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Abstract Total variation (TV) signal denoising is a
popular nonlinear filtering method to estimate piece-
wise constant signals corrupted by additive white Gaus-
sian noise. Following a ‘convex non-convex’ strategy, re-
cent papers have introduced non-convex regularizers for
signal denoising that preserve the convexity of the cost
function to be minimized. In this paper, we propose a
non-convex TV regularizer, defined using concepts from
convex analysis, that unifies, generalizes, and improves
upon these regularizers. In particular, we use the gener-
alized Moreau envelope which, unlike the usual Moreau
envelope, incorporates a matrix parameter. We describe
a novel approach to set the matrix parameter which is
essential for realizing the improvement we demonstrate.
Additionally, we describe a new set of algorithms for
non-convex TV denoising that elucidate the relation-
ship among them and which build upon fast exact al-
gorithms for classical TV denoising.

1 Introduction

Piecewise constant signals arise in numerous fields such
as physics, biology, and medicine [29]. These signals are
often corrupted by additive noise which should be sup-
pressed. Conventional linear time-invariant (LTT) filters
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are not suitable for noise reduction of such signals be-
cause they smooth away discontinuities. Among non-
linear filters, total variation signal denoising is quite
effective for estimating piecewise constant signals, be-
cause, unlike LTT filtering, it preserves discontinuities
in noisy data [40].

Classical TV denoising is formulated as a strongly
convex optimization problem involving an ¢;-norm reg-
ularization (penalty) term. The cost function has no
extraneous local minima and the minimizer is unique.
However, classical TV denoising has a limitation: it
tends to underestimate the amplitudes of signal dis-
continuities. This is a well-known limitation of £;-norm
regularization.

To improve TV denoising, a non-convex penalty func-
tion can be used instead of the ¢; norm [22,27,34,48].
However, then the cost function to be minimized will
generally be non-convex, and will generally have ex-
traneous local minima. As an extreme example, the
total number of discontinuities can be used as a reg-
ularizer [23,50]. This form of regularization (known
as the ¢y pseudo-norm or a Potts functional) leads to
a non-convex optimization problem (yet one that can
be solved exactly in finite time via dynamic program-
ming [23,50]).

In recent papers, we introduced non-convex forms of
TV regularization for one-dimensional signal denoising
that preserve the convexity of the cost function to be
minimized [42,44]. Consequently, the cost function will
not have any extraneous local minima. This approach,
later named the Convex Non-Convex (CNC) strategy,
improves upon classical TV denoising while maintain-
ing the convexity of the optimization problem.

In this paper, we introduce a non-convex regular-
izer for signal denoising that unifies, generalizes, and
improves upon the non-convex TV regularizers intro-
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duced in Refs. [42,44]. In particular, for piecewise con-
stant signals corrupted by additive Gaussian noise, we
consider the ‘convex non-convex’ total variation (CNC-
TV) signal denoising problem,

T =arg mﬂ%{%”y—xﬂg—l—/\NC—TV(a:;B)} (1)
S

where A\ > 0 is the regularization parameter, and NC-
TV is a non-convex penalty chosen so that the total
cost function to be minimized is convex. The NC-TV
penalty we introduce in this paper is defined in terms of
the generalized Moreau envelope of a convex function,
which depends on a matrix parameter B.

Moreover, we give a novel method to set the ma-
trix parameter B which is essential for realizing the
improvement we demonstrate. To show the precise re-
lationship among the newly proposed regularizer and
the prior regularizers in [42, 44], we reformulate the
prior regularizers so as to express them all in a com-
mon framework. Specifically, we express each method
in terms of a generalized Moreau envelope.

This paper is organized as follows. In Section 2,
we review a few definitions related to convex analy-
sis, the minimax-concave (MC) penalty, and the Huber
function. In Section 3 and Section 4, we formulate the
separable and non-separable NC-TV regularizers con-
sidered in [44] and [42] respectively, in terms of the
Moreau envelope. In Section 5 and Section 6, we de-
fine the generalized Moreau envelope, the generalized
Huber function, and give their relevant properties. In
Section 7, we propose a new NC-TV regularizer defined
using the generalized Moreau envelope. In Section 8,
we design a method to set the matrix parameter (B) in
the proposed regularizer. Finally, in Section 9 we pro-
vide numerical results and in Section 10 we draw the
conclusions.

1.1 Related work

The concept of designing non-convex penalties that main-
tain the convexity of a regularized least-squares cost
function originated with Blake, Zisserman, and Nikolova
[5,32]. For instance, Mila Nikolova used a non-convex
penalty to denoise binary images in a convex optimiza-
tion problem [32]. This idea, later called the Convex
Non-Convex strategy, has been further developed to
sparse-regularized optimization problems [3,25,43], in-
cluding 1D and 2D total variation denoising [20,28, 30,
54], transform-based denoising [18, 36], low-rank ma-
trix estimation [37], and segmentation of images and
scalar fields over surfaces [12,24]. This CNC approach
to sparse regularization has been used in machine fault
detection [7,52]. The technique exploits the properties

of strongly convex and weakly convex functions [31,46].
The flexibility and effectiveness of the CNC approach
depends on the construction of non-trivial (i.e.,
separable) convex functions. It turns out that Moreau
envelopes and infimal convolutions are useful for this
purpose [9,41,42,49]. Concepts from convex analysis
were also used more recently in [26] where a general
CNC approach is proposed for image deconvolution and
inpainting.

A goal of this work is to overcome limitations of
the /1 norm by using penalties that promote sparsity
more strongly. Non-convex penalties of various func-
tional forms have been proposed for this purpose [8,
10,14,15,33,35,39,47]. However, these methods do not
alm to maintain convexity of the cost function to be
minimized.

