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Abstract
This paper addresses the problem of finding the closest generalized essential matrix from a given 6×6 matrix, with respect to
the Frobenius norm. To the best of our knowledge, this nonlinear constrained optimization problem has not been addressed in
the literature yet. Although it can be solved directly, it involves a large number of constraints, and any optimization method to
solve it would require much computational effort. We start by deriving a couple of unconstrained formulations of the problem.
After that, we convert the original problem into a new one, involving only orthogonal constraints, and propose an efficient
algorithm of steepest descent type to find its solution. To test the algorithms, we evaluate the methods with synthetic data and
conclude that the proposed steepest descent-type approach is much faster than the direct application of general optimization
techniques to the original formulation with 33 constraints and to the unconstrained ones. To further motivate the relevance of
our method, we apply it in two pose problems (relative and absolute) using synthetic and real data.

Keywords Generalized essential matrix · General camera models · Pose estimation · Steepest descent type · Orthogonal
constraints

1 Introduction

The epipolar constraint is one of the fundamental geometry
constraints in computer vision. It relates the rigid transforma-
tion between two cameras with different external parameters
[13,21] and correspondences between points in the two
images. It is one of the most common tools for scene recon-
struction, known as passive techniques, i.e., two cameras
looking at the same scene from different points of view. The
epipolar constraint has been used in many other applications,
such as visual odometry [34].

For many years, authors focused on perspective cameras
to build this stereo pair [13]; see Fig. 1a. However, these
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cameras have, among several disadvantages, a limited field
of view. To overcome this, some authors have developed new
camera systems. Special emphasis has been given to omni-
directional cameras, which get a larger field of view from a
combination of perspective cameras withmirrors and/or fish-
eye lenses [23,31,32], or multi-perspective camera systems
[15,17]. Most of these devices are non-central (see [42]).
Other types of imaging sensors have been proposed. Nev-
ertheless, the perspective camera model cannot model most
of them due to their physical constraints. Examples include
pushbroom cameras [11] or refractive imaging devices [43].
These kinds of cameras are called non-central. To handle both
central or non-central systems, we consider a pair of camera
systems that are parameterized by the general camera model
[10,24,41]. In this model, camera pixels are mapped into
generic 3D straight lines in the world. If all of these 3D lines
intersect in a single point, the system is central (Fig. 1a);
otherwise, it is non-central (Fig. 1b).

For a central camera stereo problem, one can define a
3 × 3 matrix that encodes the epipolar constraint, i.e., the
incident relation between the projection lines of both cam-
eras [13,21]. This matrix is called essential. For the case
of general camera systems, such a matrix cannot be used
because the central constraints are not satisfied. Instead, it
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Fig. 1 Central versus general camera systems (a, b), respectively. This
paper addresses the general case, i.e., camera system does not have a
single view point

can be proved that there is a 6 × 6 matrix that expresses
the incident relation between the projection lines of two
general camera systems [25,36,40]. Such a matrix is called
generalized essential and has a particular block structure,
involving rotation and skew-symmetric matrices of order 3.
Often, computer vision problems wherever this matrix has to
be determined are affected with noise, and this may result in
a matrix of order 6 that fails to fit the structure characterizing
the generalized essential matrices. In these cases, one needs
to find the closest generalized essential matrix from a generic
6 × 6 matrix. From a mathematical point of view, this is a
nonlinear constrained matrix optimization problem. The fact
that it is a non-convex problem raises many difficulties to
find a global minimum.

Examples of applications requiring the estimation of a
generalized essential matrix include: (i) the computation of
theminimal relative pose for general cameramodels [39]; (ii)
the estimation of the camera motion using multi-perspective
camera systems [15,17]; (iii) general structure-from-motion
algorithms [28,38]; and (iv) the estimation of the camera
absolute pose using known coordinates of 3D straight lines
[26]. Since the particular structure of generalized impor-
tant matrices involves many nonlinear constraints (a rotation
matrix and its product with a skew-symmetric matrix), find-
ing the correct parameters of these matrices may slow down
significantly the algorithms. An important advantage of hav-
ing a method to approximate general essential matrices from
generic 6×6matrices is to allow us to get rid of some of those
constraints (or, at least, to reduce the tolerance of these con-
straints in the optimization processes) to turn the algorithms
faster.

In this paper,we show that the problemunder investigation
can be reformulated as an optimization problem with only
orthogonal constraints. Then, we present an efficient algo-
rithm to find a solution. Also, we give theoretical arguments
to demonstratewhy the problemhas a globalminimum (some
open questions will be pointed out). We recall that meth-
ods for problems with orthogonal constraints are available
in the literature [5,8,14,22,44], but their difficulties depend
significantly on the objective function. In our problem, the
objective function is not easy to handle, raising many chal-

lenging issues. To address them,we resort to techniques from
matrix theory, and optimization on manifolds.

Supposewe have estimated an 6×6matrixA representing
the epipolar geometry for general cameras, linearly obtained
from the incident relation between of a set of inverse pro-
jection rays l(L)

i and l(R)
i ; i.e., building from the geometric

constraints shown in Fig. 1b without imposing the structure
of E . The method proposed in this paper aims at approximat-
ing a generalized essential matrix E , from a general 6 × 6
matrix A, with the assumption that the latter was estimated
by ignoring some of the generalized essential constraints.
Our motivation for developing such a method is twofold.
When, for some reason, the estimation of A does not con-
sider some of the generalized essential matrix constraints or
ignores them altogether (such as DLT techniques), methods
such as ours are helpful to obtain a real generalized essential
matrix. When a large tolerance for the generalized essential
constraints is used to speed up the computation of A, meth-
ods like ours can be utilized to correct the result. Experiments
illustrating the latter situation are presented in Sect. 6.

