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EFFICIENT RELATIVE POSE ESTIMATION FOR CAMERAS

AND GENERALIZED CAMERAS IN CASE OF KNOWN

RELATIVE ROTATION ANGLE

EVGENIY MARTYUSHEV AND BO LI

Abstract. We propose two minimal solutions to the problem of relative pose
estimation of (i) a calibrated camera from four points in two views and (ii)
a calibrated generalized camera from five points in two views. In both cases,
the relative rotation angle between the views is assumed to be known. In
practice, such angle can be derived from the readings of a 3d gyroscope. We
represent the rotation part of the motion in terms of unit quaternions in order
to construct polynomial equations encoding the epipolar constraints. The
Gröbner basis technique is then used to efficiently derive the solutions. Our
first solver for regular cameras significantly improves the existing state-of-the-
art solution. The second solver for generalized cameras is novel.

The presented minimal solvers can be used in a hypothesize-and-test archi-
tecture such as RANSAC for reliable pose estimation. Experiments on syn-
thetic and real datasets confirm that our algorithms are numerically stable,
fast and robust.

1. Introduction

The problem of relative pose estimation of a moving camera consists in deter-
mining the current camera pose (both position and orientation) with respect to a
coordinate frame related to its previous position. Basically, the estimation must be
done only from the image data captured by the camera. The relative pose estima-
tion is a central task in computer vision and robotics. Its numerous applications
include, but are not limited to, robot localization and mapping, augmented reality,
autonomous driving and parking, visual odometry and egomotion estimation.

The standard tool for estimating relative pose of a calibrated camera moving in
space is the 5-point algorithm by Nistér [18] and its numerous modifications [22,
10, 14]. The 5-point algorithm is known to be minimal, i.e. its related polynomial
ideal is generically zero-dimensional. There also exist non-minimal relative pose
solutions based on a bigger number of point correspondences, e.g. 6-point [19, 20],
7-point [7], and linear 8-point algorithms [16, 6]. However, in most cases these
solutions are inferior to the 5-point algorithm w.r.t. the robustness [18, 22].

The 5-point relative pose problem, as well as many other problems in computer
vision, can be formulated in terms of polynomial equations on some parameters re-
lated to the problem. An efficient method to find solutions of polynomial equations
is the Gröbner basis computation. From linear algebra point of view, the Gröbner
basis can be computed by a single Gauss-Jordan (G-J) elimination on a certain
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matrix constructed from the coefficients of polynomials. This matrix is known as
an elimination template for the Gröbner basis computation [9], since generically
its size and structure are independent from the coefficients of polynomials. The
size of such template is crucial for the efficiency of the resulting solver. Hence,
it is important to formulate and parameterize the problem so that its elimination
template would be as small as possible.

The problem of relative pose estimation can be modified and generalized in
many directions. For example, we can consider a similar problem for the so-called
generalized cameras. In contrast to central projection model of a regular1 camera,
the image rays for a generalized camera do not necessarily intersect in a common
focal center of projection [21]. Generalized cameras can be used for describing
different popular camera models [24] such as a multi-camera rig consisting of several
rigidly mounted cameras moving as a whole, a non-central catadioptric camera, a
camera with radial and tangential distortion, etc. In general, the relative pose of a
generalized camera can be estimated minimally from six [23, 25] and linearly from
seventeen [21, 15] point correspondences in two views.

Another modification of the relative pose estimation problem arises if a camera
is coupled with an inertial measurement unit (IMU) sensor. The additional infor-
mation extracted from the IMU readings can be used to significantly simplify the
relative pose estimation process or to make it faster and more robust. For example,
the IMU measurements can be used to derive the vertical direction in the cam-
era coordinate frame reducing thus the number of unknown extrinsics from five to
three [8]. See also [4, 11, 12] for some other camera-IMU fusion applications.

The contribution of the present paper is two new minimal solutions to the prob-
lem of relative pose estimation of (i) a calibrated camera from four points in two
views and (ii) a calibrated generalized camera from five points in two views. In
both cases, the relative rotation angle between the views is assumed to be known.
In practice, this angle can be calculated from the readings of an IMU sensor. The
advantage in using only relative rotation angle follows from its invariance. As it was
mentioned in [13], if a camera and IMU are fixed on some rigid platform, then the
rotation angle of the IMU can be directly used as the rotation angle of the camera.
Thus, there is no need in the external camera-IMU calibration and the joint usage
of these devices becomes convenient and flexible in practice.