We note that infimal convolution (related to the
Moreau envelope) has been used to define generalized
TV regularizers [4, 6, 11, 45]. However, the aims and
methodologies of these past works are quite different
from those of this paper. In these works, the ¢; norm
is replaced by an infimal convolution, the resulting reg-
ularizer is convex, and the goal is to process signals
other than piecewise constant signals. In contrast, in
this paper, we subtract an infimal convolution from the
{1-norm, the resulting regularizer is non-convex, and
the goal is to process piecewise constant signals (same
as classical TV).

non-

1.2 Classical TV denoising

Classically, total variation denoising of a one-dimensional
signal y € RY is defined by the optimization prob-
lem [13,40]

tvda(y) = arg min {5y — a[l3 + Al D]} (2)

where A > 0 is the regularization parameter and D is
the (N — 1) x N first-order difference matrix

-11
D= o : (3)
-11

The matrix D is a discrete approximation of the first
derivative with Neumann homogeneous boundary con-
ditions. Conveniently, TV denoising can be calculated
exactly in finite-time [17,21]. In this paper we utilize
TV denoising as a self-contained step in iterative algo-
rithms.

Classical TV denoising is illustrated in Fig. 1. In

this example, we use the same test signal as in the re-
lated works [42,44]. The true signal is the piecewise
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Fig. 1 TV denoising using the ¢1-norm [classical TV denois-
ing (2)]. The dashed line in (b) is the true noise-free signal.

constant ‘blocks’ signal (length N = 256) generated by
the function MakeSignal in the Wavelab software li-
brary [19]. The noisy signal [Fig. 1(a)] is obtained by
corrupting the true signal by additive white Gaussian
noise (o = 0.5). We set A so as to minimize the root-
mean-square error (RMSE). We obtain the denoised
signal z [Fig. 1(b)] by solving (2) using the fast exact
finite-time C language program by Condat [17]. It can
be seen that TV denoising suppresses the noise without
blurring the discontinuities of the signal. However, the
result underestimates some discontinuities and is not
quite as piecewise constant as the true noise-free sig-
nal. The RMSE and mean-absolute-deviation (MAE)
are indicated in the figure.

2 Preliminaries

In this section we recall some basic definitions which
will be useful for the rest of the work. In particular, we
use results from convex analysis [1].

The notation I'H(R™V) denotes the set of proper lower
semicontinuous convex functions from RY to RU{+o0}.
Let f € I'h(R™Y). The proximity operator of f is defined
as

prox () = arg min {/(v) + e — vlj3} (4)
The Moreau envelope of the function f is defined as

M) = it {f0) + o - ol3). )

MC penalty

Fig. 2 The minimax-concave (MC) penalty in (8) for several
values of its parameter.

The Moreau envelope is differentiable, and its gradient
is given by

VM(x) = x — prox (). (6)

This identity is noted as Proposition 12.29 in Ref. [1].

It is worth noting that the classical TV denoising
model in (2) can be expressed as the proximity operator
of the function A||D- |1, that is

tvda(y) = proxyp. , (v)- (7)

It is well-recognized that non-convex regularization
can be more effective than ¢;-norm regularization [27,
48]. In this work, we are interested in a particular non-
convex scalar penalty function, namely the minimax-
concave (MC) penalty [53].

Definition 1 The scalar minimax-concave (MC) penalty
¢o: R — R with parameter a > 0 is defined as

2| — §2*, |z <1/a
¢a(x) = 1 (8)
5a |z| > 1/a.

For a = 0, the MC penalty is defined as ¢o(z) = |z|.

The MC penalty is illustrated in Fig. 2 for sev-
eral values of its parameter. We observe that the MC
penalty can be expressed in terms of the Huber func-
tion.

Definition 2 The Huber function s,: R — R with pa-
rameter a > 0 is defined as

522, 2] < 1/a

sa(7) = (9)

For a = 0, the Huber function is defined as so(z) = 0.
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The Huber function can be written as

sa(@) = min{Jo| + 2 — 0)*}. (10)

This indirect way of expressing the Huber function is
useful because it serves as a model for generalizing the
Huber function (see Sec. 6). In turn, the MC penalty
can be written in terms of the Huber function as

$a() =[] — 54 (2) (11)
= [« — min{fo| + §(z —v)*}. (12)

In this paper, we will use the forward-backward split-
ting (FBS) algorithm. If a convex function F' can be
expressed as

F(z) = fi(x) + fa(z) (13)

where both f; and f; are convex and additionally V f;
is Lipschitz continuous, then a minimizer of F' may be
calculated via the FBS algorithm [1,16]. The FBS al-
gorithm is given by

w® = 2 _ M[Vﬁ(x(i))] (14a)

2D = arg min {1 w® — 2|2 + fo(x 14b
= 2 2 H

= Prox, s, (w®) (14c)

where 0 < p < 2/p and p is a Lipschitz constant of
V fi. The iterates (¥ converge to a minimizer of F.

In this paper, we will also use the soft threshold
function. The soft threshold function soft: R — R with
threshold parameter A > 0 is defined as

softy(y) := 0, Iyl <
(lyl = A)sign(y), |yl >

If the soft threshold function is applied to a vector, then
it is applied component-wise.

Definition 3 Let g: RV — R be a (not necessarily
smooth) function. Then, g is said to be J-strongly con-
vex if and only if there exists a constant § > 0, called
the modulus of strong convexity of g, such that the
function g(x) = g(x) — (6/2) ||x||3 is convex.

Finally, if A — B is a positive definite matrix, then
we write B < A. Similarly, if A— B is a positive semidef-
inite matrix, then we write B < A.

3 Denoising using the Scalar MC Penalty

In this section, we consider CNC-TV denoising using
the scalar MC penalty, which we denote MC-TV de-
noising. This is a type of CNC-TV denoising [30, 44].
Here, we formulate MC-TV denoising in terms of the
Moreau envelope.

Definition 4 We define the MC-TV penalty ™¢: RY —
R with parameter a > 0 as

Vr(z) =Y da([Daln) (16)

where D is the first-order difference matrix (3) and ¢,
is the MC penalty (8).

The MC-TV penalty ¢ reduces to the classical

(convex) TV penalty when a = 0, that is,
0 (z) = || Dzl (17)

When a > 0, the penalty 1.'° is not convex. It will
be useful to express the penalty ¢ as the sum of
two distinct terms: (7) the classical TV penalty (which
is non-differentiable) and (i) a differentiable function.
Such a representation simplifies the derivation of both
the convexity condition and the iterative optimization
algorithm [(22) and (26) below].

