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Abstract Total variation (TV) signal denoising is a

popular nonlinear filtering method to estimate piece-

wise constant signals corrupted by additive white Gaus-

sian noise. Following a ‘convex non-convex’ strategy, re-

cent papers have introduced non-convex regularizers for

signal denoising that preserve the convexity of the cost

function to be minimized. In this paper, we propose a

non-convex TV regularizer, defined using concepts from

convex analysis, that unifies, generalizes, and improves

upon these regularizers. In particular, we use the gener-

alized Moreau envelope which, unlike the usual Moreau

envelope, incorporates a matrix parameter. We describe

a novel approach to set the matrix parameter which is

essential for realizing the improvement we demonstrate.

Additionally, we describe a new set of algorithms for

non-convex TV denoising that elucidate the relation-
ship among them and which build upon fast exact al-

gorithms for classical TV denoising.

1 Introduction

Piecewise constant signals arise in numerous fields such

as physics, biology, and medicine [29]. These signals are

often corrupted by additive noise which should be sup-

pressed. Conventional linear time-invariant (LTI) filters
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are not suitable for noise reduction of such signals be-

cause they smooth away discontinuities. Among non-

linear filters, total variation signal denoising is quite

effective for estimating piecewise constant signals, be-

cause, unlike LTI filtering, it preserves discontinuities

in noisy data [40].

Classical TV denoising is formulated as a strongly

convex optimization problem involving an `1-norm reg-

ularization (penalty) term. The cost function has no

extraneous local minima and the minimizer is unique.

However, classical TV denoising has a limitation: it

tends to underestimate the amplitudes of signal dis-

continuities. This is a well-known limitation of `1-norm

regularization.

To improve TV denoising, a non-convex penalty func-

tion can be used instead of the `1 norm [22, 27, 34, 48].

However, then the cost function to be minimized will

generally be non-convex, and will generally have ex-

traneous local minima. As an extreme example, the

total number of discontinuities can be used as a reg-

ularizer [23, 50]. This form of regularization (known

as the `0 pseudo-norm or a Potts functional) leads to

a non-convex optimization problem (yet one that can

be solved exactly in finite time via dynamic program-

ming [23,50]).

In recent papers, we introduced non-convex forms of

TV regularization for one-dimensional signal denoising

that preserve the convexity of the cost function to be

minimized [42,44]. Consequently, the cost function will

not have any extraneous local minima. This approach,

later named the Convex Non-Convex (CNC) strategy,

improves upon classical TV denoising while maintain-

ing the convexity of the optimization problem.

In this paper, we introduce a non-convex regular-

izer for signal denoising that unifies, generalizes, and

improves upon the non-convex TV regularizers intro-
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duced in Refs. [42,44]. In particular, for piecewise con-

stant signals corrupted by additive Gaussian noise, we

consider the ‘convex non-convex’ total variation (CNC-

TV) signal denoising problem,

x̂ = arg min
x∈RN

{
1
2‖y − x‖

2
2 + λNC-TV(x;B)

}
(1)

where λ > 0 is the regularization parameter, and NC-

TV is a non-convex penalty chosen so that the total

cost function to be minimized is convex. The NC-TV

penalty we introduce in this paper is defined in terms of

the generalized Moreau envelope of a convex function,

which depends on a matrix parameter B.

Moreover, we give a novel method to set the ma-

trix parameter B which is essential for realizing the

improvement we demonstrate. To show the precise re-

lationship among the newly proposed regularizer and

the prior regularizers in [42, 44], we reformulate the

prior regularizers so as to express them all in a com-

mon framework. Specifically, we express each method

in terms of a generalized Moreau envelope.

This paper is organized as follows. In Section 2,

we review a few definitions related to convex analy-

sis, the minimax-concave (MC) penalty, and the Huber

function. In Section 3 and Section 4, we formulate the

separable and non-separable NC-TV regularizers con-

sidered in [44] and [42] respectively, in terms of the

Moreau envelope. In Section 5 and Section 6, we de-

fine the generalized Moreau envelope, the generalized

Huber function, and give their relevant properties. In

Section 7, we propose a new NC-TV regularizer defined

using the generalized Moreau envelope. In Section 8,

we design a method to set the matrix parameter (B) in

the proposed regularizer. Finally, in Section 9 we pro-
vide numerical results and in Section 10 we draw the

conclusions.

1.1 Related work

The concept of designing non-convex penalties that main-

tain the convexity of a regularized least-squares cost

function originated with Blake, Zisserman, and Nikolova

[5, 32]. For instance, Mila Nikolova used a non-convex

penalty to denoise binary images in a convex optimiza-

tion problem [32]. This idea, later called the Convex

Non-Convex strategy, has been further developed to

sparse-regularized optimization problems [3,25,43], in-

cluding 1D and 2D total variation denoising [20,28,30,

54], transform-based denoising [18, 36], low-rank ma-

trix estimation [37], and segmentation of images and

scalar fields over surfaces [12, 24]. This CNC approach

to sparse regularization has been used in machine fault

detection [7, 52]. The technique exploits the properties

of strongly convex and weakly convex functions [31,46].

The flexibility and effectiveness of the CNC approach

depends on the construction of non-trivial (i.e., non-

separable) convex functions. It turns out that Moreau

envelopes and infimal convolutions are useful for this

purpose [9, 41, 42, 49]. Concepts from convex analysis

were also used more recently in [26] where a general

CNC approach is proposed for image deconvolution and

inpainting.

A goal of this work is to overcome limitations of

the `1 norm by using penalties that promote sparsity

more strongly. Non-convex penalties of various func-

tional forms have been proposed for this purpose [8,

10,14,15,33,35,39,47]. However, these methods do not

aim to maintain convexity of the cost function to be

minimized.

We note that infimal convolution (related to the

Moreau envelope) has been used to define generalized

TV regularizers [4, 6, 11, 45]. However, the aims and

methodologies of these past works are quite different

from those of this paper. In these works, the `1 norm

is replaced by an infimal convolution, the resulting reg-

ularizer is convex, and the goal is to process signals

other than piecewise constant signals. In contrast, in

this paper, we subtract an infimal convolution from the

`1-norm, the resulting regularizer is non-convex, and

the goal is to process piecewise constant signals (same

as classical TV).

1.2 Classical TV denoising

Classically, total variation denoising of a one-dimensional

signal y ∈ RN is defined by the optimization prob-

lem [13,40]

tvdλ(y) = arg min
x∈RN

{
1
2‖y − x‖

2
2 + λ‖Dx‖1

}
(2)

where λ > 0 is the regularization parameter and D is

the (N − 1)×N first-order difference matrix

D =


−1 1

−1 1
. . .

. . .

