to add an additional penalty on C for the lifted texture prior.

3.3 Adding a Rank Penalization

Considering the discrete setting and the representation of the
tensor C as a matrix, the number of used atoms corresponds
to the rank of the matrix, for which it is well known that
the nuclear norm constitutes a convex relaxation [25]. This
construction can in principle also be transferred to general
tensor products of Banach spaces via the identification (see
Proposition 23 in “Appendix”)

C =
∞∑

i=1

xi ⊗ yi ∈ X∗ ⊗π Y ∗ ←→ TC ∈ L(X , Y ∗)

where TC (x) =
∞∑

i=1

xi (x)yi

and the norm

‖C‖nuc = ‖TC‖nuc = inf

{ ∞∑
i=1

σi | TC (x)

=
∞∑

i=1

σi xi (x)yi s.t. ‖xi‖X∗ ≤ 1, ‖yi‖Y ∗ ≤ 1

}
.

It is important to realize, however, that the nuclear norm of
operators depends on the underlying spaces and in fact coin-
cideswith the projective norm in the tensor product space (see
Proposition 23). Hence, adding the nuclear norm in Xs does
not change anything, and more generally, whenever one of
the underlying spaces is equipped with an L1-type norm, we
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cannot expect a rank-penalizing effect (consider the example
of the previous section).

On the other hand, going back to the nuclear norm of a
matrix in the discrete setting, we see that it relies on orthogo-
nality and an inner product structure and that the underlying
norm is the Euclidean inner product norm. Hence, an appro-
priate generalization of a rank-penalizing nuclear normneeds
to be built on a Hilbert space setting. Indeed, it is easy to see
that any operator betweenBanach spaceswith a finite nuclear
norm is compact, and in particular for any T ∈ L(H1, H2)

with finite nuclear norm and H1, H1 Hilbert spaces, there
are orthonormal systems (xi )i , (yi )i and uniquely defined
singular values (σi )i such that

T x =
∞∑

i=1

σi (x, xi )yi and in addition ‖T ‖nuc =
∞∑

i=1

σi .

Motivated by this, we aim to define an L2-based nuclear
norm as extended real-valued function on Xs as convex sur-
rogate of a rank penalization. To this aim, we consider from
now on the case s = 2. Remember that the tensor product
X ⊗ Y of two spaces X , Y is defined as the vector space
spanned by linear mappings x ⊗ y on the space of bilinear
forms on X×Y , which are given as x⊗y(B) = B(x, y). Now
since L2(��) can be regarded as subspace ofM(��), also
L2(��)⊗ L2(�) can be regarded as subspace ofM(��)⊗
L2(�). Further, defining for C ∈ L2(��) ⊗ L2(�),

‖C‖π,L2⊗L2 := inf

{
n∑

i=1

‖xi‖2‖yi‖2 | C

=
n∑

i=1

xi ⊗ yi , xi ∈ L2(��), yi ∈ L2(�), n ∈ N

}
,

we get that ‖ · ‖π ≤ �‖ · ‖π,L2⊗L2 for a constant � > 0,
and hence, also the completion L2(��) ⊗π L2(�) can
be regarded as subspace of M(��) ⊗π L2(�). Further,
L2(��)⊗π L2(�) can be identifiedwith the space of nuclear
operators N (L2(��), L2(�)) as above such that

‖C‖π,L2⊗L2 =
∞∑

i=1

σi (TC )

with (σi (TC ))i the singular values of TC .

Using this, and introducing apotential functionφ : [0,∞) →
[0,∞), we define for C ∈ X2,

‖C‖nuc,φ :=
{∑∞

i=1 φ(σi (TC )) if C ∈ L2(��) ⊗π L2(�),

∞ else.
(8)

Wewillmostly focus on the caseφ(x) = x , inwhich ‖·‖nuc,φ
coincides with an extension of the nuclear norm and can be

interpreted as convex relaxation of the rank. However, since
we observed a significant improvement in some cases in prac-
tice by choosing φ to be a semi-convex potential function,
i.e., a function such that φ+τ | · |2 is convex for τ sufficiently
small, we include the more general situation in the theory.

Remark 5 (Sparsity and low-rank) It is important to note that
‖C‖nuc,φ < ∞ restricts C to be contained in the smoother
space L2(��)⊗π L2(�) and in particular does not allow for
simple tensors

∑k
i=1 ci ⊗ pi with the ci ’s being composed of

delta peaks. Thus, we observe some inconsistency of a rank
penalization via the nuclear norm and a pointwise sparsity
penalty, which is only visible in the continuous setting via
regularity of functions. Nevertheless, such an inconsistency
has already been observed in the finite-dimensional setting in
the context of compressed sensing for low-rank AND sparse
matrices, manifested via a poor performance of the sum of
a nuclear norm and �1 norm for exact recovery (see [44]).
As a result, there exist many studies on improved, convex
priors for the recovery of low-rank and sparse matrices, see,
for instance, [19,49,50]. While such improved priors can be
expected to be highly beneficial for our setting, the question
does not seem to be solved in such a way that can be readily
applied in our setting.

One direct way to circumvent this inconsistency would
be to include an additional smoothing operator for C as fol-
lows: Take S ∈ L(M(��),M(��)) such that range(S) ⊂
L2(��) to be a weak*-to-weak* continuous linear operator
and define the operator Ŝ : X2 → X2 as Ŝ := S⊗ IL2 , where
IL2 denotes the identity in L2(�). Then one could alterna-
tively also use ‖SC‖nuc as alternative for penalizing the rank
of C while still allowing C to be a general measure. Indeed,
in the discrete setting, by choosing S also to be injective,
we even obtain the equality rank(SC) = rank(C) (where we
interpretC and SC as matrices). In practice, however, we did
not observe an improvement by including such a smoothing
and thus do not include Ŝ in our model.

Remark 6 (Structuredmatrix completion)Wewould also like
to highlight the structured-matrix-completion viewpoint on
the difficulty of low-rank and sparse recovery. In this context,
the work [29] discusses conditions for global optimality of
solutions to the non-convex matrix decomposition problem

min
U∈RN×k ,V ∈Rn×k

�(Y , U V T ) +
k∑

i=1

θ(Ui , Vi ) (9)

where � measures the loss w.r.t. some given data and θ(·, ·)
allows to enforce structural assumptions on the factorsU , V .
For this problem, [29] shows that rank-deficient local solu-
tions are global solutions to a convex minorant obtained
allowing k to become arbitrary large (formally, choose k =
∞) and, consequently, also globally optimal for the origi-
nal problem. Choosing �(Y , U V T ) = 0 if Y = K̂ (U V T )
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and infinity else, where K̂ is a discrete version of the lifted
convolution operator, and θ(Ui , Vi ) = ‖Ui‖2‖Vi‖1, we see
that (for simplicity ignoring the optional additional atom
constraints) the convolutional Lasso prior Ncl,s of Equa-
tion (5) can be regarded as special case of (9). Viewed in
this way, our above results show that the convex minorant
obtained with k = ∞ is in fact the convex relaxation, i.e.,
the largest possible convex minorant, of the entire problem
including the data- and the convolution term. But again, as
discussed in Sect. 3.2, we cannot expect a rank-penalizing
effect of the convex relaxation obtained in this way. An alter-
native, as mentioned in [29], would be to choose θ(Ui , Vi ) =
‖Ui‖22 +‖Vi‖22 + γ ‖Vi‖1. Indeed, while in this situation it is
not clear if the convex minorant with r = ∞ is the convex
relaxation, the former still provides a convex energy from
which one would expect a rank-penalizing effect. Thus, this
would potentially be an alternative approach that could be
used in our context with the advantage of avoiding the lifting
but the difficulty of finding rank-deficient local minima of a
non-convex energy.