Proposition 1 The MC-TV penalty defined in (16)
can be written as

ve(@) = |Dally — min {|loll+ Do vl3}. (18)

For a > 0, it can be written in terms of the Moreau
envelope,

m M
vy (@) = Dzl —a(Z - 1) " (Da).
Proof Using (12), we have

Yr(x) =Y da([Da]y)
= _|(Dalu| = 3~ min {[oa| + §([Dxln — va)?}

— _ : a _ 2
= ||Dalls = min {|lo] + §| Dz — v]}3}

(19)

— Dzl ~ a min {1 o)y + § Do vl3} [as a >0
M
— | Dally — a(L] - 1) (Da)

where ((1/a)]| - ||1)M is a Moreau envelope. O

To ensure the MC-TV cost function is convex, the
parameter a should be chosen appropriately. A convex-
ity condition for a particular class of penalties has been
proven [44]. Here we present a more direct proof specif-
ically for the MC penalty.
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Theorem 1 Lety € RY, A >0 anda > 0. Define the

MC-TV denoising cost function F™¢: RN — R as

Fe(a) = glly — zll3 + 2pge() (20)
= 3y — 2|3+ 1) ¢u([Daln) (21)

where Y° is the MC-TV penalty defined in (16). If
0<a<1/(4)) (22)
then F"° is strongly convex.

Proof Using (18) we write

F(x) = 4lly — all3 + Al Dals
. a 2
= A min (ol + 51D —0l3} (23)

= 5lly — @ll3 + Al Dz|l: — 5| D=3

: a 2 T
- Avrgﬁr;v{llv\h + &[jvll3 —av'Dz}  (24)
=12"(I —aXDD)z + §|lyll3 — y'z + A| Dz |
a 2 T
+ Aggﬁgg{—\\vlll — &|v||3 + av'Dz}  (25)

The expression in the curly braces in (25) is affine in
x (hence convex in z). Since the maximum of a set of
convex functions (here indexed by v) is convex, the final
term in (25) is convex. Hence, F}™° is strongly convex if
I —aAD'D is a positive definite matrix. This condition
is satisfied if a < 1/(p\) where p is strictly greater
than the maximum eigenvalue of DTD. The eigenvalues
of DD are {2—2cos(kw/N)} for k=0,..., N —1. (See
Strang’s article on the discrete cosine transform [51].)
Hence, the largest eigenvalue of DD is 2+ 2 cos(w/N),
which is strictly less than four. Setting p = 4 completes
the proof. O

An algorithm for MC-TV denoising is given by:

Algorithm 1 Lety € RY, A >0, and 0 < a < 1/(4)).
Then 9 produced by the iteration

2 = aDT(Dm(i) - softl/a(Dx(i)))

(26a)
(26b)

converges to the minimizer of the MC-TV cost function
in (20).

Proof Using (19), we write F™° as

mc M
Fpe(x) = 5lly — 23 + Al Dally — a (31 1) (D)

= fi@) + fol)

where

fil@) = Ly — )3 — aX (&) - )" (Da)
folw) = N| Dz

Both f; and f5 are convex and V f; is Lipschitz contin-
uous, hence we can use the FBS algorithm (14) for the
minimization. Using (6) and the chain rule, we have

Vfi(z) = (z —y) —a\D"(Dz — PIOX (1 /0)|l - |1 (Dx))
=r—y— a)\DT(Dac — softy /4 (Dx)).

The FBS algorithm is then given by

w® =20 — ,u[:c(i) —y— a)\DT(Dx(i) - softl/a(Dx(i)))]

20D = PrOX,,\|p - Hl(w(i))

where 0 < p < 2/p and p is a Lipschitz constant of
V f1. By Lemma 5 in the appendix, V f; has a Lipschitz
constant of p = 1, hence we may use 0 < p < 2. Using

p =1, we obtain algorithm (26). O

MC-TV denoising can give better results than clas-
sical TV denoising (2). This is because the non-convex
MC-TV penalty ¥2*¢ penalizes large amplitudes less
than the 1 norm does, which reduces its tendency to
underestimate discontinuities. The improvement of this
form of non-convex TV regularization compared to clas-
sical TV denoising was illustrated in Ref. [44].

We make a few observations about the steps in-
volved in algorithm (26). First, note that z in (26b)
is itself calculated via classical TV denoising (2). Thus,
we see that algorithm (26) for non-conver TV regu-
larization utilizes convexr TV regularization to produce
the denoised signal x. Second, the signal z calculated
in (26a) can be regarded as a perturbation that gets
added to the noisy signal y. If z were equal to zero,
then = would be the classical TV denoising solution.
Hence, in this algorithm, the signal z accounts for the
distinction between this and the classical form of TV
denoising. [Note that TV denoising is not linear, hence
tvda(y + Az) is not a simple additive perturbation of
tvda(y).]

Ezample. MC-TV denoising is illustrated in Fig. 3(a)
where it is used to denoise the noisy signal in Fig. 1(a).
To implement MC-TV denoising, we use iteration (26)
with the parameter a = 1/(4)X). We set the regulariza-
tion parameter A to minimize the RMSE. In compar-
ison with classical TV denoising [Fig. 1(b)], this solu-
tion has smaller RMSE and MAE. This denoised signal
more accurately reproduces the true signal, compared
to classical TV denoising.

To gain insight into the algorithm, it is informative
to inspect the signal z in (26) upon convergence of the
algorithm. Let z* and x* denote the signals upon con-
vergence. The pair (z*,2*) can be regarded as a fixed
point of algorithm (26). Figures 3(a) and 3(b) show
x* and z* upon convergence. The signal z* serves as a
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@ MC-TV denoising
RMSE = 0.192, MAE = 0.125 [
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Fig. 3 MC-TV denoising (20). The dashed line in (a) is the
true noise-free signal.

type of edge-detector. It follows that y + z* is an ‘edge-
enhanced’ version of the noisy signal y. The additive
perturbation amplifies the discontinuities in the noisy
signal. The denoised signal z* is then given by classical
TV denoising: z* = tvdy(y + 2*).

4 Denoising using the Moreau Envelope

In previous work, we defined CNC-TV denoising us-
ing the Moreau envelope, which we denote ME-TV de-
noising [42]. This uses the Moreau envelope to define
a non-separable non-convex penalty that maintains the
convexity of the cost function.