The problem of pose estimation for regular cameras in case of known relative
rotation angle was stated in [13], where the two solutions to the problem have
been proposed. The first Gröbner-basis solution has an elimination template of
size 270 × 290 and hence its practical use is questionable especially for real-time
applications. In contrast, our new solver has an elimination template of size 16×36
only. Actually, the Gröbner basis computation for our solver is performed even
faster than for the 5-point algorithm by Stewénius et al., cf. Subsection 5.2.

The numerical solution from [13] is fast enough, although it is still approxi-
mately twice slower than our solver. The relative pose of a camera is estimated by
the gradient descent-based method from a big enough number of seeds uniformly
distributed on a unit 2-sphere. The method works well while the roots on the sphere
are well-separated. If it is not the case, there is no guaranty that all solutions to
the problem will be found.

1Hereinafter, the cameras will sometimes be referred to as regular in order to distinguish them
from generalized cameras.
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As for the pose estimation of generalized cameras in case of known relative
rotation angle, the problem has not been studied earlier. Our “5-point+angle”
solution can be considered as an alternative to the 6-point method from [23]. Based
on the experimental results, we conclude that our solution outperforms the 6-point
solver both in numerical accuracy and in speed.

The present paper is a continuation of the research started in recent work [17],
where a new method for the camera self-calibration has been proposed. The method
is also based on the joint usage of multiple point correspondences in two views and
the known relative rotation angle.

The rest of the paper is organized as follows. In Section 2, we briefly recall
some notions from multiview geometry, e.g. the epipolar and generalized epipolar
constraints which are needed to follow the derivation of our minimal solvers. In
Section 3, we describe in detail the 4-point algorithm for regular cameras. Section 4
summarizes the similar 5-point approach for generalized cameras. In Section 5, we
test the algorithms in a series of experiments on synthetic data. In Section 6, the
algorithms are validated on real datasets. In Section 7, we discuss the results of
the paper.

2. Preliminaries

2.1. Notation. We preferably use α, β, . . . for scalars, a, b, . . . for column 3-vectors
or polynomials, and A,B, . . . both for matrices and column 4-vectors. For a matrix
A the entries are (A)ij , the transpose is A

T, the determinant is detA, and the trace
is trA. For two 3-vectors a and b the cross product is a × b. For a vector a the
notation [a]× stands for the skew-symmetric matrix such that [a]×b = a× b for any
vector b. We use I for the identity matrix and ‖ · ‖ for the Frobenius norm.

2.2. Regular Cameras. Let there be given two calibrated cameras represented
by 3× 4 matrices of the form

P ′ =
[

R′ t′
]

, P ′′ =
[

R′′ t′′
]

, (1)

where R′, R′′ ∈ SO(3) are called the rotation matrices and t′, t′′ are called the trans-
lation vectors. Let Q be a 4-vector representing a point in 3-space in homogeneous
coordinates, q′ and q′′ be its images, that is

q′ ∼ P ′Q, q′′ ∼ P ′′Q, (2)

where ∼ means an equality up to scale. Then the epipolar constraint for a pair
(q′, q′′) reads

q′′T(R[t′]× − [t′′]×R)q′ = 0, (3)

where R = R′′R′T is the relative rotation matrix, i.e. a rotation matrix of the
second camera w.r.t. the first camera frame.

2.3. Generalized Cameras. Given two generalized cameras, let (R′, t′) (resp.
(R′′, t′′)) be the rotation and translation of the first (resp. second) generalized

camera w.r.t. the world frame. Let
[

q′ m′
]T

and
[

q′′ m′′
]T

be the Plücker
coordinates of a pair of image rays intersecting at a point. Transforming coordinates
[

q′ m′
]T

into the world coordinate frame yields [23]
[

q̂′

m̂′

]

=

[

R′Tq′

R′Tm′ +R′T[t′]×q
′

]

, (4)
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and similarly for
[

q̂′′ m̂′′
]T

. Then the intersection condition q̂′Tm̂′′ + q̂′′Tm̂′ = 0
leads to the generalized epipolar constraint [21, 23]

[

q′′

m′′

]T [

R[t′]× − [t′′]×R R
R 03×3

] [

q′

m′

]

= 0, (5)

where R = R′′R′T is the relative rotation matrix.

