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Abstract
Lossy image compression methods based on partial differential equations have received much attention in recent years. They
may yield high-quality results but rely on the computationally expensive task of finding an optimal selection of data. For
the possible extension to video compression, this data selection is a crucial issue. In this context, one could either analyse
the video sequence as a whole or perform a frame-by-frame optimisation strategy. Both approaches are prohibitive in terms
of memory and run time. In this work, we propose to restrict the expensive computation of optimal data to a single frame
and to approximate the optimal reconstruction data for the remaining frames by prolongating it by means of an optic flow
field. In this way, we achieve a notable decrease in the computational complexity. As a proof-of-concept, we evaluate the
proposed approach for multiple sequences with different characteristics. In doing this, we discuss in detail the influence of
possible computational setups. We show that the approach preserves a reasonable quality in the reconstruction and is very
robust against errors in the flow field.

Keywords Partial differential equations · Inpainting · Laplace interpolation · Optic flow · Video reconstruction

1 Introduction

Transform-based image and video compression algorithms
are still the preferred choice in many applications [33]. How-
ever, in recent years there has been a growing interest in
alternative approaches [1,11,18,30]. It has been shown that
partial differential equation (PDE)-based methods represent
a viable alternative in the context of image compression.
In order to achieve a competitive level with state-of-the-art
codecs, the PDE-based methods require sophisticated data
optimisation schemes and fast numerical algorithms. The
most important task is the choice of a small subset of pix-
els, often called mask, from which the original image can be
accurately reconstructed by solving a PDE.
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This data selection problem has proven to be delicate,
see [6,8,12,13,22,39] for some strategies considered in the
past. Most approaches are either very fast but yield sub-
optimal results or they are relatively slow and return very
appropriate data for the reconstruction. A thorough optimisa-
tion of a whole image sequence yielding high reconstruction
quality is therefore computationally rather demanding. Most
approaches have resorted to a frame-by-frame consideration.
Yet, even such a frame-wise tuning can be computationally
expensive, especially for longer videos.

In this paper, we discuss a simple and fast approach to
skip the costly data selection step in a certain number of
frames. Instead, we perform a computationally much less
demanding data transport along the temporal axis of the video
sequence. In order to evaluate important properties occurring
by the realisation of this approach, we focus on the interplay
between reconstruction quality and the accuracy of the trans-
porting vector field. The actual data compression rate that can
be achieved is the subject of future research.

To give some more details of our approach, we consider
an image sequence and compute a highly optimised pixel
mask used for a PDE-based reconstruction within the first,
single frame. Next, we compute the displacement between
the individual subsequent frames by means of an optic flow
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method. We shift the carefully selected pixels from the pixel
mask of the first frame according to the optic flow field. The
shifted data are then used for the reconstruction process, in
this case PDE-based inpainting. The effects of erroneous or
suboptimal shifts ofmask pixels on the resulting video recon-
struction quality can then be evaluated.

The framework for video compression presented in [1]
has some technical similarities to our approach. The concep-
tual difference is that in their work a reconstructed image
is shifted via optic flow fields from the first to subsequent
frames. In contrast, we use optic flow fields only for the
propagation of mask locations and deal with an inpainting
problem in each frame.

The current paper is based on our conference paper [19].
In comparison with that work, we present here some novel-
ties and a much broader numerical study. The most apparent
novelty is that we propose here a variation of the original
approach which circumvents the accumulation of rounding
errors. With this new algorithm, we are able to significantly
decrease reconstruction errors at the negligible computa-
tional expense of a bilinear interpolation. We augment the
numerical evaluation of our approach, e.g. by considering
several optic flow algorithms. Furthermore, we have added a
numerical experiment on the development of the mask pixel
density during the video sequence, illuminating a basic prop-
erty of the approach that could be explored in future work.

Our paper is structured as follows. First we briefly recall
the considered models and methods. Next we describe how
they are concatenated in our strategy. Finally, all components
are carefully evaluated, where we focus here on quality in
terms of reconstruction error. Let us note again that we will
not consider the impact on the file compression efficiency, as
a detailed analysis of the complete, resulting data compres-
sion pipeline would be beyond the scope of this work.

2 Discussion of ConsideredModels and
Methods

The recovery of images, as in a video sequence, by means
of interpolation is often called inpainting. Since the main
issue in our approach is concerned with the selection of data
for a corresponding PDE-based inpainting task, it will be
useful to elaborate on the inpainting problem in some detail.
After discussing possible extensions from image to video
inpainting, we consider the optic flow methods and some
algorithmic aspects of them as employed in this work.