For the central case, we recall that similar approxima-
tion techniques have been used for pose estimation. In [12],
the author estimates a real essential matrix with respect to
the Frobenius norm by firstly using DLT techniques to com-
pute a rough estimative to the 3 × 3 essential matrix. The
author proved that this method performs almost as well as
the best iterative algorithms, being faster in many cases.
More recently, other methods have been developed using
similar approximation techniques for the central perspec-
tive camera; see, for instance [45,46]. We believe that the
method we are proposing in this paper will contribute to the
development of similar techniques, but for general camera
models. We recall that the goal of this work is not to pro-
pose a technique for the problem of estimating a generalized
essential matrix from a set of projection lines (as did in [18]
for general camera systems and [16] for multi-camera sys-
tems) but, instead, to estimate E from a previously computed
A by other techniques. The list of contributions of this paper
are:

1. It is the first work that investigates the fitting of general
essential matrices from general 6 × 6 matrices;

2. We define the problem at hand and present a natural
formulation of it by defining a nonlinear constrained opti-
mization problem;

3. Based on the problem definition, we derive an uncon-
strained optimization version that can be used to solve
the problem at hand;

4. We change the initial formulation and write the problem
as a function depending only on rotation unknowns;

5. We use the formulation derived in the previous item to
obtain an unconstrained optimization problem; and
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6. We propose an efficient method that iterates in the
space of orthogonal matrices to obtain a solution to the
problem. We prove that this method is the most effi-
cient.

1.1 Outline of the Paper

This paper is organized as follows. We start by revisiting the
similar, but simpler, problem of finding the closest essential
matrix arising in central camera systems. Then, we formu-
late mathematically the problem under investigation in this
work and explain how it could be solved straightforwardly.
In Sect. 4, we reformulate the original problem and derive
two solutions for it. In Sect. 5, our method is compared with
direct solutions using synthetic data. Results with the moti-
vation on the use of our technique are shown in Sect. 6.
Experimental results are discussed in the respective exper-
imental sections. Finally, in Sect. 7, some conclusions are
drawn.

2 Notation

Small regular letters denote scalars, e.g., a; small bold
letters denote vectors, e.g., a ∈ R

n ; and capital bold let-
ters denote matrices, e.g., A ∈ R

n×m . In a matrix A,
A(i : j,k:l) ∈ R

( j−i+1)×(l−k+1) denotes the submatrix com-
posed by the lines from i to j and columns from k to l. We
represent general projection lines using Plücker coordinates
[37]:

l ∈ R
6 ∼ [

dT mT
]T

, such that dTm = 0 (1)

whered ∈ R
3 andm ∈ R

3 are the line direction andmoment,
respectively. The operator∼ denotes a vector that can be rep-
resented up to a scale factor.

The hat operator represents the skew-symmetric matrix
that linearizes the cross product, i.e., a × b = âb. ||X||
denotes the Frobenius norm (also known as L2-norm) of
the matrix X, which can be defined as a function of the
trace:

||X||2 = trace
(
XTX

)
. (2)

SO(3) stands for the group of rotationmatrices of order 3,
i.e., the group of orthogonal matrices with determinant equal
to 1. To conclude, diag(a1, a2, . . . , an) denotes an n×n diag-
onal matrix, with diagonal entries equals to a1, a2, . . . , an ,
expm(A) represents the matrix exponential of A, and the
asterisk symbol in A∗ denotes a minimizer of an optimiza-
tion problem.

3 ProblemDefinition and Direct Solutions

In this section, we start by defining the problem of fitting
generalized essential matrices from general 6 × 6 matrices
and present two straightforward methods to solve it.

3.1 Problem Definition

In order to better understanding the generalized essential
matrix parameterization, we first revisit the more straight-
forward case of the regular essential matrix corresponding to
Fig. 1a. An essential matrix aims at representing the incident
relation between two projection lines of two cameras looking
at the same 3D points in the world. The rigid transformation
between both coordinate systems is taken into account.

Without loss of generality, we assume that both cam-
eras are represented at the origin of each coordinate system,
ensuring that all the 3D projection lines of each camera
pass through the origin of the respective camera coordinate
system. Under this assumption, one can represent 3D projec-
tion lines by the respective directions, here denoted as d(L)

i

and d(R)
i for i th 3D projection lines that must intersect in

the world, where (L) and (R) represent the left and right
rays, respectively. Moreover, we assume that the transfor-
mation between both cameras is given by a rotation matrix
R ∈ SO(3) and a translation vector t ∈ R

3. Using this for-
mulation, an essential matrix E ∈ R

3×3 is defined by:

d(L)
i

T
Ed(R)

i = 0, such that E .= t̂R. (3)

Hence, the problem of finding the closest essential matrixX∗
from a general A ∈ R

3×3 may be formulated as:

argmin
X

‖A − X‖ , s.t. X ∈ R
3×3 is an essential matrix. (4)

It has an explicit solution (see, for instance, Theorem 5.9 in
[21]):