2.4. Quaternion Representation. A matrix R ∈ SO(3) can be represented in

terms of a unit quaternion
[

σ u
]T

as follows

R = (2σ2 − 1)I + 2(uuT − σ[u]×), (6)

where

‖u‖2 + σ2 = 1. (7)

Then we have

trR = 4σ2 − 1 = 2 cos θ + 1, (8)

where θ is the relative rotation angle between the two calibrated camera frames. It
follows that in case θ is known, the value of parameter σ in representation (6) is
known too and can be expressed in form

σ2 =
cos θ + 1

2
. (9)

The two-fold ambiguity ±
[

σ u
]T

of the quaternion representation is resolved by
fixing the sign of parameter σ.

3. Description of the 4-point Algorithm

The initial data is the four point correspondences q′i ↔ q′′i , i = 1, . . . , 4, and also
the relative rotation angle θ.

3.1. Polynomial Equations. We start from deriving polynomial constraints on
the camera extrinsics using the parametrization of t′ and t′′ adapted from [23] for
regular cameras. Let Qi be a point in 3-space so that

λiq
′

i = P ′Qi, µiq
′′

i = P ′′Qi, (10)

where λi and µi are some scalars. Using the rigid motion ambiguity of the world

coordinate frame, we set Qi =
[

0 0 0 1
]T

for a certain i ∈ {1, . . . , 4}. Then it
follows that

t′ = λiq
′

i, t′′ = µiq
′′

i . (11)

The epipolar constraint (3) for the jth and kth correspondences yields

Fijk

[

λi

µi

]

= 02×1, (12)

where

Fijk =

[

q′′j
T
Rp′ij p′′ij

T
Rq′j

q′′k
T
Rp′ik p′′ik

T
Rq′k

]

. (13)

Here vector p′ij is defined by p′ij = q′i × q′j and similarly for p′′ij .
Eq. (12) assumes that detFijk = 0 for all (pairwise distinct) indices i, j and k.

There exist 20 possible equations, but due to the following lemma, only 4 of them
are actually distinct.
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Lemma 1. Let Fijk be a matrix defined in (13). Then the following identity holds

detFijk = detFjki. (14)

The proof of Lemma 1 is given in Appendix A. We represent the relative rotation
matrix R in form (6) and then, based on the lemma, define four quartic polynomials

f1 = detF234 = detF342 = detF423,

f2 = detF341 = detF413 = detF134,

f3 = detF412 = detF124 = detF241,

f4 = detF123 = detF231 = detF312.

(15)

Further, let

h = ‖u‖2 + σ2 − 1, (16)

where parameter σ is expressed in terms of the known angle θ by formula (9). Thus
we have the following system of polynomial equations

f1 = f2 = f3 = f4 = h = 0. (17)

The objective is to find all its real solutions.

3.2. Gröbner Basis. Let us set u =
[

α β γ
]T

and define an ideal

J = 〈f1, . . . , f4, h〉 ⊂ C[α, β, γ]. (18)

In order to find out the structure of the affine variety of J , we generated a number
of random instances of the problem over the field of rationals. Then, using the
computer algebra system Macaulay2 [5], we found that ideal J is generically zero-
dimensional of degree 20, that is in general system (17) has exactly 20 complex
solutions. The Gröbner basis of J w.r.t. the graded reverse lexicographic order
consists of ten polynomials with the following leading monomials:

β2γ3 αγ4 βγ4 γ5 αβ3 β4 αβ2γ β3γ αβγ2 α2. (19)

Now we propose an efficient algorithm for computing the Gröbner basis of ideal J .
Let matrix A of size 4 × 35 correspond to the polynomials f1, . . . , f4 defined

in (15), i.e.