3.4 Well-Posedness and a Cartoon–Texture Model

Including ‖C‖nuc,φ for C ∈ X2 as additional penalty in our
model, we ultimately arrive at the following variational tex-
ture prior in the tensor product space X2 := M(��) ⊗π

L2(�), which is convex whenever φ is convex, in particular
for φ(x) = |x |.

Nν(v) = inf
C∈X2

ν‖C‖π + (1 − ν)‖C‖nuc,φ

s.t.

{
M̂C = 0,

v = K̂ C in �,
(10)

where ν ∈ (0, 1) is a parameter balancing the sparsity and
the rank penalty.

In order to employ Nν as a regularization term in an
inverse problems setting, we need to obtain some lower
semi-continuity and coercivity properties. As a first step, the
following lemma, which is partially inspired by techniques
used in [10, Lemma 3.2], shows that, under some weak con-
ditions onφ, ‖·‖nuc,φ defines aweak* lower semi-continuous
function on X2.

Lemma 7 Assume that φ : [0,∞) → [0,∞) is lower semi-
continuous, non-decreasing, that

• φ(x) → ∞ for x → ∞ and that
• there exist ε, η > 0 such that φ(x) ≥ ηx for 0 ≤ x < ε.

Then, the functional ‖ · ‖nuc,φ : X2 → R defined as in (8) is
lower semi-continuous w.r.t. weak* convergence in X2.

Proof Take (Cn)n ⊂ X2 weak* converging to some C ∈ X2

for which, w.l.o.g., we assume that

lim inf
n

‖Cn‖nuc,φ = lim
n

‖Cn‖nuc,φ.

We only need to consider the case that (‖Cn‖nuc,φ)n is
bounded, otherwise the assertion follows trivially. Hence,
we can write TCn (x) = ∑∞

i=1 σ n
i (xn

i , x)yn
i such that

‖Cn‖nuc,φ = ∑∞
i=1 φ(σ n

i ). Now we aim to bound
(‖Cn‖π,L2⊗L2)n in terms of (‖Cn‖nuc,φ)n . To this aim, first
note that the assumptions in φ imply that for any ε′ > 0
there is η′ > 0 such that φ(x) ≥ η′x for all x < ε′. Also,
φ(σ n

i ) ≤ ‖Cn‖nuc,φ for any i, n and via a direct contradiction
argument it follows that there exists ε̂ > 0 such that σ n

i < ε̂

for all i, n. Picking η̂ such that φ(x) ≥ η̂x for all x < ε̂, we
obtain

‖Cn‖nuc,φ =
∞∑

i=1

φ(σ n
i ) ≥ η̂

∞∑
i=1

σ n
i = η̂‖Cn‖π,L2⊗L2 ,

hence (Cn)n is also bounded as a sequence in L2(��) ⊗π

L2(�) and admits a (non-relabeled) subsequenceweak* con-
verging to some Ĉ ∈ L2(��) ⊗π L2(�), with L2(��) ⊗i

L2(�) being the predual space. By the inclusion C0(��)⊗i

L2(�) ⊂ L2(��) ⊗i L2(�) and uniqueness of the weak*
limit, we finally get Ĉ = C ∈ L2(��) ⊗i L2(�) and can
write TC x = ∑∞

i=1 σi (xi , x)yi and ‖C‖nuc,φ = ∑∞
i=1 σi . By

lower semi-continuity of ‖ · ‖nuc, this would suffice to con-
clude in the case φ(x) = x . For the more general case, we
need to show a pointwise lim-inf property of the singular val-
ues. To this aim, note that by the Courant–Fischer min–max
principle (see, for instance, [12, Problem 37]) for any com-
pact operator T ∈ L(H1, H2)with H1, H2 Hilbert spaces and
λk the k-th singular value of T sorted in descending order,
we have

λk = sup
dim(V )=k

min
x∈V ,‖x‖=1

‖T x‖H2 .

Now consider k ∈ N fixed. For any subspace V with
dim(V ) = k, theminimum in the equation above is achieved,
and hence, we can denote xV to be a minimizer and define
FV (T ) := ‖T xV ‖H2 such that λk = supdim(V )=k FV (T ).
Since weak* convergence of a sequence (Tn) to T in
L2(��) ⊗π L2(�) implies in particular Tn(x)⇀T (x) for
all x , by lower semi-continuity of the norm ‖ · ‖H2 it follows
thatFV is lower semi-continuous with respect to weak* con-
vergence.Hence, this is also true for the function T �→ λk(T )

by being the pointwise supremum of a family of lower
semi-continuous functional. Consequently, for the sequence
(TCn )n it follows that σk ≤ lim infn σ n

k . Finally, by mono-
tonicity and lower semi-continuity of φ and Fatou’s lemma
we conclude
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‖TC‖nuc,φ =
∑

k

φ(σk) ≤
∑

k

φ(lim inf
n

σ n
k )

=
∑

k

lim inf
n

φ(σ n
k ) ≤ lim inf

n

∑
k

φ(σ n
k )

≤ lim inf
n

‖TCn ‖nuc,φ.

The lemma below now establishes the main properties of
Nν that in particular allow to employ it as regularization term
in an inverse problems setting.

Lemma 8 The infimum in the definition of (10) is attained
and Nν : Lq(�) → R is convex and lower semi-continuous.
Further, any sequence (vn)n such that Nν(vn) is bounded
admits a subsequence converging weakly in Lq(�).

Proof The proof is quite standard, but we provide it for the
readers convenience. Take (vn)n to be a sequence such that
(Nν(vn))n is bounded. Then, we can pick a sequence (Cn)n

in X2 such that M̂Cn = 0, vn = K̂ Cn and

ν‖Cn‖π ≤ ν‖Cn‖π + (1 − ν)‖Cn‖nuc,φ ≤ Nν(vn) + n−1

This implies that (Cn)n admits a subsequence (Cni )i weak*
converging to some C ∈ X2. Now by continuity of M̂ and K̂
we have that M̂C = 0 and that (vni )i = (K̂ Cni )i is bounded.
Hence also (vni )i admits a (non-relabeled) subsequence con-
vergingweakly to some v = K̂ C . This already shows the last
assertion. In order to show lower semi-continuity, assume that
(vn)n converges to some v and,without loss of generality, that

lim inf
n

Nν(vn) = lim
n

Nν(vn).

Now this is a particular case of the argumentation above;
hence, we can deduce with (Cn)n as above that

Nν(v) ≤ ν‖C‖π + (1 − ν)‖C‖nuc,φ
≤ lim inf

i
ν‖Cni ‖π + (1 − ν)‖Cni ‖nuc,φ

≤ lim inf
i

Nν(vni ) + ni
−1 = lim inf

n
Nν(vn)

which implies lower semi-continuity. Finally, specializing
even more to the case that (vn)n is the constant sequence
(v)n , also the claimed existence follows.

In order to model a large class of natural images and to
keep the number of atoms needed in the above texture prior
low, we combine it with a second part that models cartoon-
like images. Doing so, we arrive at the following model

min
u,v∈Lq (�)

λD(Au, f0) + s1(μ)R(u − v) + s2(μ)Nν(v) (P)

where we assume R to be a functional that models cartoon
images, D(·, f0) : Y → R is a given data discrepancy, A ∈

L(Lq(�), Y ) a forward model and we define the parameter
balancing function

s1(μ) = 1 − min(μ, 0), s2(μ) = 1 + max(μ, 0). (11)

Now we get the following general existence result.