Definition 5 The ME-TV penalty y™¢: RY — R with
parameter a > 0 is defined as

va'(2) = [ Dl — min {||Dv]ls + 5l - vzl @0

where D is the first-order difference matrix (3). If a > 0,
then it can be written in terms of the Moreau envelope:

va'(2) = [IDz]l1 — a min {Z[|Dv]1 + sllz —ol3 }
M
= [ Dzll —a(GID- [h)" (). (28)

When a > 0, the penalty ¥*° is not convex. How-
ever, if a is not too large, then the Moreau envelope TV
(ME-TV) denoising cost function can be convex even
though the penalty is not. The convexity condition is
stated as follows [42].

Theorem 2 Lety € RN, A >0, and a > 0. Define the
ME-TV denoising cost function F¢: RN — R as

Fe(@) = glly — @ll3 + Mg (x) (29)
= 3lly = 2l3 + N Dafy = Aa(]D- )" (@)

where Y° is the ME-TV penalty defined in (27). If

0<a<1/A, (30)

then Fi¢ is convex. If 0 < a < 1/A, then it is strongly
CONVEL.

An algorithm for ME-TV denoising is given by [42]:

Algorithm 2 Let y € RY, A\ >0, and 0 < a < 1/\.
Then =9 produced by the iteration

20 = a(x(i) - tvdl/a(x(i)))
20 = tvdy (y + AzD)

(31a)
(31b)

converges to the minimizer of the ME-TV cost function
in (29).

Observations we made about algorithm (26) hold
again for algorithm (31). Again, = in (31b) is calcu-
lated via classical TV denoising (2), and the signal z
calculated in (31a) can be regarded as a perturbation
that gets added to the noisy signal y. The signal z ac-
counts for the distinction between this and the classical
form of TV denoising. But here z is computed much
differently than in algorithm (26). (In fact, here z is
itself computed via classical TV denoising.)

Ezample. ME-TV denoising is illustrated in Fig. 4(a),
where it is applied to the noisy signal in Fig. 1(a) with A
set to minimize the RMSE. In comparison with classical
TV denoising [Fig. 1(b)], the Moreau-envelope solution
follows the discontinuities more closely and recovers the
true signal more accurately.

To implement ME-TV denoising, we use iteration
(31). For insight, Fig. 4(b) shows the signal z in (31)
upon convergence of the algorithm. Note that the signal
z* in Fig. 4(b) is very different from the signal z* in
Fig. 3(b). Instead of comprising impulses as in Fig. 3(b),
here z* is piecewise-constant. Yet, the effect of z* is
again to amplify discontinuities in the noisy signal y.

In this example, we use a = 0.7/\. We initially ex-
pected that a value of a closer to the critical value of
a = 1/X would give the best result for ME-TV de-
noising; however, this was not the case. We found that
a = 0.7/X gives better results than a = 0.99/\. We
interpret this to mean that ME-TV is not the most ef-
fective approach to total variation regularization. The
new approach using the generalized Moreau envelope,
introduced in the next section, gives substantially bet-
ter results than ME-TV regularization.
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@ ME-TV denoising
RMSE = 0.200, MAE = 0.129
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Fig. 4 ME-TV denoising (29). The dashed line in (a) is the
true noise-free signal.

Remark. Both algorithms (26) and (31) yield the clas-
sical TV denoising solution in the limit as a — 0. But
for a > 0, the two algorithms yield different solutions.

5 Generalized Moreau Envelope

In this section, the next section, and the appendix, we
present new definitions and associated theoretical re-
sults which form the substrate upon which we recon-
sider the two previous CNC-TV regularizers (MC-TV
and ME-TV [42,44]) and construct a new one (GME-
TV in Section 7).

Definition 6 Let f € IH(RY). Let B € RM*N. We
define the generalized Moreau envelope f¥: RN — R
with matrix parameter B as

fi (@) = inf {f(v) +3]Bl@—v)l3}. (32)

For illustration, suppose f = || - || and B is the matrix
11

B= {0 1] . (33)

Then the generalized Moreau envelope f]'\B/' is shown in
Fig. 5(b). When B = I, the generalized Moreau enve-
lope reduces to the Moreau envelope (5).

If f in (32) is the ¢; norm, then the generalized
Moreau envelope of f is the generalized Huber function,
discussed in the next section.

Fig. 5 The generalized Moreau envelope of the £; norm with
matrix parameter B in (33).

Proposition 2 Let f € IH(RY) and B € RM*N . The
generalized Moreau envelope f¥ is convex.

Proof Tt follows from Proposition 12.11 in Ref. [1]. O

6 Generalized Huber function

We will be particularly interested in the generalized
Moreau envelope of the #; norm. We call this function
the ‘generalized Huber’ function [41] because it can be
regarded as a multivariate generalization of the Huber
function formula (10).

Definition 7 Let B € RM*N, The generalized Huber
function Sp: RY — R is defined as

Su()i= if {lvl + 3B - 0)[3}. (34

Hence, the function illustrated in Fig. 5(b) is a gen-
eralized Huber function. When B is a scalar, the gener-
alized Huber function reduces to the scalar Huber func-
tion (9). The following result is from Ref. [41].

Proposition 3 The generalized Huber function Sg is
a proper lower semicontinuous convez function, and the
infimal convolution is exact, i.e.,

Su(z) = min {|lol + $1B(@ - 03} (3)

We will need (in Sec. 7.2) an expression for the gra-
dient of the generalized Huber function. It will allow us
to derive a minimization algorithm based on forward-
backward splitting. The following lemma follows from
Lemma 3 in Ref. [26].

Lemma 1 Let B € RMXN | The generalized Huber func-
tion Sp is differentiable. And its gradient is given by

VS (x) = BTB(x — arg min { o], + 3| Bz - v)[3}).
(36)
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Remark. To unify the MC-TV penalty and the ME-TV
penalty (described in Sec. 3 and Sec. 4) it will be use-
ful to express both in terms of the generalized Moreau
envelope (32).