Ax = 04×1, (20)

where x is a monomial vector. The ith row of matrix A consists of coefficients of
the ith polynomial.

First we expand system (17) with 12 more polynomials αfi, βfi and γfi for
i = 1, . . . , 4, and 20 polynomials of the form mh for m being every monomial of the
total degree up to 3. Thus we get

Âx̂ = 036×1, (21)

where Â is the 36× 56 coefficient matrix and x̂ is a monomial vector consisting of
all up to degree 5 monomials. Let the first 20 monomials in x̂ be

α5 α4β α3β2 α2β3 α4γ α3βγ α2β2γ α3γ2 α2βγ2 α2γ3

α4 α3β α2β2 α3γ α2βγ α2γ2 α3 α2β α2γ α2, (22)
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Figure 1. The sparse structure of 36 × 56 matrix Â. The main
diagonal of the 20× 20 left upper submatrix of Â consists of 1’s
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Figure 2. The final 16× 36 elimination template matrix for com-
puting the Gröbner basis of J

and the rest of monomials in x̂ be ordered w.r.t. the graded reverse lexicographic
order with α > β > γ. Then matrix Â can be represented in the following block
form

Â =

[

U V
W X

]

, (23)

where U is an upper-triangular 20 × 20 matrix with 1’s on its main diagonal, see
Fig. 1. It follows that detU = 1 and the inverse to U always exists. By elementary
row operations, matrix Â is equivalent to

[

U V
016×20 X −WU−1V

]

. (24)

Matrix B = X − WU−1V of size 16 × 36 contains all necessary data for the
Gröbner basis computation. Its structure is shown in Fig. 2.

It is important to note that matrix B needs not to be computed by its definition
in an implementation. Instead, it is more efficient to use the pre-computed formulas
for the nonzero entries of B. These formulas are quite simple and contain the
entries of matrix A and also the scalar τ = σ2 − 1. For example, one of the most
“complicated” formulas reads

(B)16,34 = 2τ(A)4,1 − τ(A)4,10 − (A)4,26 + (A)4,31. (25)

Let B̃ be the reduced row echelon form of B, that is, generically,

B̃ =
[

I C
]

, (26)
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where matrix C is of size 16× 20. Then, the polynomials corresponding to the last
nine rows of matrix B̃ together with polynomial h constitute the Gröbner basis of
ideal J .

3.3. Relative Rotation and Translation Recovery. Given the Gröbner basis
of J , we can readily construct the 20 × 20 action matrix Mγ for multiplication
by γ in the quotient ring C[α, β, γ]/J . The first seven rows of Mγ are the rows of
matrix (−C) with numbers 8, 9, 10, 11, 14, 15 and 16. The rest of Mγ consists of
almost all zeros except

(Mγ)8,1 = (Mγ)9,2 = (Mγ)10,3 = (Mγ)11,4

= (Mγ)12,7 = (Mγ)13,8 = (Mγ)14,9 = (Mγ)15,10 = (Mγ)16,11

= (Mγ)17,14 = (Mγ)18,15 = (Mγ)19,16 = (Mγ)20,19 = 1. (27)

Up to 20 real solutions for vector u are then found from the eigenvectors of ma-
trix Mγ , see [2] for details.

It is important to note that because of numerical inaccuracies the solution for u
does not exactly satisfy Eq. (7). In order to rectify the solution, we replace u with
the vector

û =

√
1− σ2

‖u‖ u. (28)

Then, rotation matrix R is computed from the unit quaternion
[

σ û
]T

by for-
mula (6).

Using the rigid motion ambiguity of the world coordinate frame, we now set
t′ = 03×1. Then, translation vector t′′ is found from the epipolar constraints as the
right null-vector of the matrix











q′1
T
RT[q′′1 ]×

q′2
T
RT[q′′2 ]×

q′3
T
RT[q′′3 ]×

q′4
T
RT[q′′4 ]×











. (29)

The scale ambiguity allows us to set ‖t′′‖ = 1. Finally, the sign of t′′ is disam-
biguated by means of the cheirality constraint, see [7, 18] for details.