X∗ = U diag(σ, σ, 0) VT , with σ
.= λ1 + λ2

2
(5)

where the 3 × 3 orthogonal matrices U and V and scalars
λ1, λ2 are given by the singular value decomposition of A:

A = U diag(λ1, λ2, λ3) VT . (6)

It turns out that, for the general case (the one addressed in
this paper) and since the perspective constraints are not ver-
ified, we cannot represent the 3D projection lines only with
its directions [10]. One has to parameterize these 3D pro-
jection lines using a general 3D straight lines representation
(unconstrained 3D straight lines), see Fig. 1b. Let us repre-
sent lines of both cameras as l(L)

i and l(R)
i , represented in
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each coordinate system and parameterized by Plücker coor-
dinates (Sect. 2). The incident relation between both sets of
3D projection lines is given by:

l(L)
i

T E l(R)
i = 0, such that E ∈ X , (7)

where E ∈ R
6×6 is a generalized essentialmatrix [25,36,40]

and X denotes the space of generalized essential matrices:

X =
{[

t̂ R R
R 0

]
: R ∈ SO(3), t̂ is skew-symmetric

}
. (8)

As observed in (8), a generalized essential matrix has a
particular form. It is built up by block matrices that depend
on rotation and translation parameters. Likewise the estima-
tion of essential matrices, in many situations E is estimated
without enforcing the respective constraints. This happens,
in particular, when using DLT techniques [13] or iterative
schemes that do not take into account all the constraints, to
speed up the respective process.

One of the goals of this paper is to estimate a real general-
ized essential matrix [i.e., a matrix satisfying the constraints
associated with (8)] that is closest to a general A ∈ R

6×6

with respect to the Frobenius norm. Formally, this problem
is formulated as:

argmin
X

||X − A||2

subject to X ∈ X .

(9)

Next, we present some naive approaches to solve (9).

3.2 A Direct Solution to the Problem in (9)

The crucial part in solving (9) is to ensure that X belongs to
the space of solutions X . There is, however, a direct way of
ensuring this, which can be derived directly from the con-
straints in (8). These constraints are associated with the fact
that X can be built up by stacking both R and t̂R, allowing
us to rewrite the problem as:

argmin
X

||X − A||

subject to XT
(1:3,4:6)X(1:3,4:6) = I

X(4:6,1:3) − X(1:3,4:6) = 0

X(4:6,4:6) = 0

X(1:3,1:3)XT
(1:3,4:6) + X(1:3,4:6)XT

(1:3,1:3) = 0.

(10)

The main issues associated with the problem in (10) are
related to the large amount of constraints. In total, 33 con-
straints are involved, being many of them quadratic. As we
shall see in the experimental results, this will increase signif-
icantly the computational time required to fit the generalized

essential matrix. To eliminate the high amount of constraints,
in the next subsection, we reformulate the problem in (9) as
an unconstrained one.

3.3 Unconstrained Formulation of (9)

In this subsection, we derive an unconstrained formulation of
the problem in (9). Let SE(3) stand for the special Euclidean
Lie group of motions in R3, that is, the group of matrices of
the form

T =
[
R t
0 1

]
. (11)

The corresponding Lie algebra (i.e., the tangent space at the
identity) is denoted by se(3), which consists of matrices of
the form

ξ(w, v) =
[
ŵ v

0 1

]
, (12)

where w, v ∈ R
3. It is well known that the exponential map

transforms a matrix in se(3) to a matrix in SE(3):

expm: se(3) �→ SE(3), (13)

such that T = expm(ξ(w, v)). Now, by inserting (12) and
(13) in (9), we can rewrite the problem as:

argmin
(w,v)

||expm(ξ(w, v)) − A||, (14)

thus resulting in a nonlinear unconstrained problem with six
unknowns. Although at first sight this problem might look
easy to solve, we stress that the exponential map of a 4 × 4
matrix may be computationally expensive; an efficient way
of evaluating the map expm: se(3) �→ SE(3) in Sect. 3.3 is
given by computingR as shown in (35), whereμ = ‖w‖ and
Z = ŵ/μ, and t as:

t =
(
I + 1−cos (μk )

μk
ZT
k + (μk−sin (μk ))

μk

(
ZT
k

)2)
v. (15)

In [7] another closed formulae to expm(ξ(w, v)) may be
found. In addition, the fact that the we are not optimizing
directly in T may lead to a high number of iterations and a
less accurate solution.

In the next section, we derive an efficient algorithm for
solving (9) that exploits the particular features of the objec-
tive function and constraints.

123



Journal of Mathematical Imaging and Vision (2020) 62:1107–1120 1111

4 An Efficient Solution

Now, we describe a method for an efficient approxima-
tion of the generalized essential matrix from a given 6 × 6
matrix, with respect to the Frobenius norm. Our approach,
first, represents the problem independently of the translation
parameters, which means that only orthogonal constraints
will be involved (Sect. 4.1). Then, inSect. 4.2,weuse this new
representation for deriving a new unconstrained optimization
problem. Section 4.3 proposes an efficient algorithm to solve
the reformulated optimization problem, which is our main
contribution.