Proposition 4 The MC-TV penalty defined in (16)
can be written in terms of the generalized Moreau en-
velope as

(@) = [ Dl = (1D 1) o (#)- (37)
Proof Using (18), we have

va“(2) = [IDzfly = min {[lvf1+ 5Dz — vl3}

= |Dall; = min {|Dull + §1D(@ - )3}

where we used the fact that D is surjective (onto). O

Proposition 5 The ME-TV penalty defined in (27)
can be written in terms of the generalized Moreau en-
velope as

(@) = | Dl = (1D 1) (). (38)

Expression (38) helps elucidate the relationship between
the penalties ¢ and ¢, Comparing (37) and (38),
we see the two penalties differ only in the matrix pa-
rameter of the generalized Moreau envelope.

7 Denoising using the Generalized Moreau
Envelope

In this section, we propose a new form of CNC-TV de-
noising using the generalized Moreau envelope, which
we denote GME-TV denoising. This unifies and gener-
alizes MC-TV denoising and ME-TV denoising.

Specifically, we define the GME-TV penalty which
unifies the MC-TV penalty ¢¥™¢ in (37) and the ME-TV
penalty ™€ in (38). Below, we consider a general form
and propose a specific instance of (1).

Definition 8 Let B € RM*YN We define the GME-TV
penalty %" : RY — R with matrix parameter B as

B"(@) = Dzl = inf {[IDv]+5]B(x—0)llz} (39)

where D is the first-order difference matrix (3). Equiv-
alently, we write it in terms of the generalized Moreau
envelope as

& () = | Dally — (| D- 1) (). (40)

Proposition 6 The GME-TV penalty %" reduces to
special cases:

D]y, B=0
B(x) = P (x), B=+/aD (41)
gre(a),  B=yal.

Proof For B = 0, the definition of the generalized Moreau
envelope gives

gme _ .
6" (@) = | Dzlly — min {||Doll: } (42)
= [[Dz|x. (43)

For the case B = /a D, the result follows from (37).
For the case B = /a I, the result follows from (38). O

In the following theorem, we define and give con-
vexity conditions for GME-TV denoising.

Theorem 3 Lety € RN, A >0, and B € RM*N | We
define the GME-TV denoising cost function FE": RN —
R as

FE™(x) = 5lly — 2l3 + Mg (2) (44)
M
= 5lly = 23 + A Dally = (1D [l1) ()

where Y™ is the GME-TV penalty defined in (39). Let
emax denote the mazimum eigenvalue of BB. If

BB < (1/\)I (45)

(i.e., emax < 1/X), then FE" is convex. If B'B <
(1/N)I, then FE™ is d-strongly convex with (positive)
modulus of strong convexity (at least) equal to 6 = 1 —
Aemax-

Proof We write F5"°(z) = f(x) + A|Dz||1 where f is
given by (81) with g = || D ||1. Then the result follows
immediately from Lemmas 2 and 3 in the appendix. 0O

Corollary 1 In case B'B < (1/\)I in Theorem 3, that
is emax < 1/, then the GME-TV denoising cost func-
tion FE"° in (44) admits a unique minimizer.

The convexity condition (45) is consistent with the
previously reported convexity conditions. Namely, if B =
va D, then the convexity condition (45) leads to the
condition a < 1/(4\). This is condition (22). Similarly,
if B =+/al, then the convexity condition (45) leads to
the condition ¢ < 1/A. This is condition (30).

Proposition 6 shows special cases of the matrix pa-
rameter B. Are there other useful choices for B? How
should B be chosen?
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7.1 Setting the matrix parameter B

GME-TYV denoising requires the matrix B be prescribed.

In this section we propose a form for B. First, it will
be informative to consider the consequence of setting B
according to the null space of the matrix D in (3). (The
null space of D comprises constant-valued signals.) It
turns out, this is exactly the ‘wrong’ choice.

Proposition 7 Let 1 € RN denote the column vector
every element of which is 1. Let a € R. Let D be the
matriz in (3). Then

(1Dl )alT( ) =0 forallzeRY. (46)
Proof By definition,

(ID-11) () = in€ {[Dolli+3 L @=v)I8}. (47

We will show that this expression is upper-bounded by
zero by constructing a specific vector v.

First, note that D1 = 0, where 0 denotes the col-
umn vector every element of which is zero. We also note
1"1 = N. Now let

v:(%

Then Dv = 0 and

)11Ta. (48)

To=1"[(x)11"2] (49)
= (F) (V)1 (50)
= lTx, (51)

Hence, we have an upper bound given by

IDv]ly + 5llad™(z = v)II3

= [0l + gllel"z — al2[5 = 0. (52)
Note that (||D - Hl)g(x) > 0 for all = for any matrix B
because it involves the infimum of non-negative quanti-
ties. Thus, it follows that (||D- ||y )MT( ) is identically
Z€ero. O

The GME-TV penalty %" is formed by subtract-
ing the generalized Moreau envelope from the classi-
cal TV penalty. So, if the generalized Moreau envelope
is identically zero, then we have nothing different, i.e.,

o1t (€) = || Dz[|1. We state this as a corollary.
Corollary 2 Let 1 € RY denote the column vector ev-
ery element of which is 1. Let « € R. Then

BN (z) = ||Dx||y for all v € RY. (53)

alT

We use (53) to guide the choice of B for GME-TV
denoising. Setting B = ol for any a € R is the least
effective way to set B because this recovers classical TV
regularization. Therefore, we propose instead, to set B
so that every row of B is orthogonal to 1. That is, we
set B such that B1 = 0.

Therefore, it is reasonable to set B = C'D for some
matrix C. With this choice of B, we will always have
B1 = 0. In Sect. 8 we provide a way to set C' to satisfy
the convexity condition BTB < (1/\)1.

The following proposition shows that with B = CD,
the generalized Moreau envelope reduces to the gener-
alized Huber function.

Proposition 8 Let y € RY and A > 0. Let
B =CD e RM*N (54)

where D is matriz (3). Then the penalty Y™ in (39)
can be written as

B () =Dz - Ugﬁ}gl{llvlll +3/C(Dz —v)|3}
(55)
or equivalently as
B (x)=|Dz|y — Sc(Dx) (56)

where S¢ is the generalized Huber function. The GME-
TV cost function (44) can be written as

Fg™(z) = 5lly — 2l3 + Mg (2) (57)
= 3lly — 23 + M| Dzl = ASc(Dx). (58)
If B'B x (1/A\)I, then FE™° is convez. If BB < (1/A\)I,

then FE" is strongly convex.