4. The 5-point Algorithm for Generalized Cameras

The initial data is the five corresponding image rays given in Plücker coordinates
[

q′i
m′

i

]

↔
[

q′′i
m′′

i

]

, i = 1, . . . , 5, and also the relative rotation angle θ.

First, we fix the scale of the Plücker coordinates by setting ‖q′‖ = ‖q′′‖ = 1.
Then, for Qi being a point in 3-space, it follows that

[m′

i]×q
′

i + λiq
′

i =
[

R′ t′
]

Qi, [m′′

i ]×q
′′

i + µiq
′′

i =
[

R′′ t′′
]

Qi, (30)

where λi and µi are some scalars. We again follow [23] to parameterize transla-

tions t′ and t′′ by setting Qi =
[

0 0 0 1
]T

for a certain i ∈ {1, . . . , 5}. Then it
can be readily seen from (30) that

t′ = [m′

i]×q
′

i + λiq
′

i, t′′ = [m′′

i ]×q
′′

i + µiq
′′

i . (31)
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Substituting this into the generalized epipolar constraint (5) for the jth, kth and
lth correspondences yields

Gijkl





λi

µi

1



 = 03×1, (32)

where Gijkl are 3 × 3 matrices depending on R and the initial data. Eq. (32)
assumes that detGijkl = 0 for all (pairwise distinct) indices i, j, k and l. There
exist 20 possible equations but only the following 5 of them are actually distinct:

g1 = detG2345,

g2 = detG3451,

g3 = detG4512,

g4 = detG5123,

g5 = detG1234.

(33)

If the relative rotation matrix R is represented in form (6), then all polynomials gi

are sextic in the entries of u =
[

α β γ
]T

. The last quadratic polynomial h is
defined in (16).

In order to efficiently compute the Gröbner basis of ideal 〈g1, . . . , g5, h〉, we use
the same approach as in Subsection 3.2. We start from the 134 × 165 elimination
template matrix Â corresponding to all possible multiples of the initial polynomials
up to the total degree 8. Then, carefully eliminating redundant polynomials (rows)

from Â, we reduced its size to 121 × 165. The rows of the resulting matrix are
represented by

• 84 polynomials of the form mh, where m runs over the set of all monomials
of the total degree up to 6;

• 35 polynomials of the form ngi, where i = 1, . . . , 5 and n belongs to the set
{β2, αγ, βγ, γ2, α, β, γ};

• 2 polynomials g1 and g2.

The 84× 84 left upper submatrix of Â is upper-triangular with 1’s on its main
diagonal. This allows one to further reduce the size of the elimination template to
37×81 similarly as it was done for the 4-point solver, cf. Eq (24). Then all possible
solutions to the problem are found from the eigenvectors of a 44×44 action matrix.

Note that the 6-point algorithm by Stewénius et al. [23] requires the G-J elimi-
nation on a 60× 120 matrix and then more computation is needed to complete the
Gröbner basis construction. Besides, the algorithm produces up to 64 solutions.
Our new 5-point algorithm produces the entire Gröbner basis by a single G-J elim-
ination on a 37× 81 matrix, and the number of possible solutions is only 44.

5. Experiments on Synthetic Data

In this section, we test our minimal solvers on synthetic data. The data setup is
given in the following table:

Distance to the scene 1
Scene depth 0.5
Baseline length 0.1
Image dimensions 752× 480 (WVGA)
Field of view 60 degrees
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Figure 3. log10 of numerical error (left) and mean speed (right)
for different minimal solvers. The timings for generalized-camera
solvers are divided by 10 for visibility

The generalized cameras are modelled as multi-cameras with five and six optical
centers for the 5- and 6-point solvers respectively. The optical centers are randomly
generated inside two balls of radius 0.05 each. The centers of the balls are related
by the (R, t) transformation. Each point is viewed from a single optical center.

In the sequel, we use the following abbreviations for the minimal algorithms:

4pt+angle our 4-point solver
4pt+angle nm2 numerical 4-point solver from [13]
5pt 5-point solver from [22]
gen. 5pt+angle our 5-point solver
gen. 6pt 6-point solver from [23]

5.1. Numerical Accuracy. The numerical error is measured by the value

min
i

‖Ri − R̄‖, (34)

where i counts all real solutions and R̄ is the ground truth relative rotation matrix.
The numerical error distributions are reported in Fig. 3 (left). The median errors
are: 5.10× 10−13 (4pt+angle), 1.35× 10−14 (5pt), 4.86× 10−11 (gen. 5pt+angle),
4.93× 10−9 (gen. 6pt).