2.1 Image Inpainting with PDEs

The inpainting problem goes back to the works of Mas-
nou and Morel as well as Bertalmío and colleagues [3,25],
although similar problems have been considered in other

Fig. 1 Inpainting model as given in (1) with known image data f in
�K (see [37] for the source image). The task consists in recovering a
reasonable reconstruction of the image f in�\�K by solving the PDE
in (1)

fields alreadybefore. There existmany inpainting techniques,
often based on interpolation algorithms, but PDE-based
approaches are among the most successful ones, see e.g.
[14,15,31]. For the latter, strategies based on the Laplacian
are often advocated [5,23,28,32]. Mathematically, the sim-
plest model is given by the elliptic mixed boundary value
problem

⎧
⎨

⎩

−�u(x) = 0, in � \ �K ,

u(x) = f (x), in ∂�K ,

∂nu(x) = 0, in ∂� \ ∂�K ,

(1)

see the sketch in Fig. 1 and the related discussion in [20].
Here, f represents known image data in a region �K ⊂ �

(resp. on the boundary ∂�K ) of the whole image domain
�. Further, ∂nu denotes the derivative in direction of the
outer normal. In an image compression context, the image
f is known on the whole domain �, and one would like to
identify the smallest set�K that yields a good reconstruction
u when solving (1).

While solving (1) numerically is a rather straightforward
task, finding an optimal subset�K ismuchmore challenging.
Mainberger et al. [24] consider a combinatorial strategywhile
Belhachmi and colleagues [2] approach the topic from the
analytic side. Recently [17], the “hard” boundary conditions
in (1) have been replaced by softer weighting schemes, cf.
again [20]. If we denote the weighting function by c : � →
R, then (1) becomes:

⎧
⎨

⎩

(1 − c (x)) (−�)u (x)
+c (x) (u (x) − f (x)) = 0, in �,

∂nu(x) = 0, in ∂� \ ∂�K .

(2)

In the case where c is the indicator function of �K , (2) coin-
cides with the PDE in (1). Whenever c(x) = 1, we require
u(x) − f (x) = 0 and c(x) = 0 implies −�u(x) = 0.

123



146 Journal of Mathematical Imaging and Vision (2021) 63:144–156

Optimising a weighting function c which maps to R is
notably simpler than solving a combinatorial optimisation
problem when the mask c maps to {0, 1}. As the optimal set
�K is given by the support of the function c, the benefit of
the formulation (2) is that one may adopt ideas from sparse
signal processing to find such a good mask. To this end,
Hoeltgen et al. [17] have proposed the following optimal
control formulation:

argminu,c

{∫

�

1

2
(u (x) − f (x))2 + λ|c (x) | + ε

2
c (x)2 dx,

}

⎧
⎨

⎩

(1 − c (x)) (−�)u (x)
+c (x) (u (x) − f (x)) = 0, in �,

∂nu(x) = 0, in ∂� \ ∂�K .

(3)

Equation (3) can be solved by an iterative linearisation of the
PDE in terms of (u, c), followed by a primal-dual optimisa-
tion strategy such as [9] for the occurring convex problem
with linear constraints. As reported in [17], a few hundred
linearisations need to be performed to obtain a good solution.
This also implies that an equal amount of convex optimisa-
tion problems needs to be solved. Even if highly efficient
solvers are used for the latter, the run time will still be con-
siderable. An alternative approach for solving (3) was also
presented in [26].

Besides optimising�K (resp. c), it is also possible to opti-
mise theDirichlet boundary data in such away that the global
error is minimal. If M(c) denotes the linear solution operator
with mask c that yields the solution of (2), then we can write
this tonal optimisation as

argming
{
‖M(c)g − f ‖22

}
. (4)

This idea has originally been presented in [24]. In [16], it
is shown that there exists a dependence between non-binary
optimal c (i.e. mapping to R instead of {0, 1}) and optimal
tonal values g. More specifically, the results obtained with
binary masks and tonal optimisation are equivalent to those
obtained with non-binary masks and no tonal optimisation.
Efficient algorithms for solving (4) can be found in [16,24].
These algorithms are faster than solving (3), yet their run
times still range from a few seconds to a minute on standard
desktop computers, e.g. the system detailed in Sect. 4.1.