Proof When B = CD, the generalized Moreau envelope
in (39) is given by

(1D 1) () = inf {[|Dull +%HCD(x—u)II§} (59)

- mf el + Home - w3} (

— S¢(Dx) (61)
where we use the fact that D is surjective (onto). Con-
vexity follows from Theorem 3. O

7.2 Algorithm

In this section, we present a numerical method to im-
plement GME-TV denoising. The method is based on
the forward-backward splitting (FBS) algorithm. Fol-
lowing the discussion above, we set B = C'D. Hence,
we present in Prop. 3 an algorithm to compute a min-
imizer of F3" in (58). We use expression (36) for the
gradient of the generalized Huber function to derive the
FBS algorithm here.
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Algorithm 3 Let y € RN and A > 0. Let B=CD ¢
RM*N with BB < (1/A)I where D is matriz (3). Then
9 produced by the iteration

i : % 2
o —arg min {Jols + HICD —v)[3}  (62a)

2 = BTC(Dz® — )

(62b)
(62c)

converges to the minimizer of the GME-TV cost func-
tion in (58).

Proof Using B = C'D and (58), the GME-TV cost func-
tion is given by

FE™(x) = §lly — =3 + Al|D=|ly — ASc(Dz) (63)
= fi(z) + fa(2) (64)

where

fi(@) = Ly — z||3 — ASc(Dx) (65)

fo(z) = A|| D] (66)

By Lemma 5 in the appendix, V f; has a Lipschitz con-
stant of p = 1, hence the FBS algorithm (14) converges
to a minimizer if 0 < p < 2. Using (36) and the chain
rule, we have

Vfi(z)=x—y—AD'C'C
x (Dz — arg Ué%\]n_l{Hle + 3IC(Dz —v)[3}). (67)

Using the FBS algorithm in (14) with x4 = 1 yields (62),
which completes the proof. a

The update of v in (62a) is itself an optimization
problem. Algorithms for /1-norm regularized linear least-
squares problems such as this are well developed and
numerous solvers are available. Hence, we take this as a
self-contained step within the proposed algorithm. That
being said, algorithms other than (62) can be devel-
oped for the minimization of the GME-TV cost function
that avoid nested optimizations (e.g., a saddle-point ap-
proach can be taken [41]).

As noted in the proof of Proposition 3, we use u = 1
in the FBS algorithm. Instead, a value of u close to
the upper bound of 2/p is sometimes used in FBS al-
gorithms because this gives a greater step size. But a
greater step size does not always improve an algorithm’s
practical convergence because it may lead to overstep-
ping. We found experimentally that 4 = 1 seems to pro-
vide good convergence behavior in numerical examples.
Also, if we set = 1, then the classical TV denoising
step (62c) has the same regularization parameter A as
the GME-TV cost function (44). (If we set u # 1, then
the classical TV denoising step (62c) has regularization

parameter p\.) Additionally, if we set C' = 0 (which re-
produces classical TV regularization), then algorithm
(62) produces the correct solution in just one iteration.
If we set p # 1, then this is not the case. Hence, setting
p = 1 in the derivation of iteration (62) seems to be
nominally appropriate.

In algorithm (62) the update of v in (62a) can be
regarded as a kind of sparse approximation of Dx. The
signal z in (62b) is responsive to discontinuities in the
signal 2. And, as above, the denoised signal  in (62¢) is
given by classical TV denoising applied to an additive
perturbation of the noisy signal y. If v*, z*, and x*
denote the signals upon convergence, then (v*,z*, z*)
can be regarded as a fixed point of the algorithm.

8 Matrix B as filter

In this section, we consider how to set the matrix B
and in particular, how to set the matrix C in (54). To
achieve shift-invariant regularization, we set B to be a
Toeplitz matrix of size (N — L+ 1) x N,

bo by -+ -

bo by --- br_1
B = ) ) . (68)

br—1

bp b - b1

Since B is a Toeplitz (convolution) matrix, the sequence
b, represents the impulse response of a linear shift-
invariant discrete-time filter. The frequency response
of the filter is given by
Blw) = bpe ™, (69)
n

i.e., the discrete-time Fourier transform (DTFT). The
property B1 = 0 implies that ) b, = 0. Since B/(0) =
>, by, the condition B1 = 0 implies B/(0) = 0. That
is, the frequency response has a null at ‘dc¢’. Thus, the
filter should be a high-pass filter. We seek additionally
that B satisfies the convexity condition (45). Condition
(45) can be written as

|BI(w)* < 1/A (70)

where B is the frequency response of the filter.

We set matrix B by designing a high-pass filter. In
particular, we design a high-pass filter H with the prop-
erty |Hf(w)| < 1. We then set Bf(w) = Hf(w)/V/\, i.e.,

by = hn/VA. (71)

Numerous methods are available for filter design [38].
Here, we consider a simple high-pass filter, where the
frequency response is defined by subtracting the square
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Fig. 6 The frequency response magnitude |H7 (w)| and im-
pulse response h,, of a high-pass filter.

of the digital sinc function from unity. Specifically, we
define the real-valued frequency response
1 sin?(Kw/2)
HY () = 1 — L S (Ew/2) 72
() K2 sin2(w/2) (72)
where K is a positive integer (Fig. 6). The correspond-
ing impulse response is of length L = 2K — 1,

hn:{l—l/K, n=0 (73)
(Inl/K —1)/K, n==1,..., (K —1),

which can be written

hn=5n+;{<|K”|— ) n| <K —1 (74)
where 6, is the Kronecker delta function. The impulse
response h, is an odd-length sequence sequence, i.e.,
h_pn = hy,. (This is a Type I FIR filter). The frequency
response satisfies H/(0) = 0 and |H/(w)| < 1. This
filter is illustrated in Fig. 6 for the value K = 10 (the
sequence h,, is of length 19). As illustrated in Fig. 6,
the frequency response has a null at w = 0. We then set
bn = hy/V/X 50 the frequency response BY satisfies (70).
[Actually, we set b, = hyn_g+1/V\ 50 by, is supported
onn=0,...,L—1]

It is informative to compare the frequency response
H7 with the one corresponding to MC-TV denoising
(Sect. 3). As noted in (41), MC-TV denoising corre-
sponds to B = y/a D. Its frequency response (scaled to
have maximum value of 1) is illustrated in Fig. 6 as a

dashed line. In comparison, the frequency response Hf
better approximates unity.