5.2. Timings. We compared the speed of the algorithms. The mean running times
for two major steps of the solvers are presented in Fig. 3 (right). The computations
were performed on a system with 2.3 GHz processor. Note that the generalized-
camera solvers are in order of magnitude slower. For the sake of visibility, their
timings are divided by 10 on the figure. The mean total timings are: 0.75 ms
(4pt+angle), 1.3 ms (4pt+angle nm), 0.49 ms (5pt), 5.9 ms (gen. 5pt+angle),
11.5 ms (gen. 6pt).

It is interesting to note that the Gröbner basis computation for our 4-point
solution is performed even faster than for the 5-point algorithm. However, since
the action matrix for the 5-point algorithm is four times smaller than for the 4-point
problem, the eigendecomposition step for the 5pt solver is performed much faster
and the total running time for it is about 1.5 times less.

2The MATLAB implementation of the “4pt+angle nm” algorithm was translated from the
publicly available C++ code. This solver was only used in the speed comparison experiment.
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Figure 4. Rotational errors against image noise. Left: forward
motion, right: sideways motion

0 0.5 1 1.5 2
pixels

0

5

10

15

20

de
gr

ee
s

4pt+angle ( =0)
4pt+angle ( =0.05)
gen. 5pt+angle (  = 0)
gen. 5pt+angle (  = 0.05)
5pt
gen. 6pt

0 0.2 0.4 0.6 0.8 1
pixels

0

2

4

6

8

10

12

de
gr

ee
s

4pt+angle ( =0)
4pt+angle ( =0.05)
gen. 5pt+angle (  = 0)
gen. 5pt+angle (  = 0.05)
5pt
gen. 6pt
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5.3. Performance Under Noise. To evaluate the robustness of our solvers, we
added two types of noise to the initial data. First, the image noise which is modelled
as zero-mean, Gaussian distributed with a varying standard deviation. Second, the
angle noise resulting from inaccurately found relative rotation angle θ. Follow-
ing [13], we modelled that noise as θs, where s has the Gaussian distribution with
zero mean and standard deviation σ. In our experiments, σ takes only two values:
0 and 0.05.

The rotational and translational errors are presented in Fig. 4 and Fig. 5 respec-
tively. Fig. 6 demonstrates the relative errors in translation scale for the generalized-
camera solvers. Each point on the plots is a lower quartile of 104 trials.

5.4. Performance in Presence of Outliers. To ensure the robustness of a min-
imal solver in presence of outliers (incorrect matches), it is a common practice
to use a hypothesize-and-test architecture such as Random Sample Consensus
(RANSAC) [3]. The RANSAC framework consists in the following major steps.
First, a number of minimal subsets of the data (samples) are randomly chosen from
the entire set of observations. Second, a minimal solver is used for each sample to
generate a set of hypotheses. Third, each hypothesis is subsequently scored by the
scoring function saying if an observation is an inlier or outlier. Finally, the winner
is the hypothesis supported by the maximal number of inliers.

In our experiments, the hypotheses for regular cameras were scored by the Samp-
son approximation error [7], whereas the hypotheses for generalized cameras were
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Left: forward motion, right: sideways motion
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Figure 7. Translational errors (left) and relative errors in transla-
tion scale (right) versus increasing image noise. Sideways motion,
100 observations and 30% of outliers

scored by the reprojection error. The number of observations was set to 100 and
the fraction of outliers was set to 30%. The results are presented in Fig. 7. Each
point on the plots is a mean of 100 trials.

6. Experiments on Real Image Sequences

In this section, we test the algorithms on the publicly available EuRoC dataset [1]
containing synchronized sequences of the data recorded from an IMU and two
cameras on board a micro-aerial vehicle. Specifically, we test the solvers on the
“Machine Hall 01” and “Vicon Room 01” datasets. For the 4pt+angle and 5-pt
algorithms, the images taken by camera “0” were only used. For the generalized-
camera solvers, the images from both cameras were involved.