4.1 Reformulation of the Problem

Since our goal is to represent the problem independently
from the translation parameters, we aim at eliminating the
skew-symmetric constraints in (9). To ease the notation,
we define the following submatrices: A11

.= A(1: 3,1: 3);
A12

.= A(1: 3,4: 6); A21
.= A(4: 6,1: 3); and A22

.= A(4: 6,4: 6).
We start by finding aworkable expression for the objective

function in terms of R and t̂:

f (R, t) .= ‖X − A‖2

=
∥∥∥∥

[
A11 A12

A21 A22

]
−

[
t̂R R
R 0

]∥∥∥∥

2

= ‖A11 − t̂R‖2 + ‖A12 − R‖2
+‖A21 − R‖2 + ‖A22‖2

= ‖A11 − t̂R‖2
+ trace

(
(AT

12 − RT )(A12 − R)
)

+ trace
(
(AT

21 − RT )(A21 − R)
)

+ ‖A22‖2.
(16)

Attending to the linearity of the trace function and the
fact that ‖RTR‖2 = ‖I‖2 = 3, the following expression is
obtained for the objective function:

f (R, t) = ‖A11 − t̂R‖2
−2 trace

(
(A12 + A21)

TR
)

+ α, (17)

where:

α
.= 6 +

∥
∥∥∥

[
0 A12

A21 A22

]∥
∥∥∥

2

(18)

is a constant. Let us denoteM .= A11 andN
.= (A12+A21)

T .
With respect to the Frobenius norm, it is well known and easy
to show that the nearest skew-symmetric t̂∗ from a given
generic matrix B ∈ R

3×3 is the so-called skew-symmetric

part of B (check Theorem 5.3 in [6] with P = I):

t̂∗ = B − BT

2
. (19)

Hence, we can replace t̂ .= (
MRT −(MRT )T

)
/2 in (17), yielding:

g(R)
.= 1

4

∥∥∥M + RMTR
∥∥∥
2 − 2trace(NR) + β, (20)

where:

β
.= 6 +

∥
∥∥∥

[
0 A12

A21 A22

]∥
∥∥∥

2

+ 1

2
‖A11‖2. (21)

Writing again the Frobenius norm in terms of the trace of a
matrix gives:

g(R) = 1

2
trace

(
(MTR)2

)
− 2 trace (NR) + β, (22)

with β being the constant given in (21). This allows a new
reformulation of the problem (9) as:

argmin
R

g(R)

subject to R ∈ SO(3),
(23)

which has only orthogonal constraints.
Before we present our efficient solution to the problem at

hand, we propose an unconstrained version of the problem
in (23).

4.2 An Unconstrained Formulation of (23)

Weproceed similarly as in Sect. 3.3. Letw ∈ R
3 and consider

its corresponding skew-symmetric matrix ŵ ∈ so(3). Using
the Lie mapping, one can write

expm: so(3) �→ SO(3), such that R = expm(ŵ). (24)

Now, by using (24), the problem in (23) can be rewritten
as:

argmin
w

g(expm(ŵ)), (25)

which is unconstrained. Efficient techniques to compute the
exponentialmap in (24) are available [see (35)].However, the
fact that we are not iterating directly in the space of rotation
matrices will bring inconvenient issues such as the require-
ment of a large number iterations.

In the next subsection, we aim at tackling these issues by
proposing an efficient solution to the problem (23).
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4.3 An Efficient Solution to (23)

Many optimization problems with orthogonal constraints
have been investigated in the last two decades; see, for
instance [1,5,8,22,44]. The right framework to deal with this
kind of problems is to regard them as optimization problems
on matrix manifolds. Tools from Riemannian geometry, cal-
culus on matrix manifolds, and numerical linear algebra are
required. Similar techniques can be used in our particular
problem (23), because the set of rotation matrices SO(3) is
a manifold. It also has a structure of Lie group (see [2]) and
is a compact set. We recall that this latter property guaran-
tees the existence of at least a global minimum for (23); see
Part III of [19]. However, the complicated expression of the
objective function g(R) turns hard to find an explicit expres-
sion for those global minima. Besides, the lack of convexity
of our problem (neither the objective function nor the con-
straints are convex) may only guarantee the approximation
of local minima.

It turns out, however, that some numerical experiments
(not shown in this paper) suggest that the approximation pro-
duced by Algorithm 1 is indeed the global one. We could
observe this because different initial guesses X0 led to con-
vergence to the same matrix. Unfortunately, a theoretical
confirmation that Algorithm 1 always converges to a global
minimum is still unknown. Nevertheless, it can be guaran-
teed that when A is close to being a generalized essential
matrix (this happens in many practical situations, as shown
later in Sect. 5), a local minimizer for (23) will be very close
to the global one. Now, we provide more insight into this
claim. Let us consider the original formulation (9), X̃ a local
minimizer, and X∗ a global minimizer. Assume that:

‖A − X̃‖ = ε, (26)

for a certain positive value ε. Since ‖A−X∗‖ ≤ ε, we have:

‖X̃ − X∗‖ = ‖X̃ − A + A − X∗‖
≤ ‖X̃ − A‖ + ‖A − X∗‖
≤ 2ε, (27)

which shows that:

0 ≤ ‖X̃ − X∗‖ ≤ 2ε. (28)

This means that if ε ≈ 0 then X̃ ≈ X∗. For instance, if ε =
10−1, then X̃ ≈ X∗ with an error not greater that 2 × 10−1.
Note that both X̃ and X∗ are generalized essential matrices.