−1 1

 . (3)

The matrix D is a discrete approximation of the first

derivative with Neumann homogeneous boundary con-

ditions. Conveniently, TV denoising can be calculated

exactly in finite-time [17, 21]. In this paper we utilize

TV denoising as a self-contained step in iterative algo-

rithms.

Classical TV denoising is illustrated in Fig. 1. In

this example, we use the same test signal as in the re-

lated works [42, 44]. The true signal is the piecewise
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Fig. 1 TV denoising using the `1-norm [classical TV denois-
ing (2)]. The dashed line in (b) is the true noise-free signal.

constant ‘blocks’ signal (length N = 256) generated by

the function MakeSignal in the Wavelab software li-

brary [19]. The noisy signal [Fig. 1(a)] is obtained by

corrupting the true signal by additive white Gaussian

noise (σ = 0.5). We set λ so as to minimize the root-

mean-square error (RMSE). We obtain the denoised

signal x [Fig. 1(b)] by solving (2) using the fast exact

finite-time C language program by Condat [17]. It can

be seen that TV denoising suppresses the noise without

blurring the discontinuities of the signal. However, the

result underestimates some discontinuities and is not

quite as piecewise constant as the true noise-free sig-

nal. The RMSE and mean-absolute-deviation (MAE)

are indicated in the figure.

2 Preliminaries

In this section we recall some basic definitions which

will be useful for the rest of the work. In particular, we

use results from convex analysis [1].

The notation Γ0(RN ) denotes the set of proper lower

semicontinuous convex functions from RN to R∪{+∞}.
Let f ∈ Γ0(RN ). The proximity operator of f is defined

as

proxf (x) = arg min
v∈RN

{
f(v) + 1

2‖x− v‖
2
2

}
. (4)

The Moreau envelope of the function f is defined as

fM(x) = inf
v∈RN

{
f(v) + 1

2‖x− v‖
2
2

}
. (5)

-2 -1 0 1 2

x
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1.5
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a = 0.5
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a = 2.0

a = 0.0

Fig. 2 The minimax-concave (MC) penalty in (8) for several
values of its parameter.

The Moreau envelope is differentiable, and its gradient

is given by

∇fM(x) = x− proxf (x). (6)

This identity is noted as Proposition 12.29 in Ref. [1].

It is worth noting that the classical TV denoising

model in (2) can be expressed as the proximity operator

of the function λ‖D · ‖1, that is

tvdλ(y) = proxλ‖D · ‖1(y). (7)

It is well-recognized that non-convex regularization

can be more effective than `1-norm regularization [27,

48]. In this work, we are interested in a particular non-

convex scalar penalty function, namely the minimax-

concave (MC) penalty [53].

Definition 1 The scalar minimax-concave (MC) penalty

φa : R→ R with parameter a > 0 is defined as

φa(x) =

|x| −
a
2x

2, |x| 6 1/a

1
2a , |x| > 1/a.

(8)

For a = 0, the MC penalty is defined as φ0(x) = |x|.

The MC penalty is illustrated in Fig. 2 for sev-

eral values of its parameter. We observe that the MC

penalty can be expressed in terms of the Huber func-

tion.

Definition 2 The Huber function sa : R→ R with pa-

rameter a > 0 is defined as

sa(x) =


a
2x

2, |x| 6 1/a

|x| − 1
2a , |x| > 1/a.

(9)

For a = 0, the Huber function is defined as s0(x) = 0.
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The Huber function can be written as

sa(x) = min
v∈R

{
|v|+ a

2 (x− v)2
}
. (10)

This indirect way of expressing the Huber function is

useful because it serves as a model for generalizing the

Huber function (see Sec. 6). In turn, the MC penalty

can be written in terms of the Huber function as

φa(x) = |x| − sa(x) (11)

= |x| −min
v∈R

{
|v|+ a

2 (x− v)2
}
. (12)

In this paper, we will use the forward-backward split-

ting (FBS) algorithm. If a convex function F can be

expressed as

F (x) = f1(x) + f2(x) (13)

where both f1 and f2 are convex and additionally ∇f1
is Lipschitz continuous, then a minimizer of F may be

calculated via the FBS algorithm [1, 16]. The FBS al-

gorithm is given by

w(i) = x(i) − µ
[
∇f1(x(i))

]
(14a)

x(i+1) = arg min
x

{
1
2‖w

(i) − x‖22 + µf2(x)
}

(14b)

= proxµf2(w(i)) (14c)

where 0 < µ < 2/ρ and ρ is a Lipschitz constant of

∇f1. The iterates x(i) converge to a minimizer of F .

In this paper, we will also use the soft threshold

function. The soft threshold function soft : R→ R with

threshold parameter λ > 0 is defined as

softλ(y) :=

{
0, |y| 6 λ

(|y| − λ) sign(y), |y| > λ.
(15)

If the soft threshold function is applied to a vector, then

it is applied component-wise.

Definition 3 Let g : RN → R be a (not necessarily

smooth) function. Then, g is said to be δ-strongly con-

vex if and only if there exists a constant δ > 0, called

the modulus of strong convexity of g, such that the

function g̃(x) = g(x)− (δ/2) ‖x‖22 is convex.

Finally, if A − B is a positive definite matrix, then

we write B ≺ A. Similarly, if A−B is a positive semidef-

inite matrix, then we write B 4 A.

3 Denoising using the Scalar MC Penalty

In this section, we consider CNC-TV denoising using

the scalar MC penalty, which we denote MC-TV de-

noising. This is a type of CNC-TV denoising [30, 44].

Here, we formulate MC-TV denoising in terms of the

Moreau envelope.

Definition 4 We define the MC-TV penalty ψmc
a : RN →

R with parameter a > 0 as

ψmc
a (x) =

∑
n

φa([Dx]n) (16)

where D is the first-order difference matrix (3) and φa
is the MC penalty (8).

The MC-TV penalty ψmc
a reduces to the classical

(convex) TV penalty when a = 0, that is,

ψmc
0 (x) = ‖Dx‖1. (17)

When a > 0, the penalty ψmc
a is not convex. It will

be useful to express the penalty ψmc
a as the sum of

two distinct terms: (i) the classical TV penalty (which

is non-differentiable) and (ii) a differentiable function.

Such a representation simplifies the derivation of both

the convexity condition and the iterative optimization

algorithm [(22) and (26) below].