2.2 Extension from Images to Videos

The strategies for inpainting discussed so far have been
applied to grey-value or colour images almost exclusively.
However, straightforward extensions to video sequences
would be possible, in principle. The simplest strategy would
be to consider a frame-by-frame approach. Alternatively, in
(3) one could also extend the Laplacian into the temporal
direction to compute an optimal mask in space-time. This

would reduce the temporal redundancy (assuming that the
content of subsequent frames does not change much) in the
mask c compared to a frame-wise approach. Unfortunately,
the latter strategy is prohibitively expensive. A one-second-
long video sequence in 4K resolution (3860 × 2160 pixels)
with a framerate of 60 Hz would require analysing approx-
imately 500 million pixels. A frame-by-frame optimisation
would be more memory efficient, since the whole sequence
does not need to be loaded at once, but it would still require
solving 60 expensive optimisation problems.

In this context, let us note again that our approach modi-
fies the frame-wise proceeding by computing a displacement
field and shifting optimised mask locations from one frame
to the next. We refer to [34] for a general overview on the
concepts and ideas employed in modern video compression
codecs such as MPEG.

2.3 Optic Flow

For the sake of simplicity, we opt for two classic variational
models that illustrate a certain variation in quality and flow
field properties. We opt for the well-understood model of
Horn and Schunck proposed originally in [21] and the TV-L1

model for which we refer to [40] for a detailed description.
Given an image sequence f (x, y, t), where x and y are

the spatial dimensions and t the temporal dimension, the
considered optic flow methods compute a displacement field
(u(x, y), v(x, y)) thatmaps the frame at time t onto the frame
at time t + 1. In the Horn–Schunck (HS) model, this is done
by minimising the energy functional

∫

�

(
fxu + fyv + ft

)2 + α

∥
∥
∥
∥

(∇u
∇v

)∥
∥
∥
∥

2

2
dxdy (5)

where fx , fy and ft denote the partial derivatives of f with
respect to x , y and t and where � ⊂ R

2 denotes the image
domain. The HS model is very popular, and highly efficient
numerical schemes exist that are capable of solving (5) in
real-time (30 frames per second), see [7]. Obviously, replac-
ing already a single computation of c with the computation
of a displacement field (u, v) will save a significant amount
of time. If the movements in the image sequence are small
and smooth enough, it appears to be very likely, that several
masks c can be replaced by making use of such a flow field,
thus saving even more run time.

As indicated, in addition to the HS model we also con-
sider the TV-L1 model. Loosely speaking, this model can be
derived from (5) by changing the L2 norm in the data fidelity
term to the L1 norm and changing the L2 norm regulariser to
a total variation (TV) seminorm. For the TV seminorm, one
can choose from multiple possible realisations, from which
we consider two options as follows. In [40], a method was
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Algorithm 1: Data Selection with Rounding
Data: Image sequence f
Result: Optimised data for the reconstruction

1 Optimise mask c for first frame of the sequence f by solving (3)
2 Binarise c by setting all non-zero entries to 1

3 Find optic flow between all frames of the sequence by
minimising (5)

4 Round flow field entries to nearest integer
5 Transport c according to the flow field

6 Perform tonal optimisation by solving (4) on the mask locations
in each frame

proposed to minimise an approximation of the energy

∫

�

| fxu + fyv + ft | + α (‖∇u‖2 + ‖∇v‖2) dxdy. (6)

Here the regularisation of u and v is decoupled. This is not
the case for the energy

∫

�

| fxu + fyv + ft | + α

∥
∥
∥
∥

(∇u
∇v

)∥
∥
∥
∥
2
dxdy, (7)

which was recently investigated in detail in [29].

3 Combining Optimal Masks with Flow Data

Given an image sequence f , we compute a sparse inpainting
mask for thefirst framewith themethod from [17].According
to the results in [16], we threshold the mask c and set all non-
zero values to 1. Next, we compute the displacement field
between all subsequent frames in the sequence by solving (5)
for each pair of consecutive frames. For prolongating the
mask locations, we now consider two approaches.

The first approach is identical to the one presented in [19].
The obtainedflowfields (u, v) are roundedpoint-wise to their
nearest integers to assert that they point exactly onto a grid
point. Then, the mask points from the first frame are simply
moved according to the displacement field.

If the displacement points outside of the image or if it
points onto a position where a mask point is already located,
then we drop the current mask point. Since we are consider-
ing sparse sets of mask points, the probability of two mask
points being shifted to the same location is rather low such
that hardly any data get lost because of such an event. For
displacements pointing outside of the image, we refer to an
experimental study presented in Sect. 4.4.