Once a local minimumR∗ of (23) has been computed, the
corresponding skew-symmetric matrix t̂∗ needed in (9) will
be:

t̂∗ = MRT∗ − (
MRT∗

)T

2
. (29)

Hence, the required nearest generalized essentialmatrix from
A will be given by:

X∗ =
[
t̂∗R∗ R∗
R∗ 0

]
. (30)

The algorithm we will propose is of the steepest descent
type. Loosely speaking, these methods are essentially based
on the property that the negative of the gradient of the objec-
tive function points out the direction of fastest decrease. For
more details on general steepest descent methods, see [19,
Sec. 8.6] or [35,Ch. 3]. In our situation, one has to account the
constraint that R must be a rotation matrix and so our algo-
rithm will evolve on the manifold SO(3). Hence we have to
resort to steepest descent methods on matrix manifolds (see
[2, Ch. 3]).

For particular manifolds, tailored methods exploiting its
unique features have been proposed by many authors. For
instance, for the complex Stiefel manifold, Manton [22, Alg.
15] proposed a modified steepest descent method based on
Euclidean projections, where the Armijo’s step-size rule cal-
culates the length of the descent direction. This method has
been adapted and improved by Abrudan et al. [1, Table II]
for themanifold of unitarymatrices, where geodesics replace
the Euclidean projections. When dealing with manifolds that
are Lie groups, geodesics are defined upon the matrix expo-
nential, which is a much studied matrix function [27].

The strategy adopted for the steepest descent algorithm to
be described below has been inspired in [1,22], and we refer
the reader to those papers for more technical details. The
particular nature of the objective function (22) is exploited
in order to improve the efficiency of the method. In particu-
lar, we propose a specific technique to choose an initial guess
(thus reducing the number of iterations) and avoid expensive
methods based on Schur decompositions and Padé approxi-
mation for the computation of matrix exponentials.

Before displaying the steps of our algorithm, one needs
to find the Euclidean and the Riemannian gradients of the
objective function. After some calculations (see [20] for for-
mulae on derivatives of the trace function), the Euclidean
gradient of g at (22) is:

∇g(X)
.= MXTM − 2NT , (31)

and the Riemannian gradient is:

grad g(X)
.= ∇g(X) − X∇g(X)TX. (32)

Note that grad g(X)XT is a “tangent vector” that is actu-
ally a skew-symmetric matrix. Geodesics on SO(3) (i.e.,
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Algorithm 1 Given A ∈ R
6×6, this algorithm approximates

the closest generalized essential matrix E ∈ X from A for a
given tolerance tol.
1: M ← A11;
2: N ← (A12 + A21)

T ;
3: k ← 0;
4: X0 ∈ SO(3) is an initial guess;
5: μ0 ← 1;
6: error ← 1;
7: Choose a tolerance tol;
8: while error > tol do
9: ∇g(Xk) ← MXT

k M − 2NT;

10: Zk ← ∇g(Xk)XT
k − Xk∇g(Xk)

T;

11: zk ← 0.5 trace(ZkZT
k );

12: Pk ← expm(−μkZk);
13: Qk ← P2

k;
14: while g(Xk) − g(QkXk) ≥ μk zk do
15: Pk ← Qk;
16: Qk ← PkPk;
17: μk ← 2μk;

18: while g(Xk) − g(QkXk) < 0.5μk zk do
19: Pk ← expm(−μkZk);
20: μk ← 0.5μk;

21: Xk+1 ← PkXk;
22: error ← ‖Xk+1 − Xk‖;
23: k ← k + 1;
24: R ← Xk;
25: t̂ = 0.5 (MRT − RMT );

26: E ←
[
t̂R R
R 0

]
.

curves giving the shortest path between two points in the
manifold) can be defined through the matrix exponential as:

G(t) = G(0) expm(tS), (33)

where S ∈ R
3×3 is a skew-symmetric matrix representing a

translation and t is a real scalar. Algorithm 1 summarizes the
main steps of our method.
Algorithm. In a few words, Algorithm 1 starts with an ini-
tial approximation X0 ∈ SO(3), finds the skew-symmetric
matrix (grad g(X))XT (the gradient direction on the man-
ifold), and performs several steps along geodesics until
convergence. The positive scalar μk controls the length of
the “tangent vector” and, in turn, the overall convergence of
the algorithm. To find an almost optimal μk , the algorithm
uses the Armijo’s step-size rule, as performed in [22].
Computational Remarks. Now, we draw our attention to
some essential computational remarks about the algorithm.

– As the algorithm runs, the function g, which involves
the computation of traces of products of matrices, is
called several times. Note that the efficient computation
of trace(AB) does not require matrix products. Instead,
it can be carried out through the formula:

trace(AB) =
∑

i, j

(A ◦ BT )(i, j), (34)

where the operator ◦ denotes the Hadamard product, i.e.,
entry-wise product. If A and B are matrices of order n,
the direct computation of the matrix product AB needs
O(n3) operations, while the trace at (34) just requires
O(n2);

– The exponential of the 3 × 3 skew-symmetric matrix
−μkZk in lines 12 and 19 of the algorithm can com-
puted by means of the well-known Rodrigues’ formula
[29]:

expm(−μkZk)

= I + sin (μk)ZT
k + (1 − cos (μk))

(
ZT
k

)2
, (35)

which involves (at leading cost) the computation of
just one matrix product. The direct use of conventional
expm(·) functions based on the scaling and squaring
method combined with Padé approximation would be
much more expensive.