Proposition 1 The MC-TV penalty defined in (16)

can be written as

ψmc
a (x) = ‖Dx‖1 − min

v∈RN−1

{
‖v‖1 + a

2‖Dx− v‖
2
2

}
. (18)

For a > 0, it can be written in terms of the Moreau

envelope,

ψmc
a (x) = ‖Dx‖1 − a

(
1
a‖ · ‖1

)M
(Dx). (19)

Proof Using (12), we have

ψmc
a (x) =

∑
n

φa([Dx]n)

=
∑
n

∣∣[Dx]n
∣∣−∑

n

min
vn∈R

{
|vn|+ a

2 ([Dx]n − vn)2
}

= ‖Dx‖1 − min
v∈RN

{
‖v‖1 + a

2‖Dx− v‖
2
2

}
= ‖Dx‖1 − a min

v∈RN

{
1
a‖v‖1 + 1

2‖Dx− v‖
2
2

}
[as a > 0]

= ‖Dx‖1 − a
(
1
a‖ · ‖1

)M
(Dx)

where ((1/a)‖ · ‖1
)M

is a Moreau envelope. ut

To ensure the MC-TV cost function is convex, the

parameter a should be chosen appropriately. A convex-

ity condition for a particular class of penalties has been

proven [44]. Here we present a more direct proof specif-

ically for the MC penalty.
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Theorem 1 Let y ∈ RN , λ > 0 and a > 0. Define the

MC-TV denoising cost function Fmc
a : RN → R as

Fmc
a (x) = 1

2‖y − x‖
2
2 + λψmc

a (x) (20)

= 1
2‖y − x‖

2
2 + λ

∑
n

φa([Dx]n) (21)

where ψmc
a is the MC-TV penalty defined in (16). If

0 6 a 6 1/(4λ) (22)

then Fmc
a is strongly convex.

Proof Using (18) we write

Fmc
a (x) = 1

2‖y − x‖
2
2 + λ‖Dx‖1

− λ min
v∈RN

{
‖v‖1 + a

2‖Dx− v‖
2
2

}
(23)

= 1
2‖y − x‖

2
2 + λ‖Dx‖1 − aλ

2 ‖Dx‖
2
2

− λ min
v∈RN

{
‖v‖1 + a

2‖v‖
2
2 − avTDx

}
(24)

= 1
2x

T(I − aλDTD)x+ 1
2‖y‖

2
2 − yTx+ λ‖Dx‖1

+ λ max
v∈RN

{
−‖v‖1 − a

2‖v‖
2
2 + avTDx

}
(25)

The expression in the curly braces in (25) is affine in

x (hence convex in x). Since the maximum of a set of

convex functions (here indexed by v) is convex, the final

term in (25) is convex. Hence, Fmc
a is strongly convex if

I −aλDTD is a positive definite matrix. This condition

is satisfied if a 6 1/(ρλ) where ρ is strictly greater

than the maximum eigenvalue of DTD. The eigenvalues

of DTD are {2−2 cos(kπ/N)} for k = 0, . . . , N−1. (See

Strang’s article on the discrete cosine transform [51].)

Hence, the largest eigenvalue of DTD is 2 + 2 cos(π/N),

which is strictly less than four. Setting ρ = 4 completes

the proof. ut

An algorithm for MC-TV denoising is given by:

Algorithm 1 Let y ∈ RN , λ > 0, and 0 < a 6 1/(4λ).

Then x(i) produced by the iteration

z(i) = aDT
(
Dx(i) − soft1/a(Dx(i))

)
(26a)

x(i+1) = tvdλ(y + λz(i)) (26b)

converges to the minimizer of the MC-TV cost function

in (20).

Proof Using (19), we write Fmc
a as

Fmc
a (x) = 1

2‖y − x‖
2
2 + λ‖Dx‖1 − aλ

(
1
a‖ · ‖1

)M
(Dx)

= f1(x) + f2(x)

where

f1(x) = 1
2‖y − x‖

2
2 − aλ

(
1
a‖ · ‖1

)M
(Dx)

f2(x) = λ‖Dx‖1.

Both f1 and f2 are convex and ∇f1 is Lipschitz contin-

uous, hence we can use the FBS algorithm (14) for the

minimization. Using (6) and the chain rule, we have

∇f1(x) = (x− y)− aλDT
(
Dx− prox(1/a)‖ · ‖1(Dx)

)
= x− y − aλDT

(
Dx− soft1/a(Dx)

)
.

The FBS algorithm is then given by

w(i) = x(i) − µ
[
x(i) − y − aλDT

(
Dx(i) − soft1/a(Dx(i))

)]
x(i+1) = proxµλ‖D · ‖1(w(i))

where 0 < µ < 2/ρ and ρ is a Lipschitz constant of

∇f1. By Lemma 5 in the appendix, ∇f1 has a Lipschitz

constant of ρ = 1, hence we may use 0 < µ < 2. Using

µ = 1, we obtain algorithm (26). ut

MC-TV denoising can give better results than clas-

sical TV denoising (2). This is because the non-convex

MC-TV penalty ψmc
a penalizes large amplitudes less

than the `1 norm does, which reduces its tendency to

underestimate discontinuities. The improvement of this

form of non-convex TV regularization compared to clas-

sical TV denoising was illustrated in Ref. [44].

We make a few observations about the steps in-

volved in algorithm (26). First, note that x in (26b)

is itself calculated via classical TV denoising (2). Thus,

we see that algorithm (26) for non-convex TV regu-

larization utilizes convex TV regularization to produce

the denoised signal x. Second, the signal z calculated

in (26a) can be regarded as a perturbation that gets

added to the noisy signal y. If z were equal to zero,

then x would be the classical TV denoising solution.

Hence, in this algorithm, the signal z accounts for the

distinction between this and the classical form of TV

denoising. [Note that TV denoising is not linear, hence

tvdλ(y + λz) is not a simple additive perturbation of

tvdλ(y).]

Example. MC-TV denoising is illustrated in Fig. 3(a)

where it is used to denoise the noisy signal in Fig. 1(a).

To implement MC-TV denoising, we use iteration (26)

with the parameter a = 1/(4λ). We set the regulariza-

tion parameter λ to minimize the RMSE. In compar-

ison with classical TV denoising [Fig. 1(b)], this solu-

tion has smaller RMSE and MAE. This denoised signal

more accurately reproduces the true signal, compared

to classical TV denoising.

To gain insight into the algorithm, it is informative

to inspect the signal z in (26) upon convergence of the

algorithm. Let z∗ and x∗ denote the signals upon con-

vergence. The pair (z∗, x∗) can be regarded as a fixed

point of algorithm (26). Figures 3(a) and 3(b) show

x∗ and z∗ upon convergence. The signal z∗ serves as a
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Fig. 3 MC-TV denoising (20). The dashed line in (a) is the
true noise-free signal.

type of edge-detector. It follows that y+ z∗ is an ‘edge-

enhanced’ version of the noisy signal y. The additive

perturbation amplifies the discontinuities in the noisy

signal. The denoised signal x∗ is then given by classical

TV denoising: x∗ = tvdλ(y + z∗).