Proposition 9 Assume thatR : Lq(�) → R is convex, lower
semi-continuous and that there exists a finite-dimensional
subspace U ⊂ Lq(�) such that for any u ∈ Lq(�), v ∈ U⊥,
w ∈ U,

‖v‖q ≤ �R(v), and R(u + w) = R(u)

with � > 0 and U⊥ denoting the complement of U in
Lq(�). Further assume that A ∈ L(Lq(�), Y ), D(·, f0) is
convex, lower semi-continuous and coercive on the finite-
dimensional space A(U ) in the sense that for any two
sequences (u1

n)n, (u2
n)n such that (u1

n)n ⊂ U, (u2
n)n

is bounded and (D(A(u1
n + u2

n), f0))n is bounded, also
(‖Au1

n‖q)n is bounded. Then, there exists a solution to (P).

Remark 10 Note that, for instance, in caseD satisfies a trian-
gle inequality, the sequence (u2

n) in the coercivity assumption
is not needed, i.e., can be chosen to be zero.

Proof The proof is rather standard, and we provide only a
short sketch. Take ((un, vn))n a minimizing sequence for
(P). From Lemma 8, we get that (vn)n admits a (non-
relabeled) weakly convergent subsequence. Now we split
un = u1

n + u2
n ∈ U + U⊥ and vn = v1n + v2n ∈ U + U⊥

and by assumption get that ‖u2
n − v2n‖q is bounded. But

since (‖vn‖q)n is bounded, so is (‖v2n‖q)n and consequently
also (‖u2

n‖q)n . Now we split again u1
n = u1,1

n + u1,2
n ∈

ker(A) ∩ U + (ker(A) ∩ U )⊥, where the latter denotes
the complement of (ker(A) ∩ U )⊥ in U , and note that also
(u1,2

n + u2
n, vn) is a minimizing sequence for (P). Hence,

it remains to show that (u1,2
n )n is bounded in order to get

a bounded minimizing sequence. To this aim, we note that
(u1,2

n )n ⊂ (ker(A) ∩ U )⊥ ∩ U and that A is injective on
this finite-dimensional space. Hence, ‖u1,2

n ‖q ≤ �̃‖Au1,2
n ‖q

for some �̃ > 0, and by the coercivity assumption on the
data term we finally get that (‖u1,2

n ‖q)n is bounded. Hence,
also (u1,2

n + u2
n)n admits a weakly convergent subsequence

in Lq(�) and by continuity of A as well as lower semi-
continuity of all involved functionals existence of a solution
follows.

Remark 11 (Choice of regularization) A particular choice of
regularization for R in (P) that we consider in this paper is
R = TGV2

α , with TGV2
α the second-order total generalized

variation functional [9], q ≤ d/(d − 1) and

Mp :=
(∫

�

p(x) dx,

∫
�

p(x1, x2)x1 dx,

∫
�

p(x1, x2)x2 dx

)
.
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Since in this case [7,11]

‖u‖q ≤ �TGV2
α(u)

with � > 0 and for all u ∈ P1(�)⊥, the complement of the
first-order polynomials, and TGV2

α is invariant on first-order
polynomials, the result of Proposition 9 applies.

Remark 12 (Norm-type data terms) We also note that the
result of Proposition 9 in particular applies to D(w, f0) :=
1
r ‖w − f0‖r

r for any r ∈ [1,∞) orD(w, f0) := ‖w − f ‖∞,
where we extend the norms by infinity to Lq(�) whenever
necessary. Indeed, lower semi-continuity of these norms is
immediate for both r ≤ q and r > q, and since the coercivity
is only required on a finite-dimensional space, it also holds
by equivalence of norms.

Remark 13 (Inpainting) At last we also remark that the
assumptions of Proposition 9 also hold for an inpainting data
term defined as

D(w, f0) :=
{
0 if w = f0 a.e. on ω ⊂ �

∞ else,

whenever ω has non-empty interior. Indeed, lower semi-
continuity follows from the fact that Lq convergent sequences
admit pointwise convergent subsequences and the coercivity
follows from finite dimensionality of U and the fact that ω

has non-empty interior.

Remark 14 (Regularization in a general setting)We also note
that Lemma 8 provides the basis for employing either Nν

directly or its infimal convolution with a suitable cartoon
prior as in Proposition 9 for the regularization of general
(potentially nonlinear) inverse problems and with multiple
data fidelities, see, for instance, [31,32] for general results in
that direction.

4 TheModel in a Discrete Setting

This section deals with the discretization of the proposed
model and its numerical solution. For the sake of brevity, we
provide only themain steps and refer to the publicly available
source code [16] for all details.

We define U = R
N×M to be the space of discrete

grayscale images, W = R
(N+n−1)×(M+n−1) to be the space

of coefficient images and Z = R
n×n to be the space of

image atoms for which we assume n < min{N , M} and,
for simplicity, only consider a square domain for the atoms.
The tensor product of a coefficient image c ∈ W and a
atom p ∈ Z is given as (c ⊗ p)i, j,r ,s = ci, j pr ,s and the

lifted tensor space is given as the four-dimensional space

X = R
(N+n−1)×(M+n−1)×n×n .

Texture Norm The forward operator K being the lifting of
the convolution c ∗ p and mapping lifted matrices to the
vectorized image space is then given as

(K C)i, j =
n,n∑

r ,s=1

Ci+n−r , j+n−s,r ,s

and we refer Fig. 1 for a visualization in the one-dimensional
case. Note that by extending the first two dimensions of the
tensor space to N + n − 1, M + n − 1 we allow to place
an atom at any position where it still effects the image, also
partially outside the image boundary.

Also we note that, in order to reduce dimensionality and
accelerate the computation, we introduce a stride parameter
η ∈ N in practice which introduces a stride on the possible
atom positions. That is, the lifted tensor space and forward
operator are reduced in such a way that the grid of possible
atom positions in the image is essentially {(ηi, η j) | i, j ∈
N, (ηi, η j) ∈ {1, . . . , N } × {1, . . . , M}}. This reduces the
dimension of the tensor space by a factor η−2, while for
η > 1 it naturally does not allow for arbitrary atom positions
anymore and for η = n it corresponds to only allowing non-
overlapping atoms. In order to allow for atoms being placed
next to each other, it is important to choose η to be a divisor
of the atom-domain size n and we used n = 15 and η = 3
in all experiments of the paper. In order to avoid extensive
indexing and case distinctions, however, we only consider
the case η = 1 here and refer to the source code [16] for the
general case.

A straightforward computation shows that, in the discrete
lifted tensor space, the projective norm corresponding to dis-
crete ‖ · ‖1 and ‖ · ‖2 norms for the coefficient images and
atoms, respectively, is given as a mixed 1-2 norm as

‖C‖π = ‖C‖1,2 =
N ,M∑

i, j=1

√√√√ n,n∑
r ,s=1

C2
i, j,r ,s .