– Note that the trace of any skew-symmetric matrix S is
always zero and so:

det(expm(S)) = expm(trace(S)) = 1. (36)

This guarantees that matricesXk do not leave the rotation
manifold SO(3); and

– To conclude, we remark that the choice of the initial
guess X0 influences the running time of the algorithm.
An obvious choice for X0 would be the identity matrix
I of order 3. It turns out that other choices of X0 may
reduce the number of iterations significantly in the algo-
rithm. In our experiments, we have chosen as the initial
guess the rotation matrix that maximizes 2trace (NR) of
the sum defining g(R) in (22). We recall that this prob-
lem has an explicit solution based on the singular value
decomposition of N (see [9, Sec. 12.4]):

R̃ = U diag
(
1, 1, det(UVT )

)
VT , (37)

with U and V being the orthogonal matrices arising in
the singular value decomposition of NT , that is, NT =
UDVT . Since, in general, g(R̃) ≤ g(I), it is expected
that X0 = R̃ will be more close to the minimizer than
X0 = I.

5 Implementation of Our Method

In this section, we compare Algorithm 1 with general opti-
mization techniques applied to the direct formulation of the

123



1114 Journal of Mathematical Imaging and Vision (2020) 62:1107–1120

Fig. 2 Comparison between themethods presented in this paper against
general optimization techniques applied to (10), as a function of the vari-
ation of the Noise Level. The Tolerance value is set to 10−9 and

10−6. We evaluate the methods for both the computational speed and
the number of iterations, (a)–(d), for the Tolerance level of 10−9

and 10−6, respectively (Color figure online)

problem (10) and the methods presented in Sects. 3.3 and
4.2, using synthetic data. We run all these experiments a sin-
gle thread Intel i7-5820K processor at 3.30GHz and
16GB of RAM.

5.1 Experimental Results

The method described in Algorithm 1 (here denoted as OUR)
is tested against the following general optimization tech-
niques:

so(3):Method based on solving the unconstrained prob-
lem in (25), by the Levenberg–Marquardt algorithm;

se(3):Method based on solving (14), by the Levenberg–
Marquardt algorithm;

interior-point:Solution of (10), by the interior-point
method [33];

sqp: Solution of (10) by the sequential quadratic program-
ming method [4]; and

active-set: Solution of (10) by the active-set method
[30].

All the algorithms, including OUR, were optimized (part of
them have been implemented inC/C++) and can be accessed
from MATLAB. All the results shown below were imple-
mented in this framework.

For the dataset, we first generate random rotation matri-
cesR ∈ SO(3) and random translation vectors t ∈ R

3. With

these rotation and translation elements, we build a general-
ized essential matrix E ∈ X , as defined in (7).

To carry out the experiments, we propose a variation of
the deviation of a generic matrix in R

6×6 from a true gener-
alized essential matrix. The procedure is as follows: we first
generate an error matrix Ω ∈ R

6×6, in which the respective
elements are randomly generated from a normal distribu-
tion with standard deviation equal to the variable Noise
Level, and then compute the “noisy” matrix asA = E+Ω .
All the methods mentioned above are then applied.

Two tolerance values for the algorithms were selected, 10
& 10−6, and we change the variable Noise Level from
10−3 to 101. Results for both the computational speed and
the number of iteration are displayed in Fig. 2a, c and b,
d, respectively. For each value of the Noise Level, 103

random trials were generated.
In addition to the evaluation of the deviation from the

generalized essential matrix constraints, we have tested the
proposed method against the others as a function of the toler-
ance of the algorithms as well (here denoted as Tolerance
value). For that purpose, we fixed a Noise Level equal to
10−1 and to 5×10−1,1 and select a Tolerance value rang-
ing from 10−15 to 1. The results for both the computational
speed and the number of iterations are shown in Fig. 3a–d,

1 These values for the Noise Level have been chosen to illustrate
the case where our method performed worse than the other methods,
with respect to the number of iterations.
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Fig. 3 Comparison between Algorithm 1 and the other methods, as a
function of the Tolerance considered in the algorithms. The colors
of the curves and associated algorithms are identified in Fig. 2. We
have considered two distinct values to the Noise Level: 10−1 and

5 × 10−1, which causes the worst results for OUR method in terms of
number of iterations but not in computational speed (Fig. 2). We eval-
uate the methods for both the number of iterations and computational
speed, (b) & (d) and (a) & (c) (Color figure online)

respectively. Likewise the previous case, for each level of
tolerance, 103 random trials were generated.

Next, we discuss these experimental results.

5.2 Discussion

As observed in Fig. 2a, c, our method is significantly faster
than the others. Its computational speed rarely changes as
a function of the deviation from the generalized essential
matrix constraints. In fact, as shown in Fig. 3a, c, which
represent the worst scenario for OUR method, it can be seen
that it performs 103 times faster than any other method with
the exception of so(3), that uses our reformulation of the
problem. While OUR requires around 10−4 s, the so(3)
method takes more than 10−3 s. The experiments using the
so(3) method show a similar behavior when compared
with OUR (almost horizontal line), around 101 faster than
the remaining methods. This shows that the reformulation
of the problem proposed in Sect. 4.1 produces better results.
This is a remarkable advantage of OUR method for applica-
tions requiring real-time computations, such as the camera
relative pose estimation, which will be addressed later in
Sect. 6. From these figures, we can also conclude that the use
of Lie algebra techniques in se(3) does not improve the
results when compared to standard constrained optimization
techniques.