4 Denoising using the Moreau Envelope

In previous work, we defined CNC-TV denoising us-

ing the Moreau envelope, which we denote ME-TV de-

noising [42]. This uses the Moreau envelope to define

a non-separable non-convex penalty that maintains the

convexity of the cost function.

Definition 5 The ME-TV penalty ψme
a : RN → R with

parameter a > 0 is defined as

ψme
a (x) = ‖Dx‖1 − min

v∈RN

{
‖Dv‖1 + a

2‖x− v‖
2
2

}
(27)

where D is the first-order difference matrix (3). If a > 0,

then it can be written in terms of the Moreau envelope:

ψme
a (x) = ‖Dx‖1 − a min

v∈RN

{
1
a‖Dv‖1 + 1

2‖x− v‖
2
2

}
= ‖Dx‖1 − a

(
1
a‖D · ‖1

)M
(x). (28)

When a > 0, the penalty ψme
a is not convex. How-

ever, if a is not too large, then the Moreau envelope TV

(ME-TV) denoising cost function can be convex even

though the penalty is not. The convexity condition is

stated as follows [42].

Theorem 2 Let y ∈ RN , λ > 0, and a > 0. Define the

ME-TV denoising cost function Fme
a : RN → R as

Fme
a (x) = 1

2‖y − x‖
2
2 + λψme

a (x) (29)

= 1
2‖y − x‖

2
2 + λ‖Dx‖1 − λa

(
1
a‖D · ‖

)M
(x)

where ψme
a is the ME-TV penalty defined in (27). If

0 6 a 6 1/λ, (30)

then Fme
a is convex. If 0 6 a < 1/λ, then it is strongly

convex.

An algorithm for ME-TV denoising is given by [42]:

Algorithm 2 Let y ∈ RN , λ > 0, and 0 < a < 1/λ.

Then x(i) produced by the iteration

z(i) = a
(
x(i) − tvd1/a(x(i))

)
(31a)

x(i+1) = tvdλ(y + λz(i)) (31b)

converges to the minimizer of the ME-TV cost function

in (29).

Observations we made about algorithm (26) hold

again for algorithm (31). Again, x in (31b) is calcu-

lated via classical TV denoising (2), and the signal z

calculated in (31a) can be regarded as a perturbation

that gets added to the noisy signal y. The signal z ac-

counts for the distinction between this and the classical

form of TV denoising. But here z is computed much

differently than in algorithm (26). (In fact, here z is

itself computed via classical TV denoising.)

Example. ME-TV denoising is illustrated in Fig. 4(a),

where it is applied to the noisy signal in Fig. 1(a) with λ

set to minimize the RMSE. In comparison with classical

TV denoising [Fig. 1(b)], the Moreau-envelope solution

follows the discontinuities more closely and recovers the

true signal more accurately.

To implement ME-TV denoising, we use iteration

(31). For insight, Fig. 4(b) shows the signal z in (31)

upon convergence of the algorithm. Note that the signal

z∗ in Fig. 4(b) is very different from the signal z∗ in

Fig. 3(b). Instead of comprising impulses as in Fig. 3(b),

here z∗ is piecewise-constant. Yet, the effect of z∗ is

again to amplify discontinuities in the noisy signal y.

In this example, we use a = 0.7/λ. We initially ex-

pected that a value of a closer to the critical value of

a = 1/λ would give the best result for ME-TV de-

noising; however, this was not the case. We found that

a = 0.7/λ gives better results than a = 0.99/λ. We

interpret this to mean that ME-TV is not the most ef-

fective approach to total variation regularization. The

new approach using the generalized Moreau envelope,

introduced in the next section, gives substantially bet-

ter results than ME-TV regularization.
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Fig. 4 ME-TV denoising (29). The dashed line in (a) is the
true noise-free signal.

Remark. Both algorithms (26) and (31) yield the clas-

sical TV denoising solution in the limit as a → 0. But

for a > 0, the two algorithms yield different solutions.

5 Generalized Moreau Envelope

In this section, the next section, and the appendix, we

present new definitions and associated theoretical re-

sults which form the substrate upon which we recon-
sider the two previous CNC-TV regularizers (MC-TV

and ME-TV [42, 44]) and construct a new one (GME-

TV in Section 7).

Definition 6 Let f ∈ Γ0(RN ). Let B ∈ RM×N . We

define the generalized Moreau envelope fMB : RN → R
with matrix parameter B as

fMB (x) = inf
v∈RN

{
f(v) + 1

2‖B(x− v)‖22
}
. (32)

For illustration, suppose f = ‖ · ‖1 and B is the matrix

B =

[
1 1

0 1

]
. (33)

Then the generalized Moreau envelope fMB is shown in

Fig. 5(b). When B = I, the generalized Moreau enve-

lope reduces to the Moreau envelope (5).

If f in (32) is the `1 norm, then the generalized

Moreau envelope of f is the generalized Huber function,

discussed in the next section.

4

||x||
1

0
0

2

4

6

8

-4 0 -44

(a)

4

(||x||
1
)
B
M

0
0

2

4

6

 

-4 0 -44

(b)

Fig. 5 The generalized Moreau envelope of the `1 norm with
matrix parameter B in (33).

Proposition 2 Let f ∈ Γ0(RN ) and B ∈ RM×N . The

generalized Moreau envelope fMB is convex.

Proof It follows from Proposition 12.11 in Ref. [1]. ut

6 Generalized Huber function

We will be particularly interested in the generalized

Moreau envelope of the `1 norm. We call this function

the ‘generalized Huber’ function [41] because it can be

regarded as a multivariate generalization of the Huber

function formula (10).

Definition 7 Let B ∈ RM×N . The generalized Huber

function SB : RN → R is defined as

SB(x) := inf
v∈RN

{
‖v‖1 + 1

2‖B(x− v)‖22
}
. (34)

Hence, the function illustrated in Fig. 5(b) is a gen-

eralized Huber function. When B is a scalar, the gener-

alized Huber function reduces to the scalar Huber func-

tion (9). The following result is from Ref. [41].

Proposition 3 The generalized Huber function SB is

a proper lower semicontinuous convex function, and the

infimal convolution is exact, i.e.,

SB(x) = min
v∈RN

{
‖v‖1 + 1

2‖B(x− v)‖22
}
. (35)

We will need (in Sec. 7.2) an expression for the gra-

dient of the generalized Huber function. It will allow us

to derive a minimization algorithm based on forward-

backward splitting. The following lemma follows from

Lemma 3 in Ref. [26].

Lemma 1 Let B ∈ RM×N . The generalized Huber func-

tion SB is differentiable. And its gradient is given by

∇SB(x) = BTB
(
x− arg min

v∈RN

{
‖v‖1 + 1

2‖B(x− v)‖22
})
.