The relative rotation angle is derived from the readings of a triple-axis gyroscope
as follows. The gyroscope reading at time ξi is an angular rate 3-vector wi. Let
∆ξi = ξi − ξi−1, where i = 1, . . . , n. Then the relative rotation matrix Rn between
the 0th and nth frames is approximately found from the recursion

Ri = exp([wi]×∆ξi)Ri−1, (35)

where R0 = I. The relative rotation angle is then equal to arccos trRn−1

2
.

To prevent the baseline between two consecutive images from being too small
and thus to make the computation for regular cameras more stable, we reduced the
number of images by taking only each 4th image in the sequences. We also cropped
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Figure 8. “Machine Hall 01” dataset. Rotational (left) and trans-
lational (right) errors for different solvers
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Figure 9. “Vicon Room 01” dataset. Rotational (left) and trans-
lational (right) errors for different solvers

the initialization tests in the beginning of “Machine Hall 01” dataset. The resulting
sequences consist in total of 683 images for each dataset.

After that, we computed the rotational and translational errors for each pair of
consecutive frames using the ground truth. The results are presented as box plots
in Fig. 8 and Fig. 9. The middle line represents the median and the blue box shows
values from lower (25%) to upper (75%) quartile. The red markers indicate outliers.
To make the comparison as objective as possible, we did not apply any iterative
refinement during the estimation.

7. Discussion of Results

The main contribution of this paper is the introduction of two new minimal
algorithms for the relative pose estimation problem: the first one is for regular
calibrated cameras, and the second one is for generalized calibrated cameras. Both
algorithms operate with several point correspondences in two views and also with
the known relative rotation angle. The first algorithm is a significant improvement
of the existing solution, whereas the second algorithm for generalized cameras is
novel.

Our solutions have relatively small elimination templates for the Gröbner basis
computation: 16× 36 for regular cameras and 37× 81 for generalized cameras. In
a series of experiments on simulated data, we demonstrated that our solutions are
comparable or even faster than the state-of-the-art solvers. We also verify their
numerical accuracy for noise-free data and robustness for noisy data.
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It is shown on synthetic and real datasets that, being encapsulated into a hy-
pothesize-and-test architecture such as RANSAC, our solutions become robust in
presence of outliers and again demonstrate better performance than the existing
solvers.

Finally, both our solutions use the same block transformation of the elimination
template to significantly simplify the Gröbner basis construction. We expect that
this approach might be applied to some other computer vision problems described
in terms of polynomial equations and containing a low-degree constraint like in
Eq. (7).

Acknowledgements. The work of E.M. was supported by Act 211 Government
of the Russian Federation, contract No. 02.A03.21.0011.

Appendix A. Proof of Lemma 1

Lemma 1. Let Fijk be a matrix defined in (13). Then the following identity holds

detFijk = detFjki.

Proof. First, recall that

R(x× y) = (Rx)× (Ry) (36)

for any 3-vectors x, y and R ∈ SO(3). We also need the following formula

zT1 (x1 × y1) · zT2 (x2 × y2) = det









xT
1

yT1
zT1





[

x2 y2 z2
]



 , (37)

which evidently holds for any 3-vectors xi, yi and zi.
Let us denote a = Rq′i, b = Rq′j , c = Rq′k, d = q′′i , e = q′′j , f = q′′k . Then, it

follows from the definition of matrix Fijk that

Fijk =

[

eT(a× b) bT(d× e)
fT(a× c) cT(d× f)

]

(38)

and

Fjki =

[

fT(b× c) cT(e × f)
dT(b× a) aT(e× d)

]

. (39)

Denote for short by xy the scalar product of vectors x and y. Then, equality (14)
together with formula (37) assume that

det





ad af ac
bd bf bc
de ef ce



− det





ad cd df
ae ce ef
ab bc bf





= det





be bd ab
ce cd ac
ef df af



− det





be ae de
bf af df
bc ac cd



 . (40)

The latter identity is verified directly. Lemma 1 is proved. �



14 EVGENIY MARTYUSHEV AND BO LI

References

1. M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M.W. Achtelik, and R. Sieg-
wart, The EuRoC micro aerial vehicle datasets, The International Journal of Robotics Re-
search 35 (2016), no. 10, 1157–1163.