Once the mask has been set for each frame, we perform
a tonal optimisation of the data as discussed in [16]. The
reconstruction can then simply be done by solving (2) for
each frame. The complete procedure is also detailed in Algo-
rithm 1.

Algorithm 2: Data Selection with Interpolation
Data: Image sequence f
Result: Optimised data for the reconstruction

1 Optimise mask c for first frame of the sequence f by solving (3)
2 Binarise c by setting all non-zero entries to 1

3 Find optic flow between all frames of the sequence by
minimising (5)

4 Transport c according to the flow field interpolated at non-zero
locations of c

5 Round mask locations to nearest integer

6 Perform tonal optimisation by solving (4) on the mask locations
in each frame

Instead of rounding the flow field vectors, one could also
follow the idea to perform a forward warping [27] and spread
a single mask point on all neighbouring mask points. With
this strategy, flow fields that point to the same location would
simply add up the mask values. Even though this appears as a
mathematically clean approach since the sum of mask values
is preserved, our experiments showed that the smearing of the
mask values caused strong blurring effects in the reconstruc-
tions and lead to overall worse results. Therefore, we do not
elaborate on this modification in detail.

In the second approach, which we propose as a novelty in
this paper, the flow fields are not rounded towards the nearest
integers. Instead the mask locations are shifted according to
the exact displacement fields. The new mask locations will
typically not be on a grid point; therefore, the values of the
surrounding optic flow field defined at the grid points are
interpolated for shifting the mask locations to the next frame.
Themask locations are only rounded to the nearest grid point
for computing an inpainting mask in the current frame.

Again, if the displacement points outside of the image the
corresponding mask point is dropped. However, if two mask
points have the same rounded position, the exact position
will usually still differ. Therefore, in this case a mask point is
dropped only for the computation of the inpainting mask in
the current frame. Finally, based on the rounded mask loca-
tions, the tonal optimisation [16] is performed. This second
approach is detailed in Algorithm 2.

The data that need to be stored for the reconstruction con-
sists of the mask point positions in the first frame, the flow
fields that move the mask points along the image sequence
(resp. the mask positions in the subsequent frames), and the
corresponding tonal optimised pixel values. We emphasise
that it is not necessary to store the whole displacement field
but only at the locations of a mask point in each frame. Thus,
the memory requirements for the storage remain the same
as when optimising the mask in each frame. Yet, the whole
approach is considerably faster compared to a frame-wise
mask optimisation. We also remark that the considered strat-
egy is rather generic. One may exchange the mask selection
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Fig. 2 Angular errors (in degree) and endpoint errors (in pixel width)
in the optic flow field of the Yosemite sequence in-between frame i
and i + 1 for the considered methods. The regularisation weight was
optimised for each pair of frames to minimise the angular error. The

methods with coarse-to-fine strategies are at least twice as accurate as
[36]. The methods [29,40] based on TV-L1 models exhibit lower errors
than the HS implementation [35] in most cases

algorithm and the optic flow computation with any other
method that yields similar data.

4 Experimental Evaluation

To evaluate the proposed approach, we give further details
on our experimental setup, including a rough comparison of
run times for the different stages of Algorithms 1 and 2.

We discuss the influence of the quality of the flow fields
by means of an example. Then we proceed by evaluating the
proposed methods for a number of image sequences.

4.1 Details on the ConsideredMethods

As alreadymentioned,we compute the inpaintingmaskswith
the algorithm from [17] and use the LSQR-based algorithm
from [16] for tonal optimisation. In terms of quality, these
methods are among the best performing ones for Laplace
reconstruction. However, alternative solvers such as pre-
sented in [10,24] may be used as well.

For a reasonable comparison of optic flow methods, we
have resorted to the builtin MATLAB implementation [36]
of the HS method and a more sophisticated implementation
available from [35]. Additionally, we test multiple imple-
mentations of more modern TV-L1 models, namely the
implementations presented in [40] and [29]. Let us note again
that in doing this we extend our previous conference paper.

All but the builtin MATLAB implementation include a
coarse-to-fine warping strategy [27]. For the implementation

from [29], we test this strategy here in combination with both
bilinear and b-spline interpolation of order 4. Evaluations on
the Yosemite sequence have shown that the implementations
including coarse-to-fine and warping frameworks are usu-
ally twice as accurate (see Fig. 2) as the builtin MATLAB
function, but in case of the TV-L1 models they also exhibit
larger run times. However, the computation of an accurate
displacement field is still significantly faster than a thorough
optimisation of the mask point locations.