(36)
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Remark. To unify the MC-TV penalty and the ME-TV

penalty (described in Sec. 3 and Sec. 4) it will be use-

ful to express both in terms of the generalized Moreau

envelope (32).

Proposition 4 The MC-TV penalty defined in (16)

can be written in terms of the generalized Moreau en-

velope as

ψmc
a (x) = ‖Dx‖1 −

(
‖D · ‖1

)M
√
aD

(x). (37)

Proof Using (18), we have

ψmc
a (x) = ‖Dx‖1 − min

v∈RN−1

{
‖v‖1 + a

2‖Dx− v‖
2
2

}
= ‖Dx‖1 − min

u∈RN

{
‖Du‖1 + a

2‖D(x− u)‖22
}

where we used the fact that D is surjective (onto). ut

Proposition 5 The ME-TV penalty defined in (27)

can be written in terms of the generalized Moreau en-

velope as

ψme
a (x) = ‖Dx‖1 −

(
‖D · ‖1

)M
√
a I

(x). (38)

Expression (38) helps elucidate the relationship between

the penalties ψmc
a and ψme

a . Comparing (37) and (38),

we see the two penalties differ only in the matrix pa-

rameter of the generalized Moreau envelope.

7 Denoising using the Generalized Moreau

Envelope

In this section, we propose a new form of CNC-TV de-

noising using the generalized Moreau envelope, which

we denote GME-TV denoising. This unifies and gener-

alizes MC-TV denoising and ME-TV denoising.

Specifically, we define the GME-TV penalty which

unifies the MC-TV penalty ψmc in (37) and the ME-TV

penalty ψme in (38). Below, we consider a general form

and propose a specific instance of (1).

Definition 8 Let B ∈ RM×N . We define the GME-TV

penalty ψgme
B : RN → R with matrix parameter B as

ψgme
B (x) = ‖Dx‖1− inf

v∈RN

{
‖Dv‖1 + 1

2‖B(x−v)‖22
}

(39)

where D is the first-order difference matrix (3). Equiv-

alently, we write it in terms of the generalized Moreau

envelope as

ψgme
B (x) = ‖Dx‖1 −

(
‖D · ‖1

)M
B

(x). (40)

Proposition 6 The GME-TV penalty ψgme
B reduces to

special cases:

ψgme
B (x) =


‖Dx‖1, B = 0

ψmc
a (x), B =

√
aD

ψme
a (x), B =

√
a I.

(41)

Proof ForB = 0, the definition of the generalized Moreau

envelope gives

ψgme
0 (x) = ‖Dx‖1 − min

v∈RN

{
‖Dv‖1

}
(42)

= ‖Dx‖1. (43)

For the case B =
√
aD, the result follows from (37).

For the case B =
√
a I, the result follows from (38). ut

In the following theorem, we define and give con-

vexity conditions for GME-TV denoising.

Theorem 3 Let y ∈ RN , λ > 0, and B ∈ RM×N . We

define the GME-TV denoising cost function F gme
B : RN →

R as

F gme
B (x) = 1

2‖y − x‖
2
2 + λψgme

B (x) (44)

= 1
2‖y − x‖

2
2 + λ‖Dx‖1 − λ

(
‖D · ‖1

)M
B

(x)

where ψgme
B is the GME-TV penalty defined in (39). Let

emax denote the maximum eigenvalue of BTB. If

BTB 4 (1/λ)I (45)

(i.e., emax 6 1/λ), then F gme
B is convex. If BTB ≺

(1/λ)I, then F gme
B is δ-strongly convex with (positive)

modulus of strong convexity (at least) equal to δ = 1−
λemax.

Proof We write F gme
B (x) = f(x) + λ‖Dx‖1 where f is

given by (81) with g = ‖D · ‖1. Then the result follows

immediately from Lemmas 2 and 3 in the appendix. ut

Corollary 1 In case BTB ≺ (1/λ)I in Theorem 3, that

is emax < 1/λ, then the GME-TV denoising cost func-

tion F gme
B in (44) admits a unique minimizer.

The convexity condition (45) is consistent with the

previously reported convexity conditions. Namely, ifB =√
aD, then the convexity condition (45) leads to the

condition a 6 1/(4λ). This is condition (22). Similarly,

if B =
√
a I, then the convexity condition (45) leads to

the condition a 6 1/λ. This is condition (30).

Proposition 6 shows special cases of the matrix pa-

rameter B. Are there other useful choices for B? How

should B be chosen?
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7.1 Setting the matrix parameter B

GME-TV denoising requires the matrixB be prescribed.

In this section we propose a form for B. First, it will

be informative to consider the consequence of setting B

according to the null space of the matrix D in (3). (The

null space of D comprises constant-valued signals.) It

turns out, this is exactly the ‘wrong’ choice.

Proposition 7 Let 1 ∈ RN denote the column vector

every element of which is 1. Let α ∈ R. Let D be the

matrix in (3). Then(
‖D · ‖1

)M
α1T

(x) = 0 for all x ∈ RN . (46)

Proof By definition,(
‖D · ‖1

)M
α1T

(x) = inf
v∈RN

{
‖Dv‖1+ 1

2‖α1T(x−v)‖22
}
. (47)

We will show that this expression is upper-bounded by

zero by constructing a specific vector v.

First, note that D1 = 0, where 0 denotes the col-

umn vector every element of which is zero. We also note

1T1 = N . Now let

v = ( 1
N ) 1 1Tx. (48)

Then Dv = 0 and

1Tv = 1T
[
( 1
N ) 1 1Tx

]
(49)

= ( 1
N )(N)1Tx (50)

= 1Tx. (51)

Hence, we have an upper bound given by

‖Dv‖1 + 1
2‖α1T(x− v)‖22

= ‖0‖1 + 1
2‖α1Tx− α1Tx‖22 = 0. (52)

Note that
(
‖D · ‖1

)M
B

(x) > 0 for all x for any matrix B

because it involves the infimum of non-negative quanti-

ties. Thus, it follows that
(
‖D · ‖1

)M
α1T

(x) is identically

zero. ut

The GME-TV penalty ψgme
B is formed by subtract-

ing the generalized Moreau envelope from the classi-

cal TV penalty. So, if the generalized Moreau envelope

is identically zero, then we have nothing different, i.e.,

ψgme
α1T

(x) = ‖Dx‖1. We state this as a corollary.

Corollary 2 Let 1 ∈ RN denote the column vector ev-

ery element of which is 1. Let α ∈ R. Then

ψgme
α1T

(x) = ‖Dx‖1 for all x ∈ RN . (53)

We use (53) to guide the choice of B for GME-TV

denoising. Setting B = α1T for any α ∈ R is the least

effective way to set B because this recovers classical TV

regularization. Therefore, we propose instead, to set B

so that every row of B is orthogonal to 1. That is, we

set B such that B1 = 0.