2. D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms, vol. 3, Springer, 2007.
3. M.A. Fischler and R.C. Bolles, Random sample consensus: A paradigm for model fitting with

applications to image analysis and automated cartography, Comm. Assoc. Comp. Mach. 24
(1981), no. 6, 381–395.

4. F. Fraundorfer, P. Tanskanen, and M. Pollefeys, A minimal case solution to the calibrated

relative pose problem for the case of two known orientation angles, European Conference on
Computer Vision, Springer, 2010, pp. 269–282.

5. D. Grayson and M. Stillman, Macaulay2, a software system for research in algebraic geometry,
2002, available at http://www.math.uiuc.edu/Macaulay2/.

6. R. Hartley, In defence of the 8-point algorithm, Computer Vision, 1995. Proceedings., Fifth
International Conference on, IEEE, 1995, pp. 1064–1070.

7. R. Hartley and A. Zisserman, Multiple view geometry in computer vision, Cambridge Univer-
sity Press, 2003.

8. M. Kalantari, A. Hashemi, F. Jung, and J.-P. Guédon, A new solution to the relative orienta-

tion problem using only 3 points and the vertical direction, Journal of Mathematical Imaging
and Vision 39 (2011), no. 3, 259–268.

9. Z. Kukelova, M. Bujnak, and T. Pajdla, Automatic generator of minimal problem solvers,
European Conference on Computer Vision, Springer, 2008, pp. 302–315.

10. , Polynomial eigenvalue solutions to the 5-pt and 6-pt relative pose problems, British
Machine Vision Conference, vol. 2, 2008.

11. , Closed-form solutions to the minimal absolute pose problems with known vertical

direction, Asian Conference on Computer Vision, Springer, 2010, pp. 216–229.
12. G.H. Lee, M. Pollefeys, and F. Fraundorfer, Relative pose estimation for a multi-camera

system with known vertical direction, Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, IEEE, 2014, pp. 540–547.

13. B. Li, L. Heng, G.H. Lee, and M. Pollefeys, A 4-point algorithm for relative pose estimation of

a calibrated camera with a known relative rotation angle, IEEE/RSJ International Conference
on Intelligent Robots and Systems, IEEE, 2013, pp. 1595–1601.

14. H. Li and R. Hartley, Five-point motion estimation made easy, Pattern Recognition, 2006.
ICPR 2006. 18th International Conference on, vol. 1, IEEE, pp. 630–633.

15. H. Li, R. Hartley, and J.-H. Kim, A linear approach to motion estimation using generalized

camera models, Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Confer-
ence on, IEEE, 2008, pp. 1–8.

16. H Christopher Longuet-Higgins, A computer algorithm for reconstructing a scene from two

projections, Nature 293 (1981), no. 5828, 133.
17. E. Martyushev, Self-calibration of cameras with Euclidean image plane in case of two views

and known relative rotation angle, European Conference on Computer Vision, Springer, 2018,
pp. 435–449.

18. D. Nistér, An efficient solution to the five-point relative pose problem, IEEE Transactions on
Pattern Analysis and Machine Intelligence 26 (2004), no. 6, 756–770.

19. J. Philip, Critical point configurations of the 5-, 6-, 7-, and 8-point algorithms for relative

orientation, Department of Mathematics, Royal Institute of Technology, 1998.
20. O. Pizarro, R. Eustice, and H. Singh, Relative pose estimation for instrumented, calibrated

imaging platforms., DICTA, Sydney, Australia, 2003, pp. 601–612.
21. R. Pless, Using many cameras as one, CVPR (2), IEEE Computer Society, 2003, pp. 587–593.
22. H. Stewénius, C. Engels, and D. Nistér, Recent developments on direct relative orientation,

ISPRS Journal of Photogrammetry and Remote Sensing 60 (2006), no. 4, 284–294.
23. H. Stewénius, D. Nistér, M. Oskarsson, and K. Åström, Solutions to minimal generalized
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