The nuclear norm for a potential φ on the other hand reduces
to the evaluation of φ on the singular values of a matrix
reshaping of the lifted tensors and is given as

‖C‖nuc,φ =
nn∑

i=1

φ(σi ),

with (σi )i the singular values of B = [C(N M,nn)].

where [C(N M,nn)] denotes a reshaping of the tensor C to
a matrix of dimensions N M × nn. For the potential func-
tion φ, we consider two choices: Mostly we are interested in
φ(x) = x which yields a convex texture model and enforces
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x

φ(x)

Fig. 3 Visualization of the potential φ.

sparsity of the singular values. A second choice we consider
is φ : [0,∞) → [0,∞) given as

φ(x) =
{

x − εδx2 x ∈ [0, 1
2ε ]

(1 − δ)x + δ
4ε else,

(12)

where δ < 1, δ ≈ 1 and ε > 0, see Fig. 3. It is easy to
see that φ fulfills the assumptions of Lemma 7 and that φ is
semi-convex, i.e., φ +ρ| · |2 is convex for ρ > δε. While the
results of Sect. 3 hold for this setting even without the semi-
convexity assumption, we cannot in general expect to obtain
an algorithm that provably delivers a globally optimal solu-
tion in the semi-convex (or generally non-convex) case. The
reason for using a semi-convex potential rather than a arbi-
trary non-convex one is twofold: First, for a suitably small
stepsize τ the proximal mapping

proxτ,φ(û) = argmin
u

‖u − û‖22
2τ

+ φ(u)

is well defined and hence proximal-point-type algorithms are
applicable at least conceptually. Second, since we employ φ

on the singular values of the lifted matrices C , it will be
important for numerical feasibility of the algorithm that the
corresponding proximal mapping on C can be reduced to a
proximal mapping on the singular values. While this is not
obvious for a general choice of φ, it is true (see Lemma 15)
for semi-convex φ with suitable parameter choices.
Cartoon Prior As cartoon prior we employ the second-order
total generalized variation functional which we define for
fixed parameters (α0, α1) = (

√
2, 1) and a discrete image

u ∈ U as

TGV2
α(u) = min

v∈U2
α1‖∇u − v‖1 + α0‖Ev‖1.

Here, ∇ and E denote discretized gradient and sym-
metrized Jacobian operators, respectively, and we refer to
[8] and the source code [16] for details on a discretization of
TGV2

α . To ensure a certain orthogonality of the cartoon and
texture parts, we further define the operator M that incorpo-
rates atom constraints, to evaluate the 0th and 1st moments
of the atoms, which in the lifted setting yields

(MC)i, j :=
⎛
⎝ n,n∑

r ,s=1

Ci, j,r ,s,

n,n∑
r ,s=1

rCi, j,r ,s,

n,n∑
r ,s=1

sCi, j,r ,s

⎞
⎠ .

The discrete version of (P) is then given as

min
u∈U ,C∈X

MC=0

λD(Au, f0) + s1(μ)TGV2
α(u − K C) (DP)

+ s2(μ)
(
ν‖C‖1,2 + (1 − ν)‖C‖nuc,φ

)
,

where the parameter balancing functions s1, s2 are given as
in (11) and the model depends on three parameters λ,μ, ν,
with λ defining the trade-off between data and regularization,
μ defining the trade-off between the cartoon and the texture
parts and ν defining the trade-off between sparsity and low
rank of the tensor C .
Numerical Solution For the numerical solution of (DP), we
employ the primal–dual algorithm of [17]. Since the concrete
form of the algorithm depends on whether the proximal map-
ping of the data term u �→ D(Au, f0) is explicit or not, in
order to allow for a unified version as in Algorithm 1, we
replace the data term D(Au, f0) by

D1(Au, f0) + D2(u, f0)

where we assume the proximal mappings of v �→ Di (v, f0)
to be explicit and, depending on the concrete application, set
either D1 or D2 to be the constant zero function.

Denoting by g∗(v) := supw(v,w) − g(w) the convex
conjugate of a function g, with (·, ·) being the standard inner
product of the sum of all pointwise products of entries of v

and w, we reformulate (DP) to a saddle-point problem as

(DP) ⇔ min
u∈U ,C∈X

λD1(Au, f0) + λD2(u, f0) + s1(μ)TGV2
α(u − K C) + s2(μ)(ν‖C‖1,2

+(1 − ν)‖C‖nuc,φ) + Iker(M)(C)

⇔ min
u∈U ,C∈X

v∈U2

max
p,q,d,r ,m

(Au, d) − (λD1(·, f0))
∗(d) + (∇(u − K C) − v, p) − I‖·‖∞≤α1s1(μ)(p)

+(Ev, q) − I‖·‖∞≤α0s1(μ)(q) + (C, r) − (s2(μ)ν‖ · ‖1,2)∗(r)

+(MC, m) − I∗{0}(m) + λD2(u, f0) + s2(μ)(1 − ν)‖C‖nuc,φ
⇔ min

x=(u,v,C)
max

y=(p,q,d,r ,m)
(Ex, y) − F∗(y) + G(x).
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Algorithm 1 Scheme of implementation for the numerical
solution of (DP)

1: function cart_text_recon( f0)

2: (u, v, C) ← (0, 0, 0),

(p, q, d, r , m) ← (0, 0, 0, 0, 0)

3: choose σ, τ > 0

4: repeat

5: Dual updates

6: p ← projα1
(

p + σ(∇(u − K C) − v)
)

7: q ← projα0(q + σEv)

8: d ← proxσ,(λD1(·, f0))∗(d + σ Au)

9: r ← proxσ,(s2(μ)ν‖·‖1,2)∗(r + σC)

10: m ← (m + σ MC)

11: Primal updates

12: u+ ← proxτ,λD2(·, f0)(u − τ(∇∗ p + A∗d))

13: v+ ← v − τ(−p + E∗q)

14: C+ ← proxτ,s2(μ)(1−ν)‖·‖nuc,φ (C − τ(−K ∗∇∗ p +
r + M∗m)

15: Extrapolation and update

16: (u, v, C) ← 2(u+, v+, C+) − (u, v, C),

17: (u, v, C) ← (u+, v+, C+)

18: until Stopping criterion fulfilled

19: return (u+, K C+,RSV(C+))

20: end function

Here, the dual variables (p, q, d, r , m) ∈ (U 2, U 3, A(U ),

U , U 3) are in the image space of the corresponding opera-
tors, IS(z) = 0 if z ∈ S and IS(z) = ∞ else, {‖ · ‖∞ ≤
δ} := {z | ‖z‖∞ ≤ δ} with ‖z‖∞ = ‖(z1, . . . , zl)‖∞ =
supi, j

√∑l
s=1(z

s
i, j )

2 a pointwise infinity norm on z ∈ Ul .
The operator E and the functional G are given as

E(u, v, C) = (∇u − ∇K C − v, Ev, Au, C, MC),

G(x) = G(u, v, C) = λD2(u, f0)

+s2(μ)(1 − ν)‖C‖nuc,φ

and F∗(y) = F∗(p, q, d, r , m) summarizes all the conju-
gate functionals as above. Applying the algorithm of [17] to
this reformulation yields the numerical scheme as in Algo-
rithm 1.

Note that, we set either D1(·, f0) ≡ 0 such that the dual
variable d is constant 0 and line 9 of the algorithm can be
skipped, or we set D2(·, f0) ≡ 0 such that the proximal
mapping in line 13 reduces to the identity. The concrete
choice ofD1, D2 and the proximal mappings will be given in
the corresponding experimental sections. All other proximal

mappings can be computed explicitly and reasonably fast:
The mappings projα1 and projα1 can be computed as point-
wise projections to the L∞-ball (see, for instance, [8]) and
the mapping proxσ,(s2(μ)ν‖·‖1,2)∗ is a similar projection given
as

proxσ,(s2(μ)ν‖·‖1,2)∗(C)i, j,l,s

= Ci, j,l,s/

⎛
⎝max

⎧⎨
⎩1, (

n,n∑
l,s=1

C2
i, j,l,s)

1/2/(s2(μ)ν)

⎫⎬
⎭
⎞
⎠ .