Therefore, it is reasonable to set B = CD for some

matrix C. With this choice of B, we will always have

B1 = 0. In Sect. 8 we provide a way to set C to satisfy

the convexity condition BTB 4 (1/λ)I.

The following proposition shows that with B = CD,

the generalized Moreau envelope reduces to the gener-

alized Huber function.

Proposition 8 Let y ∈ RN and λ > 0. Let

B = CD ∈ RM×N (54)

where D is matrix (3). Then the penalty ψgme
B in (39)

can be written as

ψgme
B (x) = ‖Dx‖1 − min

v∈RN−1

{
‖v‖1 + 1

2‖C(Dx− v)‖22
}

(55)

or equivalently as

ψgme
B (x) = ‖Dx‖1 − SC(Dx) (56)

where SC is the generalized Huber function. The GME-

TV cost function (44) can be written as

F gme
B (x) = 1

2‖y − x‖
2
2 + λψgme

B (x) (57)

= 1
2‖y − x‖

2
2 + λ‖Dx‖1 − λSC(Dx). (58)

If BTB 4 (1/λ)I, then F gme
B is convex. If BTB ≺ (1/λ)I,

then F gme
B is strongly convex.

Proof When B = CD, the generalized Moreau envelope

in (39) is given by(
‖D · ‖1

)M
B

(x) = inf
u∈RN

{
‖Du‖1 + 1

2‖CD(x− u)‖22
}

(59)

= inf
v∈RN−1

{
‖v‖1 + 1

2‖C(Dx− v)‖22
}

(60)

= SC(Dx) (61)

where we use the fact that D is surjective (onto). Con-

vexity follows from Theorem 3. ut

7.2 Algorithm

In this section, we present a numerical method to im-

plement GME-TV denoising. The method is based on

the forward-backward splitting (FBS) algorithm. Fol-

lowing the discussion above, we set B = CD. Hence,

we present in Prop. 3 an algorithm to compute a min-

imizer of F gme
B in (58). We use expression (36) for the

gradient of the generalized Huber function to derive the

FBS algorithm here.
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Algorithm 3 Let y ∈ RN and λ > 0. Let B = CD ∈
RM×N with BTB ≺ (1/λ)I where D is matrix (3). Then

x(i) produced by the iteration

v(i) = arg min
v∈RN−1

{
‖v‖1 + 1

2‖C(Dx(i) − v)‖22
}

(62a)

z(i) = BTC(Dx(i) − v(i)) (62b)

x(i+1) = tvdλ(y + λz(i)) (62c)

converges to the minimizer of the GME-TV cost func-

tion in (58).

Proof Using B = CD and (58), the GME-TV cost func-

tion is given by

F gme
B (x) = 1

2‖y − x‖
2
2 + λ‖Dx‖1 − λSC(Dx) (63)

= f1(x) + f2(x) (64)

where

f1(x) = 1
2‖y − x‖

2
2 − λSC(Dx) (65)

f2(x) = λ‖Dx‖1. (66)

By Lemma 5 in the appendix, ∇f1 has a Lipschitz con-

stant of ρ = 1, hence the FBS algorithm (14) converges

to a minimizer if 0 < µ < 2. Using (36) and the chain

rule, we have

∇f1(x) = x− y − λDTCTC

×
(
Dx− arg min

v∈RN−1

{
‖v‖1 + 1

2‖C(Dx− v)‖22
})
. (67)

Using the FBS algorithm in (14) with µ = 1 yields (62),

which completes the proof. ut

The update of v in (62a) is itself an optimization

problem. Algorithms for `1-norm regularized linear least-

squares problems such as this are well developed and

numerous solvers are available. Hence, we take this as a

self-contained step within the proposed algorithm. That

being said, algorithms other than (62) can be devel-

oped for the minimization of the GME-TV cost function

that avoid nested optimizations (e.g., a saddle-point ap-

proach can be taken [41]).

As noted in the proof of Proposition 3, we use µ = 1

in the FBS algorithm. Instead, a value of µ close to

the upper bound of 2/ρ is sometimes used in FBS al-

gorithms because this gives a greater step size. But a

greater step size does not always improve an algorithm’s

practical convergence because it may lead to overstep-

ping. We found experimentally that µ = 1 seems to pro-

vide good convergence behavior in numerical examples.

Also, if we set µ = 1, then the classical TV denoising

step (62c) has the same regularization parameter λ as

the GME-TV cost function (44). (If we set µ 6= 1, then

the classical TV denoising step (62c) has regularization

parameter µλ.) Additionally, if we set C = 0 (which re-

produces classical TV regularization), then algorithm

(62) produces the correct solution in just one iteration.

If we set µ 6= 1, then this is not the case. Hence, setting

µ = 1 in the derivation of iteration (62) seems to be

nominally appropriate.

In algorithm (62) the update of v in (62a) can be

regarded as a kind of sparse approximation of Dx. The

signal z in (62b) is responsive to discontinuities in the

signal x. And, as above, the denoised signal x in (62c) is

given by classical TV denoising applied to an additive

perturbation of the noisy signal y. If v∗, z∗, and x∗

denote the signals upon convergence, then (v∗, z∗, x∗)

can be regarded as a fixed point of the algorithm.

8 Matrix B as filter

In this section, we consider how to set the matrix B

and in particular, how to set the matrix C in (54). To

achieve shift-invariant regularization, we set B to be a

Toeplitz matrix of size (N − L+ 1)×N ,

B =


b0 b1 · · · bL−1
b0 b1 · · · bL−1

. . .
. . .

b0 b1 · · · bL−1

 . (68)

Since B is a Toeplitz (convolution) matrix, the sequence

bn represents the impulse response of a linear shift-

invariant discrete-time filter. The frequency response

of the filter is given by

Bf(ω) =
∑
n

bn e−jnω, (69)

i.e., the discrete-time Fourier transform (DTFT). The

property B1 = 0 implies that
∑
n bn = 0. Since Bf(0) =∑

n bn, the condition B1 = 0 implies Bf (0) = 0. That

is, the frequency response has a null at ‘dc’. Thus, the

filter should be a high-pass filter. We seek additionally

that B satisfies the convexity condition (45). Condition

(45) can be written as

|Bf(ω)|2 6 1/λ (70)

where Bf is the frequency response of the filter.

We set matrix B by designing a high-pass filter. In

particular, we design a high-pass filter H with the prop-

erty |Hf(ω)| 6 1. We then set Bf(ω) = Hf(ω)/
√
λ, i.e.,

bn = hn/
√
λ. (71)

Numerous methods are available for filter design [38].