All methods have been implemented in MATLAB. On a
desktop computer with an Intel Core i9-7920X CPU with
12 cores clocked at 2.90 GHz and 64GB of memory, the
average run time of the MATLAB optic flow implementa-
tion (10000 iterations at most) on the 512 × 512 × 10 “Toy
Vehicle” sequence from [37] was 14 seconds for each flow
field between two frames. For the other implementations, we
always used 8 coarse-to-fine levels with 10 warping steps
at most. The implementation of the HS model from [35]
took 13 seconds. The average computation times for the TV-
L1 implementations were higher, as can be expected. Here
the underlying optimisation problem in one warping step is
solved iteratively, with 200 iterations atmost. The implemen-
tation from [40] took 105 seconds and the implementation
from [29] took 85 secondswith bilinear and 128 secondswith
b-spline interpolation. The tonal optimisation (360 iterations
at most) took on average 20 seconds per frame.

The optimal control-based mask optimisation (1500 lin-
earisation and 3000 primal dual iterations at most) required
on average 2-26 seconds per linearisation and usually all
1500 linearisations are carried out. A complete optimisation
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Table 1 Evaluation of the Yosemite sequence

λ Density Optimal c Ground truth [36] [35] [40] [29], bilinear [29], b-spline Zero Random

Average MSE with Algorithm 1

0.0030 15.75% 25.60 130.15 128.49 124.28 122.22 127.48 126.32 131.41 236.32

0.0063 9.21% 52.16 179.33 178.79 174.42 172.95 176.96 175.81 185.59 283.68

0.0125 5.51% 88.75 227.84 227.81 221.56 220.84 224.10 222.95 239.25 333.49

0.0250 3.11% 139.51 284.17 285.54 277.28 275.32 278.45 277.35 299.29 399.72

Average MSE with Algorithm 2

0.0030 15.75% 25.60 83.77 111.76 83.65 78.38 85.51 80.14 131.41 212.41

0.0063 9.21% 52.16 118.16 156.70 118.90 112.86 120.36 114.35 185.59 266.31

0.0125 5.51% 88.75 157.40 201.26 157.51 151.66 159.33 152.96 239.25 323.90

0.0250 3.11% 139.51 208.33 252.22 204.47 200.04 207.17 201.27 299.29 395.86

The density specifies the percentage of non-zero mask pixels in the first frame. The errors in the fifth-to-ninth column correspond (in order) to the
builtin MATLAB function [36], the HS implementation from [35], the TV-L1 implementation from [40] and the TV-L1 implementation from [29]
using bilinear and b-spline interpolation of order 4. The second-to-last column sets the flow field in every pixel to 0. The last column shows the error
when using a random flow field in the same numerical range as the ground truth. The upper part of the table represents the results of Algorithm 1,
where the flow fields are rounded. Here the results with shifted masks are very similar. They outperform zero flow especially in the first frames, cf.
Fig. 3. For Algorithm 2 displayed in the bottom part of the table, there is a clear performance gain when using more accurate flow fields than the
ones generated with [36], which in turn are clearly outperforming zero flow, cf. Fig. 4. In all eight experiments, the TV-L1 implementation from
[40] delivers the lowest average MSE
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Fig. 3 Reconstruction error with Algorithm 1 for the Yosemite
sequence in each frame using a mask with density 5.51% shifted by
different flow fields. The average angular error over all frames of the
method from [36] is 18.95 and 17.04 if measured at mask points only.
For the method from [35], the corresponding errors are 8.62 and 5.30.

For methods [29,40], the error values are similar to the ones with [35],
cf. Fig. 2. The error in the reconstruction is hardly influenced by the
quality of the optic flow. The dashed line at the bottom indicates the
error in the reconstruction from an optimal mask

takes therefore about 6 hours per frame. The large variations
in the run times of the single linearisations stem from the
fact that the sparser the mask becomes the more ill-posed the
optimisation problem becomes and the more iterations are
needed to achieve the desired accuracy. All in all, the mask
optimisation is at least 150 times slower than any of the optic
flow computations or the tonal optimisation.