Most of the computational effort lies in the computation of
proxτ,s2(μ)(1−ν)‖·‖nuc,φ , which, as the following lemma shows,
can be computed via an SVD and a proximal mapping on the
singular values.

Lemma 15 Let φ : [0,∞) → [0,∞) be a differentiable
and increasing function and τ, ρ > 0 be such that x �→
x2
2τ +ρφ(x) is convex on [0,∞). Then, the proximal mapping
of ρ‖ · ‖nuc,φ for parameter τ is given as

proxτ,ρ‖·‖nuc,φ
(C) = [(U diag((proxτ,ρφ(σi ))i )V T )((N ,M,n,n))]

where [C(N M,nn)] = U�V T is the SVD of [C(N M,nn)] and
for x0 ≥ 0

proxτ,ρφ(x0) = min
x

|x − x0|2
2τ

+ ρφ(|x |).

In particular, in case φ(x) = x we have

proxτ,ρφ(x0) =
{
0 if 0 ≤ x0 ≤ τρ,

x0 − τρ else,

and in case

φ(x) =
{

x − εδx2 if x ∈ [0, 1
2ε ],

(1 − δ)x + δ
4ε else,

we have that x �→ x2
2τ + ρφ(x) is convex whenever τ ≤ 1

2εδρ
and in this case

proxτ,ρφ(x0) =

⎧⎪⎨
⎪⎩
0 if 0 ≤ x0 ≤ τρ,

x0−τρ
1−2εδτρ if τρ < x0 ≤ 1

2ε + τρ(1 − δ),

x0 − τρ(1 − δ) if 1
2ε + τρ(1 − δ) < x0.

Proof At first note that it suffices to consider ρ‖ · ‖nuc,φ as
a function on matrices and show the assertion without the
reshaping operation. For any matrix B, we denote by B =
UB�B V T

B the SVD of B and �B = diag((σ B
i )i ) contains

the singular values sorted in non-increasing order, where�B

is uniquely determined by B and UB, VB are chosen to be
suitable orthonormal matrices.
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We first show that G(B) := ‖B‖22
2τ + ρ‖B‖nuc,φ is convex.

For λ ∈ [0, 1], B1, B2 matrices, we get by subadditivity of
the singular values (see, for instance, [60]) that

G(λB1 + (1 − λ)B2)

=
∑

i

1

2τ
(σ

λB1+(1−λ)B2
i )2 + ρφ(σ

λB1+(1−λ)B2
i )

≤
∑

i

1

2τ
(λσ

B1
i + (1 − λ)σ

B2
i )2 + ρφ(λσ

B1
i + (1 − λ)σ

B2
i )

≤
∑

i

λ

2τ
(σ

B1
i )2 + 1 − λ

2τ
(σ

B2
i )2 + ρλφ(σ

B1
i ) + ρ(1 − λ)φ(σ

B2
i )

≤ λG(B1) + (1 − λ)G(B1).

Now with H(B) := ‖B−B0‖22
2τ + ρ‖B‖nuc,φ we get that

H(B) = G(B) − 1
2τ (2(B, B0) + ‖B0‖22), and thus, also H

is convex. Hence, first-order optimality conditions are nec-
essary and sufficient and we get (using the derivative of the
singular values as in [45]) with DH the derivative ofH that
B = proxτ,ρ‖·‖nuc,φ (B0) is equivalent to

0 = DH(B) = (B − B0) + τρUB diag((φ′(σ B
i ))i )V T

B

= −B0 + UB(�B + τρ diag((φ′(σ B
i ))i ))V T

B

and consequently to

σ
B0

i = σ B
i + τρφ′(σ B

i )

which is equivalent to

σ Bi = proxτ,ρφ(σ
B0

i )

as claimed. The other results follow by direct computation.

Note also that, in Algorithm 1, K C+ returns the part of the
image that is represented by the atoms (the “texture part”) and
RSV(C+) stand for right-singular values of [(C+)(N M,nn)]
and returns the image atoms. For the sake of simplicity, we
use a rather high, fixed number of iterations in all experiment
but note that, alternatively, a duality-gap-based stopping cri-
terion (see, for instance, [8]) could be used.

5 Numerical Results

In this section, we present numerical results obtained with
the proposed method as well as its variants and compare to
existing methods. We will mostly focus on the setting of
(DP), where φ(x) = |x |, and we use different data terms
D. Hence, the regularization term is convex and consists of
TGV2

α for the cartoon part and a weighted sum of a nuclear

norm and �1,2 norm for the texture part. Besides this choice
of regularization (called CT-cvx), we will compare to pure
TGV2

α regularization (called TGV), the setting of (DP) with
the semi-convex potential φ as in (12) (call CT-scvx) and
the setting of (DP) with TGV replaced by I{0}, i.e., only
the texture norm is used for regularization, and φ(x) = |x |
(calledTXT). Further, in the last subsection,we also compare
to other methods as specified there. For CT-cvx and CT-scvx,
we use the algorithmdescribed in the previous section (where
convergence can only be ensured for CT-cvx), and for the
other variants we use an adaption of the algorithm to the
respective special case.

We fix the size of the atom domain to 15×15 pixel and the
stride to 3 pixel (see Sect. 4) for all experiments and use four
different test images (see Fig. 4): The first two are synthetic
images of size 120 × 120, containing four different blocks
of size 60× 60, whose size is a multiple of the chosen atom-
domain size. The third and fourth images have size 128×128
(not being a multiple of the atom-domain size), and the third
image contains four sections of real images of size 64 × 64
each (again not a multiple of the atom-domain size). All but
the first image contain a mixture of texture and cartoon parts.
The first four subsections consider only convex variants of
our method (φ(x) = |x |), and the last one considers the
improvement obtained with a non-convex potential φ and
also compares to other approaches.

Regarding the choice of parameters for all methods, we
generally aimed to reduce the number of varying parame-
ters for each method as much as possible such that for each
method and type of experiment, at most two parameters need
to be optimized. Whenever we incorporate the second-order
TGV functional for the cartoon part, we fix the parameters
(α0, α1) to (

√
2, 1). The method CT-cvx then essentially

depends on the three parameters λ,μ, ν. We experienced
that the choice of ν is rather independent of the data and
type of experiments; hence, we leave it fixed for all experi-
ments with incomplete or corrupted data, leaving our method
with two parameters to be adapted: λ defining the trade-off
between data and regularization and μ defining the trade-off
between cartoon and texture regularization. For the semi-
convex potential, we choose ν as with the convex one, fix
δ = 0.99 and use two different choices of ε, depending on
the type of experiment, hence again leaving two parameters
to be adapted. A summary of the parameter choice for all
methods is provided in Table 2.