It is also informative to consider the frequency re-
sponse corresponding to ME-TV denoising (Sect. 4). As
noted in (41), ME-TV denoising corresponds to B =
Val. Tts frequency response is simply a flat line. In
comparison, the frequency response H/ possesses a null
at w = 0. The proposed GME-TV approach is described
by a frequency response that approximates unity better
than MC-TV while possessing a null, unlike ME-TV.

8.1 Factorizing the filter

Since we set the filter H to have a null at dc, we can
factor H' as

HIw) = Glw) (1 - ) (75)
— ¢/(w) DY(w) (76)

where D/ is the frequency response corresponding to
the matrix D in (3). Equivalently, we can write the ma-
trix H as the product H = GD where G is the Toeplitz
matrix

go g1 -

go g1 -+ grL—2
G = . . (77)

gr—2

90 g1 * gr—2

of size (N — L+ 1) x (N —1), and D is the Toeplitz
matrix in (3) of size (N — 1) x N. Given the sequence
hn, the sequence g, is determined so as to satisfy (76),
equivalently,

hn = (g*d)n (78)
= gkdn s (79)
k

where * denotes discrete convolution and d is the se-
quence [1, —1]. Namely, we have

9n = Z . (80)

k<n

For example, for the 19-point symmetric sequence h,,
above (Fig. 6), we get the 18-point anti-symmetric se-
quence g, = [-0.01, -0.03, -0.06, -0.1, -0.15, -0.21, -0.28,
-0.36, -0.45, 0.45, 0.36, 0.28, 0.21, 0.15, 0.1, 0.06, 0.03,
0.01]. In general, if h, is an odd-length symmetric se-
quence of length L, then g, will be an even-length anti-
symmetric sequence of length L — 1.

Since H = GD with H'H < I, we can set B = CD
with C' = (1/v/A) G to satisfy the convexity condition
B'B < (1/M)1.
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Fig. 7 GME-TV denoising (57). The dashed line in (a) is
the true noise-free signal.

9 Numerical Results

CNC-TV denoising using the generalized Moreau en-
velope (GME-TV denoising) is illustrated in Fig. 7(a),
where it is applied to the noisy signal in Fig. 1(a) with
regularization parameter A set to minimize the RMSE.
Compared to MC-TV denoising [see Fig. 3(a)] and to
ME-TV Denoising [see Fig. 4(a)], GME-TV denoising
provides a significant improvement. It more cleanly es-
timates the corners of the true piecewise-constant sig-
nal, and achieves a significant reduction in RMSE and
MAE.

To implement GME-TV denoising, we used itera-
tion (62). We set matrix B in (68) using b, = h,/VA
where h,, is the high-pass filter illustrated in Fig. 6. We
implement the update of v in (62a) using ISTA. We im-
plement the update of = in (62¢) using the fast exact
program by Condat [17].

Figure 7(b) shows the signal z in (62b) upon conver-
gence of the algorithm. As in the preceding examples,
the effect of z is to amplify the discontinuities in the
noisy signal y. But, the behavior of z* is quite different
than in Fig. 3(b) and Fig. 4(b). It is neither impulsive
nor piecewise constant.

Minimizing the RMSE. In this example, for each of the
considered forms of CNC-TV denoising, we sweep A and
compute the RMSE as a function of A, for the noisy sig-
nal in Fig. 1(a). We include denoising using ¢, pseudo-
norm regularization (i.e. the Potts functional) [50]. (We

050 CIa?sic TV T

0.2r

0.1 \ \ \ \ \ \ \

Fig. 8 RMSE as a function of A for denoising algorithms.

0.5 T T T
Classic TV
ME-TV i
0.4F MC-TV
=== === Potts
——e—— GME-TV .
0.3 i

Average RMSE
o
o

0.2 0.4 0.6 0.8 1
Noise standard deviation (o)

Fig. 9 Average RMSE for denoising algorithms. For each
value of o for each method, A is set to minimize the average
RMSE.

have used the software ‘Pottslab’ available online at
http://pottslab.de which calculates an exact solu-
tion by fast dynamic programming.) The result is shown
in Fig. 8. We observe that the proposed GME-TV de-
noising method performs significantly better than the
other convex forms of CNC-TV denoising. In fact, it
matches the result of Potts denoising (which is defined
by a non-convex objective function). The result of Potts
denoising is visually indistinguishable from the GME-
TV denoising result.

Average RMSE. To further evaluate the relative de-
noising performance of the considered forms of CNC-
TV denoising, we calculate the average RMSE as a
function of the noise standard deviation o. For each
method and o value, we set the regularization param-
eter A to minimize the average RMSE (calculated over
50 noise realizations). We vary o from 0.2 to 1.0. The
considered forms of denoising are: classical TV in (2),
MC-TV in (20), ME-TV in (29), Potts [50], and GME-
TV in (44). We observe in Fig. 9 that GME-TV denois-
ing performs better than the other forms.
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In particular, it is worth noticing that, for o values
greater than 0.4, the proposed (strongly) convex GME-
TV model also outperforms the non-convex Potts ap-
proach based on ¢y-pseudo norm regularization. Given
that this result is not due to the existence of local min-
imizers in the Potts functional (the global minimizer
of the Potts functional is determined exactly through
dynamic programming) and that the curves in Fig. 9
have been obtained by averaging the RMSE over many
noise realizations, this is quite a surprising result.

Barcode Example. To provide further evidence of the
good capability of GME-TV denoising, we consider a
binary signal representing a 1D section of a barcode
image. The noisy signal (AWGN, ¢ = 0.3) is shown in
Fig. 10(a). The denoising result of Potts and GME-TV
is shown in Figs. 10(b) and 10(c) using the best value of
A for each, respectively. The dashed line in Figs. 10(b)
and Fig. 10(c) is the noise-free signal. In Fig. 10 we
show the RMSE as a function of A for the considered
denoising methods. It can be observed (i.e., from the
global minima of each RMSE curve) that GME-TV out-
performs Potts on this test. In this example, the Potts
method miscalculates some edges.