In Fig. 2b, d one can observe that, contrarily to the gen-
eral optimization techniques interior-point, sqp, and

active-set, the relationship between the number of iter-
ations and Noise Level is nearly linear for OUR, so(3),
and se(3). With the exception of the sqp method, for low
levels of noise, in general OUR method requires less/similar
number of iterations than any other technique. However, as
described in the previous paragraph, the computational time
of OUR is significantly lower for any Noise Level, inde-
pendently of the number of the iterations. As pointed out
in the previous sections, the use of Lie algebra techniques to
represent rotations and transformations (methodsso(3) and
se(3), respectively) involves a significantly larger number
of iterations to reach convergence.

In addition to the evaluation in terms of deviation from
the true generalized essential matrices, we have also com-
pared all the methods with respect to the tolerance. We have
considered a Noise Level of 10−1 and 5 × 10−1, which
causes the worst results for OUR method in terms of number
of iterations but not in computational speed. These results
are shown in Fig. 3. In Fig. 3a, c, we can observe that OUR
is the fastest method and that so(3) also performs well. In
contrast, the method se(3) gives the worst results.

Still about the evaluation in terms of Tolerance,
Fig. 3b, d shows that the number of iterations varies in a
similar fashion for all the methods. However, while OUR,
interior-point, sqp, and active-set techniques
perform similarly in terms of number of iterations, the
so(3) and se(3) require much more iterations. This also
evidences that the use of Lie algebra techniques to get uncon-
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Fig. 4 Representation of the simulated environment created for the
evaluation. At a we show the 3D scene simulated, including the set of
3D points; the camera system; and the subset of the path that the camera
must follow. b An example of the projection of the 3D points in one
image frame, and its correspondence with the projected points in the
previous frame

strained optimization problems may simplify the problem
itself, but requires in general more iterations and more run-
ning time.

6 Results in Real Applications

This section includes practical examples illustrating how
Algorithm 1 can be combined with other techniques to
improve the results.

In Sect. 6.1 more advantages of using generalized essen-
tial matrix approximations are evidenced, in a relative pose
problem for general catadioptric cameras. InSect. 6.2 another
application of Algorithm 1, using real data, will be shown.
To conclude this section, in Sect. 6.3, we discuss the experi-
mental results.

6.1 A Relative Pose Problemwith Non-central
Catadioptric Cameras

Let us consider a relative position estimation problem, using
a non-central catadioptric camera, composed with a perspec-
tive camera and a spherical mirror [3,42].

We synthetically generate a set of 3D points in the world
(Fig. 4a) and, then, define a path for the camera. While the
camera is following the path, we compute the projection of
the 3D points onto the image of the catadioptric camera sys-
tem [3] (Fig. 4b). Then, with the knowledge of the matching
between pixels at consecutive image frames, we aim at com-
puting the rotation and translation parameters, ensuring the
intersection of the respective inverse projection lines result-
ing from the images of the 3D points in consecutive image
frames in the world.

A general technique to handle this problem can be math-
ematically formulated as (X is a matrix in R

6×6):

argmin
X

h (X)

subject to XT
(1: 3,4: 6)X(1: 3,4: 6) = I

X(4: 6,1: 3) − X(1: 3,4: 6) = 0
X(4: 6,4: 6) = 0
X(1: 3,1: 3)XT

(1: 3,4: 6) + X(1: 3,4: 6)XT
(1: 3,1: 3) = 0

,

(38)

where

h (X) =
N∑

i=0

l(L)
i

T
X l(R)

i , (39)

l(L)
i and l(R)

i represent the matching between the image pro-
jection lines on left and right cameras, respectively, and N is
the number of matching points.

We consider six distinct methods for the computation of
the relative pose, based on the estimation of the generalized
essential matrix:

Full: Denotes the relative pose estimation that aligns 3D
straight lines in the world to ensure that they intersect, by
the optimization problem (38). A tolerance of 10−9 was
considered for the constraints;

Without Constraints: Denotes a method similar to
Full, i.e., the problem of (38). However, in this case, a
different value of 10−1 was considered for the tolerance
of constraints;

OUR + WC: Consists in, first, estimating an initial solu-
tion using the Without Constraints method and,
then, applyingOURmethod to estimate a true generalized
essential matrix (Algorithm 1), with tolerance 10−9 for
the constraints;

interior-point + WC: Same as OUR + WC but now
the approximation is given by solving (10) with the
interior-point;

SQP + WC: Same as interior-point + WC, but
with the approximation of (10) obtained with the sqp
algorithm;

active-set + WC: Same as interior-point +
WC but now (10) is solved by active-set.

The results for the distribution of the computational time
required to compute each image frame are shown in Fig. 5
(box plot graph). These results are commented later in
Sect. 6.3.

Note that nowwe are dealing with a different optimization
problem from (10), despite the constraints coincide.

6.2 Experiments with Real Data

To conclude the experimental results, we apply Algorithm 1
to an absolute pose estimation problem in the framework of
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Fig. 5 Results for the distributionof the computational time required for
computing the camera relative pose, for each of the methods described
in Sect. 6.1

Fig. 6 Results obtained with real images. At the left, we show an exam-
ple of an image acquired by the non-central catadioptric camera. On the
right, we show the results for the trajectory (top view) computed with
the FULL and OUR + WC methods, described in Sect. 6.1

general cameramodels, andknowncoordinates of 2Dstraight
lines in the world coordinate system [26]. We consider a
non-central catadioptric camera (with a spherical mirror) and
moved the camera along a path in the lab.