We also note that, whenever we tested a range of different
parameters for any method presented below, we show the
visually best results in the figure. Those are generally not
the ones delivering the best result in terms of peak-signal-to-
noise ratio, and for the sake of completeness we also provide
in Table 1 the best PSNR result obtained with each method
and each experiment over the range of tested parameters.
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Fig. 4 Different test images we will refer to as: Texture, Patches, Mix, Barbara

Table 1 Best PSNR result achievedwith eachmethod for the parameter
test range as specified in Table 2

Texture Patches Mix Barbara

Inpainting

TGV 10.32 19.28 20.19 20.58

TXT/ CT-cvx 17.59 25.55 23.38 23.48

CT-scvx 32.74 23.6

Denoising

TGV 11.83 23.96 23.74 23.99

TXT/ CT-cvx 16.06 25.91 26.07 25.0

CT-scvx 29.4 25.56

CL 29.09 25.14

BM3D 30.82 28.15

CDL 27.96 25.24

Deconvolution

TGV 23.72 23.14

CT-cvx 24.52 23.34

The best result for each experiment is written in bold

5.1 Image-Atom-Learning and Texture Separation

As first experiment, we test the method CT-cvx for learning
image atoms and texture separation directly on the ground
truth images. To this aim, we use

D1 ≡ 0, D2(u, f0) = I{0}(u − f0),

and the proximal mapping ofD2 is a simple projection to f0.
The results can be found in Fig. 5, where for the pure texture
image we used only the texture norm (i.e., the method TXT)
without the TGV part for regularization.

It can be observed that the proposed method achieves a
good decomposition of cartoon and texture and also is able
to learn themost important image structure effectively.While
there are some repetitions of shifted structures in the atoms,
the different structures are rather well-separated and the first

nine atoms corresponding to the nine largest singular values
still contain the most important features of the texture parts.

5.2 Inpainting and Learning from Incomplete Data

This section deals with the task of inpainting a partially avail-
able image and learning image atoms from these incomplete
data. For reference, we also provide results with pure TGV2

α

regularization (the method TGV). The data fidelity in this
case is

D1 ≡ 0, D2(u, f0) = I{v | vi, j =( f0)i, j for (i, j)∈E}(u),

with E the index set of known pixels and the proximal map-
ping of D2 is a projection to f0 on all points in E . Again
we use only the texture norm for the first image (the method
TXT) and the cartoon–texture functional for the others.

The results can be found in Fig. 6. For the first and third
images, 20%of the pixelswere given,while for the other two,
30% were given. It can be seen that our method is generally
still able to identify the underlying pattern of the texture part
and to reconstruct it reasonably well. Also the learned atoms
are reasonable and are in accordance with the ones learned
from the full data as in the previous section. In contrast to that,
pure TGV regularization (which assumes piecewise smooth-
ness) has no chance to reconstruct the texture patterns. For
the cartoon part, both methods are comparable. It can also
be observed that the target-like structure in the bottom right
of the second image is not reconstructed well and also not
well identified with the atoms (only the eighth one contains
parts of this structure). The reason might be that due to the
size of the repeating structure there is not enough redundant
information available to reconstruct it from the missing data.
Concerning the optimal PSNR values of Table 1, we can
observe a rather strong improvement with CT-cvx compared
to TGV.

5.3 Learning and Separation Under Noise

In this section, we test our method for image-atom-learning
and denoising with data corrupted by Gaussian noise (with
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Fig. 5 Cartoon–texture
decomposition (rows 2–4) and
nine most important learned
atoms for different test images
and the methods TXT (row 1)
and CT-cvx (rows 2–4)

standard deviation 0.5 and 0.1 times the image range for
the Texture and the other images, respectively). Again we
compare to TGV regularization in this section (but also to
other methods in Sect. 5.5) and use the texture norm for the
first image (the method TXT). The data fidelity in this case
is

D1 ≡ 0, D2(u, f0) = 1

2
‖u − f0‖22

and proxτ,λD2(·, f0)(u) = (u + τλ f0)/(1 + τλ).
The results are provided in Fig. 7. It can be observed that

also under the presence of rather strong noise, our method is

able to learn someof themain features of the imagewithin the
learned atoms. Also the quality of the reconstructed image
is improved compared to TGV, in particular for the right-
hand side of the Mix image, where the top left structure is
only visible in the result obtained with CT-cvx. On the other
hand, the circle of the Patches image obtained with CT-cvx
contains some artifacts of the texture part. Regarding the opti-
mal PSNR values of Table 1, the improvement with CT-cvx
compared to TGV is still rather significant.
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Fig. 6 Image inpainting from incomplete data. From left to right: Data, TGV-based reconstruction, proposed method (only TXT in first row), nine
most important learned atoms. Rows 1, 3: 20% of pixels, rows 2, 4: 30% of pixels

5.4 Deconvolution

This section deals with the learning of image features and
image reconstruction in an inverse problem setting,where the
forward operator is given as a convolution with a Gaussian
kernel (standard deviation 0.25, kernel size 9 × 9 pixels),
and the data are degraded by Gaussian noise with standard
deviation 0.025 times the image range. The data fidelity in
this case is

D1(u, f0) = 1

2
‖Au − f0‖22, D2 ≡ 0,

with A being the convolution operator, and proxσ,(λD1(·, f0))∗
(u) = (u − σ f0)/(1 + σ/λ).

We show results for the Mix and the Barbara image and
compare toTGV inFig. 8. It can be seen that the improvement
is comparable to the denoising case. In particular, themethod
is still able to learn reasonable atoms from the given, blurry
data and in particular for the texture parts the improvement
is quite significant.

5.5 Comparison

This section compares the method CT-cvx to its semi-convex
variant CT-scvx and to other methods. At first, we con-
sider the learning of atoms from incomplete data and image
inpainting in Fig. 9. It can be seen there that for the Patches
image, the semi-convex variant achieves an almost perfect
results: It is able to learn exactly the three atoms that compose
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Fig. 7 Denoising and atom learning. From left to right: Noisy data, TGV-based reconstruction, proposed method (only TXT for the first image),
nine most important learned atoms

the texture part of the image and to inpaint the image very
well. For theBarbara image,wheremore atomsare necessary
to synthesize the texture part, the two methods yield similar
results and also the atoms are similar. These results are also
reflected in the PSNR values of Table 1, where CT-scvx is
more that 7 decibel better for the Patches image and achieves
only a slight improvement for Barbara.

Next we consider the semi-convex variant CT-scvx for
denoising the Patches and Barbara images of Fig. 7. In this
setting, also other methods are applicable and we compare
to an own implementation of a variant of the convolutional
Lasso algorithm (calledCL), toBM3Ddenoising [22] (called
BM3D) and to a reference implementation for convolutional

dictionary learning (called CDL). For CL, we strive to solve
the non-convex optimization problem

min
u,(ci )i ,(pi )i

TVρ

(
u −

k∑
i=1

ci ∗ pi

)
+

k∑
i=1

‖ci‖1 + ‖u − f0‖22

s.t. ‖pi‖2 ≤ 1,
∫

pi = 0 for i = 1, . . . , k

where (ci )i are coefficient images, pi are atoms and k is the
number of used atoms. Note that we use the same boundary
extension, atom-domain size and stride variable than in the
methods CT-cvx, CT-scvx, and that TVρ denotes a discrete
TV functionalwith a slight smoothing of the L1 norm tomake
it differentiable (see the source code [16] for details). For the
solution, we use an adaption of the algorithm of [48]. For
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Fig. 8 Reconstruction from blurry and noisy data. From left to right: Data, TGV, proposed, learned atoms

Fig. 9 Comparison of CT-cvx and CT-scvx for inpainting with 30% of the pixels given. From left to right: Data, convex, semi-convex, convex
atoms (top), semi-convex atoms (bottom)

BM3D, we use the implementation obtained from [34]. For
CDL, we use a convolutional dictionary learning implemen-
tation provided by the SPORCO library [56,64], and more
precisely, we adapted the convolutional dictionary learning
example (cbpdndl_cns_gry) which uses a dictionary learning
algorithm (dictlrn.cbpdndl.ConvBPDNDictLearn) based on
the ADMM consensus dictionary update [28,57]. Note that
CDL addresses the same problem as CL, however, instead of
including the TV component the image is high-pass-filtered
prior to dictionary learning using Tikhonov regularization.