Here, we consider a simple high-pass filter, where the

frequency response is defined by subtracting the square
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Fig. 6 The frequency response magnitude |Hf (ω)| and im-
pulse response hn of a high-pass filter.

of the digital sinc function from unity. Specifically, we

define the real-valued frequency response

Hf (ω) = 1− 1

K2

sin2(Kω/2)

sin2(ω/2)
(72)

where K is a positive integer (Fig. 6). The correspond-

ing impulse response is of length L = 2K − 1,

hn =

{
1− 1/K, n = 0

(|n|/K − 1)/K, n = ±1, . . . ,±(K − 1),
(73)

which can be written

hn = δn +
1

K

(
|n|
K
− 1

)
, |n| 6 K − 1 (74)

where δn is the Kronecker delta function. The impulse

response hn is an odd-length sequence sequence, i.e.,

h−n = hn. (This is a Type I FIR filter). The frequency

response satisfies Hf(0) = 0 and |Hf(ω)| 6 1. This

filter is illustrated in Fig. 6 for the value K = 10 (the

sequence hn is of length 19). As illustrated in Fig. 6,

the frequency response has a null at ω = 0. We then set

bn = hn/
√
λ so the frequency response Bf satisfies (70).

[Actually, we set bn = hn−K+1/
√
λ so bn is supported

on n = 0, . . . , L− 1.]

It is informative to compare the frequency response

Hf with the one corresponding to MC-TV denoising

(Sect. 3). As noted in (41), MC-TV denoising corre-

sponds to B =
√
aD. Its frequency response (scaled to

have maximum value of 1) is illustrated in Fig. 6 as a

dashed line. In comparison, the frequency response Hf

better approximates unity.

It is also informative to consider the frequency re-

sponse corresponding to ME-TV denoising (Sect. 4). As

noted in (41), ME-TV denoising corresponds to B =√
a I. Its frequency response is simply a flat line. In

comparison, the frequency response Hf possesses a null

at ω = 0. The proposed GME-TV approach is described

by a frequency response that approximates unity better

than MC-TV while possessing a null, unlike ME-TV.

8.1 Factorizing the filter

Since we set the filter H to have a null at dc, we can

factor Hf as

Hf(ω) = Gf(ω) (1− e−jω) (75)

= Gf(ω)Df(ω) (76)

where Df is the frequency response corresponding to

the matrix D in (3). Equivalently, we can write the ma-

trix H as the product H = GD where G is the Toeplitz

matrix

G =


g0 g1 · · · gL−2
g0 g1 · · · gL−2

. . .
. . .

g0 g1 · · · gL−2

 (77)

of size (N − L + 1) × (N − 1), and D is the Toeplitz

matrix in (3) of size (N − 1) ×N . Given the sequence

hn, the sequence gn is determined so as to satisfy (76),

equivalently,

hn = (g ∗ d)n (78)

=
∑
k

gk dn−k (79)

where ∗ denotes discrete convolution and d is the se-

quence [1, −1]. Namely, we have

gn =
∑
k6n

hk. (80)

For example, for the 19-point symmetric sequence hn
above (Fig. 6), we get the 18-point anti-symmetric se-

quence gn = [-0.01, -0.03, -0.06, -0.1, -0.15, -0.21, -0.28,

-0.36, -0.45, 0.45, 0.36, 0.28, 0.21, 0.15, 0.1, 0.06, 0.03,

0.01]. In general, if hn is an odd-length symmetric se-

quence of length L, then gn will be an even-length anti-

symmetric sequence of length L− 1.

Since H = GD with HTH 4 I, we can set B = CD

with C = (1/
√
λ)G to satisfy the convexity condition

BTB 4 (1/λ)I.
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Fig. 7 GME-TV denoising (57). The dashed line in (a) is
the true noise-free signal.

9 Numerical Results

CNC-TV denoising using the generalized Moreau en-

velope (GME-TV denoising) is illustrated in Fig. 7(a),

where it is applied to the noisy signal in Fig. 1(a) with

regularization parameter λ set to minimize the RMSE.

Compared to MC-TV denoising [see Fig. 3(a)] and to

ME-TV Denoising [see Fig. 4(a)], GME-TV denoising

provides a significant improvement. It more cleanly es-

timates the corners of the true piecewise-constant sig-

nal, and achieves a significant reduction in RMSE and

MAE.

To implement GME-TV denoising, we used itera-

tion (62). We set matrix B in (68) using bn = hn/
√
λ

where hn is the high-pass filter illustrated in Fig. 6. We

implement the update of v in (62a) using ISTA. We im-

plement the update of x in (62c) using the fast exact

program by Condat [17].

Figure 7(b) shows the signal z in (62b) upon conver-

gence of the algorithm. As in the preceding examples,

the effect of z is to amplify the discontinuities in the

noisy signal y. But, the behavior of z∗ is quite different

than in Fig. 3(b) and Fig. 4(b). It is neither impulsive

nor piecewise constant.

Minimizing the RMSE. In this example, for each of the

considered forms of CNC-TV denoising, we sweep λ and

compute the RMSE as a function of λ, for the noisy sig-

nal in Fig. 1(a). We include denoising using `0 pseudo-

norm regularization (i.e. the Potts functional) [50]. (We
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Fig. 8 RMSE as a function of λ for denoising algorithms.
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Fig. 9 Average RMSE for denoising algorithms. For each
value of σ for each method, λ is set to minimize the average
RMSE.

have used the software ‘Pottslab’ available online at

http://pottslab.de which calculates an exact solu-

tion by fast dynamic programming.) The result is shown

in Fig. 8. We observe that the proposed GME-TV de-

noising method performs significantly better than the

other convex forms of CNC-TV denoising. In fact, it

matches the result of Potts denoising (which is defined

by a non-convex objective function). The result of Potts

denoising is visually indistinguishable from the GME-

TV denoising result.

Average RMSE. To further evaluate the relative de-

noising performance of the considered forms of CNC-

TV denoising, we calculate the average RMSE as a

function of the noise standard deviation σ. For each

method and σ value, we set the regularization param-

eter λ to minimize the average RMSE (calculated over

50 noise realizations). We vary σ from 0.2 to 1.0. The

considered forms of denoising are: classical TV in (2),

MC-TV in (20), ME-TV in (29), Potts [50], and GME-

TV in (44). We observe in Fig. 9 that GME-TV denois-

ing performs better than the other forms.
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In particular, it is worth noticing that, for σ values

greater than 0.4, the proposed (strongly) convex GME-

TV model also outperforms the non-convex Potts ap-

proach based on `0-pseudo norm regularization. Given

that this result is not due to the existence of local min-

imizers in the Potts functional (the global minimizer

of the Potts functional is determined exactly through

dynamic programming) and that the curves in Fig. 9

have been obtained by averaging the RMSE over many

noise realizations, this is quite a surprising result.