10 Conclusion

This paper considers the formulation of total varia-
tion signal denoising as a regularized (penalized) least-
squares problem. We propose a class of non-convex TV
penalties that maintain the convexity of cost function
to be minimized. This form of TV-based denoising is
named here ‘CNC-TV’ denoising.

CNC-TV denoising using the generalized Moreau
envelope (GME-TV denoising), as proposed in this pa-
per, can perform better than other convex forms of
CNC-TV denoising. The GME-TV denoising method
can be implemented via an iterative algorithm which
performs classical TV denoising at each iteration. The
final denoised signal can be regarded as classical TV
denoising applied to an ‘edge-enhanced’ version of the
noisy data.

Since the proposed non-convex GME-TV penalty is
defined in terms of the generalized Moreau envelope, we
have expressed the previously proposed NC-TV penal-
ties in terms of the generalized Moreau envelope also.
In this way, we show the relationship between the re-
spective forms of CNC-TV denoising.

The proposed GME-TV denoising formulation de-
pends on a high-pass filter. We used a simple filter pre-
scribed by a single parameter K, but other filter design
methods could be used. Whichever filter design method

5 Noisy signal (o = 0.30)
1
05
ok
.0.50 Sb 160 1é0 260 Zéo 360
15 -(b) Potts denoising

RMSE = 0.135, MAE = 0.078

0 50 100 150 200 250 300

© GME-TV denoising
RMSE = 0.106, MAE = 0.073

A =1.200
0 50 100 150 200 250 300
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025 | Potts fmme-
") GME-TV H
B 02 : ;
S \ H
o -\, '
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Fig. 10 Denoising results on a 1-D section barcode signal.

is used, the denoising result will depend on the filter pa-
rameters (e.g., cut-off frequency).

How should the filter parameters be set to obtain the
best denoising result? We do not study this question
in this paper, but we hypothesize that the distances
between consecutive discontinuities may play a role in
how the filter parameters should be set.
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Appendix

In this appendix, we present technical results and their proofs,
which are needed for the main results of the paper.

Lemma 2 Let y € RY and A > 0. Let f € Io(RY) and
B € RMXN | Define g: RV — R as

g9(x) = 3lly — 2|3 = AfE (2) (81)
where f’\é' is the generalized Moreau envelope of f. If B'B <
(1/M)1, then g is convez. If B'B < (1/A\)I, then g is strongly
convez.

Proof We write

9(z) = 3lly — |3 - AvienﬂgN{f(v) + 3Bz - )3}

= 3lly — =l — 311B=(I3

; BT
—)\UleanN{f(v)—v B'Bz + £||Bv||3} (82)
=3¢ (I =AB'B)z+ 5yl —y'=
+ A S;EEN{_f(U)+UTBTBx_ LBvli3}. (83)

The function in the curly braces is affine in = (hence convex in
x). Since the supremum of a family of convex functions (here
indexed by v) is itself convex, the final term of (83) is convex
in x. Hence, g is convex if I — ABTB is positive semidefinite;
and g is strongly convex if I — ABTB is positive definite. O

Lemma 3 In the context of Lemma 2, let emax denote the
mazimum eigenvalue of BTB. If BTB < (1/\)I (that is,
emax < 1/X\), then g in (81) is §-strongly conver with (posi-
tive) modulus of strong convezity (at least) equal to

§=1— Xemax- (84)

Proof It follows from Definition 3 that the function g in (81)
is d-strongly convex if and only if the function g, defined by

- é
g(z) = g(x) — §||«’C||§ (85)
=52/ ((1 =8I =AB'B)z + |yl5 —y'z
+ X\ sup {—f(v)+vTBTBx— %”BUH%}, (86)
vERN

is convex. Hence, g in (86) is convex if (1—§)I —ABTB is pos-
itive semidefinite. Let e; be the real non-negative eigenvalues
of BTB. We have

(1-8)I—-XB"™B3»0
<~ 1—-0—Xe; 20, Vie{1,2,...,N}
<~ d<min{l — Xe;}.

<= § <1— Aemax
which completes the proof. O

In this paper, we use the forward-backward splitting (FBS)
algorithm which entails a constant of Lipschitz continuity.
The following two lemmas regard Lipschitz continuity. Lemma
4 is a part [equivalence (7) < (vi)] of Theorem 18.15 of Ref. [1].
Our use of this result follows the reasoning of Ref. [2].

Lemma 4 Let f: RN — R be convex and differentiable.
Then the gradient V f is p-Lipschitz continuous if and only

if (o/2)I-113 = f s convea.

Lemma 5 Lety € RN and A\ > 0. Let B = CD € RMXN
with BB < (1/\)I. Define f: RN — R as

f@) = 3lly — z||3 — ASc(Dx) (87)

where Sc is the generalized Huber function (34). Then the
gradient V f is Lipschitz continuous with a Lipschitz constant
of 1.

Proof The proof uses Lemma 4. Since both terms in (87) are
differentiable, f is differentiable. Next, we show f is convex.
Using (35), we write f as

1 2 s 1 2
f@ =3y —=l3 =2 min {Jlol+ 3ICDe - )3}
_ 1T T T, 1 2
— 12" = AB'B)a — yTa + 1lyl3
2 T~T
+ 2 max {~[lolx - 3Cvll§ +v7C"Ba}.

The first term is convex because B'B =< (1/A)I. The term
inside the curly braces is affine in = (hence convex in z).
Since the minimum of a set of convex functions (here indexed
by v) is convex, f is convex. By Lemma 4, it remains to show
(1/2)]] - 1|13 — f is convex. We have

sllzll3 = f(z) = 5ll=ll3 — 5lly — 2l + ASc (Dz) (88)
= —3 W3 +y"z + ASc (Da). (89)

By Proposition 3, the generalized Huber function is convex.
Hence, the right-hand-side is convex in  which completes the
proof. O
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