3D lines in the world are associated with a set of pixels
in the image (Fig. 6). The goal is to find the generalized
essential matrix E that aligns the 3D inverse projection lines
from these pixels with the known 3D straight lines in the
world, in order to guarantee their intersection.

This problem can be solved by the same strategy proposed
in the previous subsection, i.e., by using the optimization
problem of (38), but in this case with the following objective
function:

h (X) =
M∑

i=0

Ni∑

j=0

l(W)
i

T
X l(C)

i, j , (40)

where: l(W)
i represent the known 3D straight lines in the

world; l(C)
i, j denote the inverse projection lines corresponding

pixels that are images of the i th line; Ni are the number of

Fig. 7 Distribution of the computational time obtained for the absolute
pose problem using a real non-central catadioptric camera.We consider
all the algorithms described in Sect. 6.1

image pixels that are images of the line i ; andM is the number
of known 3D straight lines in the world.

We consider the sixmethods proposed in Sect. 6.1. A com-
parison between the trajectories of OUR + WC2 method and
the FULL is shown in Fig. 6. The distribution of the required
computational time for each frame is shown in Fig. 7.

6.3 Discussion of the Results

In this subsection, we discuss the experimental results shown
in the previous subsections. We start by analyzing the results
of the approximation of general 6× 6 matrices, in which we
compare the performance of the proposed method against
the direct solution (these are the main results of this paper)
in a non-central catadioptric relative camera pose. Next, we
discuss the experiments with real data, in which we compare
the performance of our approximation technique against the
direct solution, in an absolute pose problem.

In all these tests, we have imposed m = 100 as the maxi-
mum number of iterations for Algorithm 1. It is worth noting
that the algorithm has never reached such a number of itera-
tions, which means that it always converged.

Notice that one of the main contributions of this paper
(Sect. 4) is not to estimate the relative pose of an imaging
device, but, instead, to find generalized essential matrices
from general 6 × 6 matrices [that do not verify (10)].

Evaluation in a Non-central Catadioptric Relative Pose
Problem. When considering the experiments carried out in
Sect. 6.1, first, we conclude that increasing the tolerance of

2 Notice that the other approximate techniques would give the same
results as OUR + WC. The difference between them depends only on
the required computational time.
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constraints on theFULL algorithm [i.e., not fully considering
the underlying constraints of the generalized essential matrix
(38)] and, then, recover a true generalized essential matrix,
by Algorithm 1, leads to significant savings in computational
time. See the comparison between FULL and all the other
methods in Figs. 5 and 7 . It can be seen that the differences
between OUR + WC and Without Constraints (the
optimization without fully considering the underlying con-
straints of the generalized essential matrix) can be neglected,
while this does not happen for the direct solution. We recall
that the Without Constraints method does not pro-
duce a true generalized essential matrix, while the other ones
do.

Besides, from Fig. 4, one can conclude that this procedure
(compute A and then find the closest X) does not diminish
the results significantly.

To conclude, one can see that estimatingA and, then, find
X that approximates A [see (9)] will result in a much faster
algorithm than looking directly for X.

Validation using Real Data. To conclude the experimental
results, we validate the proposed fitting technique (Algo-
rithm1) against the direct solution [with the abovementioned
general optimization techniques on the problem defined in
(10)] in a real application of an absolute camera pose estima-
tion, when using non-central catadioptric cameras, see Fig. 6.

From Fig. 7, we see that, while the use of the direct solu-
tion and all the three general optimization techniques will
have an impact on the computation time (see the results
for interior-point+WC, SQP+WC, and active-set
againstWithout Constraints), the differencebetween
OUR+WC and Without Constraints can be neglected,
being much faster than the FULL technique.

Still from Fig. 6, one can conclude that approximating X
(a true generalized essential matrix) from a general matrixA
does not degrade significantly the results, being much faster
than estimatingX directly (that is shown by comparingFULL
and OUR+WC in Fig. 7).

Although these tests have different goals (one is related
with the relative camera pose and the other with the absolute
pose), these results are very similar to the ones presented in
Sect. 6.1, validating the results using synthetic data.

7 Conclusions

To the best of our knowledge, we are the first to investigate
the problem of fitting generalized essential matrices, from
general 6×6 matrices, and its implications. We have defined
the problem and proposed some general constrained opti-
mization techniques that can be used to determine a solution.
One of the issues of the general optimization techniques is
the large amount of constraints involved (33 constraints). To

get rid of those constraints, two unconstrained formulations
of the problem have been proposed. However, they have led
to unsatisfactory results. Then, we have proposed an effi-
cient technique by optimizing on matrix manifolds. More
specifically, we define a constrained optimization problem
on the rotation group. A suitable efficient iterative method,
of steepest descent type, has been then developed to solve
the problem, which ensures that each iteration lies on the
manifold of rotation matrices. A large set of experiments has
shown that such a method is the fastest.

We have also presented some results to show the advan-
tages of using approximating techniques such as the one
presented in this paper, in real applications. We evaluate our
method against the direct solution in relative and absolute
pose problems (the latter with real data), in which we prove
that: (i) estimating A (general 6 × 6 matrix) and then fitting
E (a true generalized essential matrix) speed up significantly
the required computational time; and (ii) there is no signifi-
cant deterioration of the obtained results. We also concluded
that, contrarily to the direct solution, when using ourmethod,
the required additional computational time (i.e., the compu-
tation time that is required after the estimation of A) can be
neglected.
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