Barcode Example. To provide further evidence of the

good capability of GME-TV denoising, we consider a

binary signal representing a 1D section of a barcode

image. The noisy signal (AWGN, σ = 0.3) is shown in

Fig. 10(a). The denoising result of Potts and GME-TV

is shown in Figs. 10(b) and 10(c) using the best value of

λ for each, respectively. The dashed line in Figs. 10(b)

and Fig. 10(c) is the noise-free signal. In Fig. 10 we

show the RMSE as a function of λ for the considered

denoising methods. It can be observed (i.e., from the

global minima of each RMSE curve) that GME-TV out-

performs Potts on this test. In this example, the Potts

method miscalculates some edges.

10 Conclusion

This paper considers the formulation of total varia-

tion signal denoising as a regularized (penalized) least-

squares problem. We propose a class of non-convex TV

penalties that maintain the convexity of cost function

to be minimized. This form of TV-based denoising is

named here ‘CNC-TV’ denoising.

CNC-TV denoising using the generalized Moreau

envelope (GME-TV denoising), as proposed in this pa-

per, can perform better than other convex forms of

CNC-TV denoising. The GME-TV denoising method

can be implemented via an iterative algorithm which

performs classical TV denoising at each iteration. The

final denoised signal can be regarded as classical TV

denoising applied to an ‘edge-enhanced’ version of the

noisy data.

Since the proposed non-convex GME-TV penalty is

defined in terms of the generalized Moreau envelope, we

have expressed the previously proposed NC-TV penal-

ties in terms of the generalized Moreau envelope also.

In this way, we show the relationship between the re-

spective forms of CNC-TV denoising.

The proposed GME-TV denoising formulation de-

pends on a high-pass filter. We used a simple filter pre-

scribed by a single parameter K, but other filter design

methods could be used. Whichever filter design method
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Fig. 10 Denoising results on a 1-D section barcode signal.

is used, the denoising result will depend on the filter pa-

rameters (e.g., cut-off frequency).

How should the filter parameters be set to obtain the

best denoising result? We do not study this question

in this paper, but we hypothesize that the distances

between consecutive discontinuities may play a role in

how the filter parameters should be set.



14 Ivan Selesnick et al.

Appendix

In this appendix, we present technical results and their proofs,
which are needed for the main results of the paper.

Lemma 2 Let y ∈ RN and λ > 0. Let f ∈ Γ0(RN ) and
B ∈ RM×N . Define g : RN → R as

g(x) = 1
2
‖y − x‖22 − λfM

B(x) (81)

where fM
B is the generalized Moreau envelope of f . If BTB 4

(1/λ)I, then g is convex. If BTB ≺ (1/λ)I, then g is strongly
convex.

Proof We write

g(x) = 1
2
‖y − x‖22 − λ inf

v∈RN

{
f(v) + 1

2
‖B(x− v)‖22

}
= 1

2
‖y − x‖22 − λ

2
‖Bx‖22

− λ inf
v∈RN

{
f(v)− vTBTBx+ 1

2
‖Bv‖22

}
(82)

= 1
2
xT(I − λBTB)x+ 1

2
‖y‖22 − yTx

+ λ sup
v∈RN

{
−f(v) + vTBTBx− 1

2
‖Bv‖22

}
. (83)

The function in the curly braces is affine in x (hence convex in
x). Since the supremum of a family of convex functions (here
indexed by v) is itself convex, the final term of (83) is convex
in x. Hence, g is convex if I − λBTB is positive semidefinite;
and g is strongly convex if I − λBTB is positive definite. ut

Lemma 3 In the context of Lemma 2, let emax denote the
maximum eigenvalue of BTB. If BTB ≺ (1/λ)I (that is,
emax < 1/λ), then g in (81) is δ-strongly convex with (posi-
tive) modulus of strong convexity (at least) equal to

δ = 1− λemax. (84)

Proof It follows from Definition 3 that the function g in (81)
is δ-strongly convex if and only if the function g̃, defined by

g̃(x) = g(x)−
δ

2
‖x‖22 (85)

= 1
2
xT((1− δ)I − λBTB)x+ 1

2
‖y‖22 − yTx

+ λ sup
v∈RN

{
−f(v) + vTBTBx− 1

2
‖Bv‖22

}
, (86)

is convex. Hence, g̃ in (86) is convex if (1−δ)I−λBTB is pos-
itive semidefinite. Let ei be the real non-negative eigenvalues
of BTB. We have

(1− δ)I − λBTB < 0

⇐⇒ 1− δ − λei > 0, ∀ i ∈ {1, 2, . . . , N}
⇐⇒ δ 6 min

i
{1− λei} .

⇐⇒ δ 6 1− λemax

which completes the proof. ut

In this paper, we use the forward-backward splitting (FBS)
algorithm which entails a constant of Lipschitz continuity.
The following two lemmas regard Lipschitz continuity. Lemma
4 is a part [equivalence (i)⇔ (vi)] of Theorem 18.15 of Ref. [1].
Our use of this result follows the reasoning of Ref. [2].

Lemma 4 Let f : RN → R be convex and differentiable.
Then the gradient ∇f is ρ-Lipschitz continuous if and only
if (ρ/2)‖ · ‖22 − f is convex.

Lemma 5 Let y ∈ RN and λ > 0. Let B = CD ∈ RM×N
with BTB 4 (1/λ)I. Define f : RN → R as

f(x) = 1
2
‖y − x‖22 − λSC(Dx) (87)

where SC is the generalized Huber function (34). Then the
gradient ∇f is Lipschitz continuous with a Lipschitz constant
of 1.

Proof The proof uses Lemma 4. Since both terms in (87) are
differentiable, f is differentiable. Next, we show f is convex.
Using (35), we write f as

f(x) = 1
2
‖y − x‖22 − λ min

v∈RN−1

{
‖v‖1 + 1

2
‖C(Dx− v)‖22

}
= 1

2
xT(I − λBTB)x− yTx+ 1

2
‖y‖22

+ λ max
v∈RN−1

{
−‖v‖1 − 1

2
‖Cv‖22 + vTCTBx

}
.

The first term is convex because BTB 4 (1/λ)I. The term
inside the curly braces is affine in x (hence convex in x).
Since the minimum of a set of convex functions (here indexed
by v) is convex, f is convex. By Lemma 4, it remains to show
(1/2)‖ · ‖22 − f is convex. We have

1
2
‖x‖22 − f(x) = 1

2
‖x‖22 − 1

2
‖y − x‖22 + λSC(Dx) (88)

= −1
2
‖y‖22 + yTx+ λSC(Dx). (89)

By Proposition 3, the generalized Huber function is convex.
Hence, the right-hand-side is convex in x which completes the
proof. ut
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