Remark 16 Wenote that, while we provide the comparison to
BM3D in order to have a reference on achievable denoising

quality, we do not aim to propose an improved denoising
method that is comparable to BM3D. In contrast to BM3D,
our method constitutes a variational (convex) approach, that
is generally applicable for inverse problems and for which
we were able to provide a detailed analysis in function space
such that in particular stability and convergence results for
vanishing noise can be proven. Furthermore, beyond mere
image reconstruction, we regard the ability of simultaneous
image-atom-learning and cartoon–texture decomposition as
an important feature of our approach.

Results for the Patches and Barbara image can be found
in Fig. 10, where for CL and CDLwe allowed for three atoms

123



Journal of Mathematical Imaging and Vision (2020) 62:417–444 439

Fig. 10 Comparison of different methods for denoising thePatches and
Barbara images from Fig. 7. First row for each image, from left to right:
Noisy data, BM3D, CDL. Second row for each image, from left to right:

CL, CT-cvx and CT-scvx. The four most important learned atoms are
shown right to the image, if applicable

for thePatches images an tested 3, 5, and 7 atoms for theBar-
bara image, showing the best result that was obtained with 7
atoms.Note that for allmethods, parameterswere chosen and
optimized according to Table 2 and for the CDL method we
also tested the standard setting of 64 atomsof size 8×8,which
performed worse than the choice of 7 atoms. In this context,
it is important to note that the implementation of CDL was
designed for dictionary learning from a set of clean training
images, for which it makes sense to learn a large number of
atoms. When “misusing” the method for joint learning and

denoising, it is natural that the number of admissible atoms
needs to be constraint to achieve a regularizing effect.

Looking at Fig. 10, it can be seen that, as with the inpaint-
ing results, CT-scvx achieves a very strong improvement
compared to CT-cvx for the Patches image (obtaining the
atoms almost perfectly) and only a slight improvement for
the Barbara image. Regarding the Patches image, the CL
and CDL methods perform similar but slightly worse than
CT-scvx. While there, also the three main features are iden-
tified correctly, they are not centered which leads to artifacts
in the reconstruction and might be explained by the methods
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Table 2 Parameter choice for all methods and experiments used in the
paper. Here, λ always defines the trade-off between data fidelity and
regularization, μ defined the trade-off between cartoon and texture, ν

defined the trade-off between the 1/2 normand the penalization of singu-

lar values and ε defines the degree of non-convexity for the semi-convex
potential. Whenever a parameter was optimized over a certain range for
each experiment, we write opt

CT-cvx CT-scvx TGV TXT BM3D CL CDL

λ μ ν λ μ ν ε λ λ ν λ λ μ λ

Dcp. – opt 0.95 – 0.75

Inp. – opt 0.975 - opt 0.975 0.1 – – 0.975

Den. opt opt 0.975 opt opt 0.975 2.0 opt opt 0.975 opt opt opt opt

Dcv. opt opt 0.975 opt

being stuck in a local minimum. For this image, the result of
BM3D is comparable but slightly smoother than the ones of
CT-scvx. In particular, the target-like structure in the bottom
left is not very well reconstructed with BM3D but suffers
from less remaining noise. For the Barbara image, BM3D
delivers the best result, but a slight over-smoothing is visible.
Regarding the PSNR values of Table 1, BM3D performs best
and CT-scvx second best (better that CL and CDL), where in
accordance with the visual results the difference of BM3D
and CT-scvx for the Patches image is not as high as with
Barbara.

6 Discussion

Using lifting techniques, we have introduced a (potentially
convex) variational approach for learning image atoms from
corrupted and/or incomplete data. An important part of our
work is the analysis of the proposed model, which shows
well-posedness results in function space for a general inverse
problem setting. The numerical part shows that indeed our
model can effectively learn image atoms from different types
of data. While this works well also in a convex setting, mov-
ing to a semi-convex setting (which is also captured by our
theory) yields a further, significant improvement. While the
proposedmethod can also be regarded solely as image recon-
struction method, we believe its main feature is in fact the
ability to learn image atoms from incomplete data in a math-
ematically well-understood framework. In this context, it is
important to note that we expect our approach to work well
whenever the non-cartoon part of the underlying image is
well describedwith only a fewfilters. This is natural, sincewe
learn only from a single dataset and allowing for a large num-
ber of different atoms will remove the regularization effect
of our approach.

As discussed in introduction, the learning of convolutional
image atoms is strongly related to a deep neural networks, in
particular also when using a multilevel setting. Motivated by
this, future research questions are an extension of ourmethod
in this direction as well as is exploration for classification
problems.
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A Appendix: Tensor Spaces

We recall here some basic results on tensor products of
Banach spaces that will be relevant for our work. Most of
these results are obtained from [24,53], to which we refer to
for further information and a more complete introduction to
the topic.

Throughout this section, let always (X , ‖ · ‖X ), (Y , ‖ ·
‖Y ), (Z , ‖ · ‖Z ) be Banach spaces. By X∗, we denote the
analytic dual of X , i.e., the space of bounded linear function-
als from X to R. By L(X , Y ) and B(X × Y , Z), we denote
the spaces of bounded linear and bilinear mappings, respec-
tively, where the norm for the latter is given by ‖B‖B =
sup{‖B(x, y)‖Z | ‖x‖X ≤ 1, ‖y‖Y ≤ 1}. In case the image
space is the reals, we write L(X) and B(X × Y ).
Algebraic Tensor Product The tensor product x ⊗ y of two
elements x ∈ X , y ∈ Y can be defined as a linear mapping
on the space of bilinear forms on X × Y via

x ⊗ y(A) = A(x, y),

The algebraic tensor product X ⊗Y is then defined as the sub-
space of the space of linear functionals on B(X , Y ) spanned
by elements x ⊗ y with x ∈ X , y ∈ Y .
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Tensor Norms We will use two different tensor norms, the
projective and the injective tensor norm (also known as the
largest and smallest reasonable cross norm, respectively).
The projective tensor normon X⊗Y is defined forC ∈ X⊗Y
as

‖C‖π := inf

{
n∑

i=1

‖xi‖X‖yi‖Y | C =
n∑

i=1

xi ⊗ yi , n ∈ N

}
.

Note that indeed ‖ ·‖π is a norm and ‖x ⊗ y‖π = ‖x‖X‖y‖Y

(see [53, Proposition 2.1]). We denote by X ⊗π Y the com-
pletion of the space X ⊗ Y equipped with this norm. The
following result gives a useful representation of elements in
X ⊗π Y and their projective norm.

Proposition 17 For C ∈ X ⊗π Y and ε > 0, there exist
bounded sequences (xn)n ⊂ X, (yn)n ⊂ Y such that

C =
∞∑

i=1

xn ⊗ yn and
∞∑

i=1

‖xn‖X‖yn‖Y < ‖C‖π + ε.

In particular,

‖C‖π = inf

{ ∞∑
i=1

‖xi‖X‖yi‖Y | C =
∞∑

i=1

xi ⊗ yi

}
.

Now for the injective tensor norm, we note that ele-
ments of the tensor product X ⊗ Y can be viewed as
bounded bilinear forms on X∗ × Y ∗ by associating with a
tensor C = ∑n

i=1 xi ⊗ yi the bilinear form BC (φ,ψ) =∑n
i=1 φ(xi )ψ(yi ), where this association is unique (see [53,

Section 1.3]). Hence, X ⊗Y can be regarded as a subspace of
B(X∗×Y ∗) and the injective tensor norm is the norm induced
by this space. Thus, forC = ∑n

i=1 xi ⊗yi the injective tensor
norm ‖ · ‖i is given as

‖C‖i = sup

{∣∣∣∣∣
n∑

i=1

φ(xi )ψ(yi )

∣∣∣∣∣ | ‖φ‖X∗ ≤ 1, ‖ψ‖Y ∗ ≤ 1

}

and the injective tensor product X ⊗i Y is defined as the
completion of X ⊗ Y with respect to this norm.
Tensor Lifting The next result (see [53, Theorem 2.9]) shows
that there is a one-to-one correspondence between bounded
bilinear mappings from X ×Y to Z and bounded linear map-
pings from X ⊗π Y to Z .

Proposition 18 For B ∈ B(X × Y , Z) there exists a unique
linear mapping B̂ : X ⊗π Y → Z such that B̂(x ⊗ y) =
B(x, y). Further, B̂ is bounded and the mapping B �→ B̂ is
an isometric isomorphism between the Banach spacesB(X×
Y , Z) and L(X ⊗π Y , Z).

Using this isometry, for B ∈ B(X ×Y , Z) we will always
denote by B̂ the corresponding linear mapping on the tensor
product.

The following result is provided in [53, Proposition 2.3]
and deals with the extension of linear operators to the tensor
product.

Proposition 19 Let S ∈ L(X , W ), T ∈ L(Y , Z). Then there
exists a unique operator S ⊗π T : X ⊗π Y → W ⊗π Z
such that S ⊗π T (x ⊗ y) = (Sx) ⊗ (T y). Furthermore,
‖S ⊗π T ‖ = ‖S‖‖T ‖.

Tensor Space Isometries The following proposition deals
with duality of the injective and the projective tensor prod-
ucts. To this aim, we need the notion of Radon Nikodým
property and approximation property, which we will not
define here but rather refer to [53, Sections 4 and 5] and [24].
For our purposes, it is important to note that both properties
hold for Lr -spaces with r ∈ (1,∞), the Radon Nikodým
property holds for reflexive spaces, but while we cannot
expect the Radon Nikodým property to hold for L∞ andM,
the approximation property does.

Lemma 20 Assume that either X∗ or Y ∗ has the Radon
Nikodým property and that either X∗ or Y ∗ has the approx-
imation property. Then

(X ⊗i Y )∗=̂X∗ ⊗π Y ∗

and for simple tensors C = ∑n
i=1 xi ⊗ yi ∈ X ⊗i Y and

C∗ = ∑m
i=1 x∗

i ⊗ y∗
i ∈ X∗ ⊗π Y ∗ the duality pairing is

given as

〈C∗, C〉 =
n∑

i=1

m∑
j=1

〈x∗
j , xi 〉〈y∗

j , yi 〉

Proof. The identification of the duals is shown in [53, Theo-
rem 5.33]. For the duality paring, we first note that the action
of an element C∗ ∈ X∗ ⊗π Y ∗ on X ⊗i Y is given as the
action of the associated bilinear form BC∗ [53, Section 3.4],
which for simple tensors C = ∑n

i=1 xi ⊗ yi can be given as

〈BC∗ , C〉 =
n∑

i=1

BC∗(xi , yi ).

Now in case alsoC∗ is a simple tensor, i.e.,C∗ = ∑m
i=1 x∗

i ⊗
y∗

i , the action of this bilinear form can be given more explic-
itly [53, Section 1.3], which yields

〈BC∗ , C〉 =
n∑

i=1

m∑
i=1

〈x∗
i , xi 〉〈y∗

i , yi 〉.
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The duality between the injective and projective tensor
products will be used for compactness assertions on subsets
of the latter. To this aim, we note in the following lemma that
separability of the individual space transfers to the tensor
product. As a consequence, in case X∗ and Y ∗ satisfy the
assumption of Lemma 20 and both admit a separable predual,
also X∗⊗π Y ∗ admits a separable predual and hence bounded
sets are weakly* compact.

Lemma 21 Let X , Y be separable spaces. Then both X ⊗i Y
and X ⊗π Y are separable.

Proof. Take X ′ and Y ′ to be dense countable subsets of X
and Y , respectively. First note that it suffices to show that any
simple tensor x ⊗ y can be approximated arbitrarily close by
x ′ ⊗ y′ with x ′ ∈ X ′, y′ ∈ Y ′. But this is true since (using
[53, Propositions 2.1 and 3.1])

‖x ⊗ y − x ′ ⊗ y′‖ ≤ ‖x ⊗ y − x ⊗ y′‖ + ‖x ⊗ y′ − x ′ ⊗ y′‖
= ‖x‖‖y − y′‖ + ‖y′‖‖x − x ′‖,

where ‖·‖ denotes either the projective or the injective norm.

The following result, which can be obtained by direct
modification of the result shown at the beginning of [53,
Section 3.2], provides an equivalent representation of the
injective tensor product in a particular case.

Lemma 22 Denote by Cc(��, X) the space of compactly
supported continuous functions mapping from �� to X and
denote by C0(��, X) its completion with respect to the norm
‖φ‖∞ := supt∈��

‖X‖X . Then, we have that

C0(��) ⊗i X=̂C0(��, X)

where the isometry is given as the completion of the isometric
mapping J : C0(��) ⊗ X → C0(��, X) defined for C =∑n

i=1 fi ⊗ xi as

JC(t) :=
n∑

i=1

fi (t)xi .

Nextwe consider the identification of tensor productswith
linear operators which is provided in the following proposi-
tion [53, Corollary 4.8].

Proposition 23 Define the mapping J : X∗ ⊗π Y →
L(X , Y ) as

C =
∞∑

i=1

φn ⊗ yn �→ LC : X → Y where LC (x) =
∞∑

i=1

φn(x)yn .

Then, J is well-defined and has unit norm. DefiningN (X , Y )

⊂ L(X , Y ) as the range of J , equipped with the norm

‖T ‖nuc = inf

{ ∞∑
i=1

‖φn‖X∗‖yn‖Y | T (x) =
∞∑

i=1

φn(x)yn

}
,

we get that N (X , Y ) is a Banach space, called the space of
nuclear operators. If further either X∗ or Y has the approx-
imation property, then J is an isometric isomorphism, that
is, we can identify

X∗ ⊗π Y = N (X , Y )

It is easy to see that nuclear operators are compact and
that we can equivalently write

‖T ‖nuc = inf

{ ∞∑
i=1

σi | T (x)

=
∞∑

i=1

σiφi (x)yi , ‖φi‖X∗ ≤ 1, ‖yi‖Y ≤ 1

}
.

Also, in a Hilbert space setting (see [63] for details), it is a
classical result that for any compact T ∈ L(H1, H2) with
(H1, (·, ·)), (H2(·, ·)) Hilbert spaces there exist orthonormal
systems (xi )i , (yi )i and uniquely defined singular values
(σi )i := (σi (T ))i such that

T x =
∞∑

i=1

σi (x, xi )yi .

In addition, in case T has finite nuclear norm, it follows that
‖T ‖nuc = ∑∞

i=1 σi .
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