4.2 Evaluation

We evaluate the proposed Algorithm 1 on several image
sequences. At first, we consider the Yosemite sequence with
clouds, available from [4]. Since the ground truth of the dis-
placement field is completely known, we can also analyse
the impact of the quality of the flow on the reconstruction.
Further, we evaluate the image sequences from theUSC-SIPI
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Fig. 4 Reconstruction error with Algorithm 2 for the Yosemite
sequence in each frame using a mask with density 5.51% shifted by
different flow fields. Methods incorporating a computed flow field are
clearly outperforming the static mask (zero flow). The flow field from

[36] is outperformed by more accurate methods [29,35,40], which are
similar to the reconstructionswith the ground truth flow. The dashed line
at the bottom indicates the error in the reconstruction from an optimal
mask
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Fig. 5 Density of mask pixels for the Yosemite sequence and different
parameter choices of λ in (3). The density is steadily decreasing as
objects move out of the image plane

Image Database [37]. The database contains four sequences
of different length with varying image characteristics. For
the latter sequences, no ground truth displacement field is
known. As a such we can only report the reconstruction error
in terms of mean squared error (MSE) and structural simi-
larity index (SSIM) [38].

0 2 4 6 8 10 12 14 16
0

10

20

30

Frame

D
en
si
ty

(i
n
%
)

Walter, 0.001
Walter, 0.002

Toy Vehicle, 0.001
Toy Vehicle, 0.002

Fig. 6 Density of mask pixels for theWalter and ToyVehicle sequences
and different parameter choices of λ in (3). The density is relatively
stable, since the perspective is constant in both scenes

4.3 Influence of the Optic Flow

In Table 1, we present the evaluation of our approach on
the Yosemite sequence for different choices of parameters
of the mask optimisation algorithm and the corresponding
reconstruction. In all these experiments, we set the stabilis-
ing trust-region parameter μ to 1.25 (see [17] for a definition
of this parameter) and ε from (3) to 10−9 in the mask optimi-
sation algorithm. The regularisation weight in (5), (6) or (7)
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Table 2 Evaluations of the MSE and SSIM on Image Sequences from the USC-SIPI Image Database [37]

Sequence Density First Last Min. Max Mean

[40] Optimal c Zero

MSE

Yosemite 5.51% 88.38 206.89 88.38 206.89 151.66 88.75 239.25

15.75% 25.34 119.95 25.34 119.95 78.38 25.60 131.41

Walter 5.82% 7.33 29.70 7.33 29.70 18.86 7.23 82.29

27.07% 1.88 10.94 1.88 11.21 5.88 1.81 21.20

Toy Vehicle 3.00% 4.11 19.85 4.11 36.22 25.29 4.45 30.16

19.97% 1.26 7.83 1.26 16.90 10.91 1.27 12.79

Plant (close) 3.20% 111.99 320.56 111.99 361.73 265.30 124.01 425.80

5.36% 73.74 261.93 73.74 300.08 216.09 79.68 355.92

19.05% 18.50 160.15 18.50 194.85 132.06 18.87 164.23

Plant (far) 3.65% 137.99 238.06 137.99 241.70 203.82 143.10 326.08

6.64% 87.32 191.24 87.32 193.69 156.70 92.74 268.54

23.18% 19.71 115.22 19.71 115.36 82.91 22.06 141.85

SSIM

Yosemite 5.51% 0.8196 0.6678 0.6678 0.8196 0.7321 0.8150 0.6433

15.75% 0.9372 0.7881 0.7881 0.9372 0.8487 0.9333 0.7848

Walter 5.82% 0.9577 0.9111 0.9111 0.9577 0.9285 0.9581 0.8744

27.07% 0.9810 0.9603 0.9603 0.9810 0.9686 0.9817 0.9514

Toy Vehicle 3.00% 0.9692 0.9451 0.9357 0.9692 0.9467 0.9681 0.9389

19.97% 0.9856 0.9724 0.9637 0.9856 0.9718 0.9858 0.9693

Plant (close) 3.20% 0.7177 0.5756 0.5725 0.7177 0.6177 0.7295 0.4870

5.36% 0.7843 0.6370 0.6287 0.7843 0.6761 0.7997 0.5512

19.05% 0.9230 0.7791 0.7509 0.9230 0.8077 0.9336 0.7537

Plant (far) 3.65% 0.6739 0.5217 0.5217 0.6739 0.5671 0.6513 0.4584

6.64% 0.7667 0.5895 0.5895 0.7667 0.6433 0.7436 0.5297

23.18% 0.9300 0.7397 0.7397 0.9300 0.7967 0.9237 0.7348

An optimal mask is computed on the first frame and shifted via Algorithm 2 according to the flow field computed with the method from [40]. In (6),
the parameter α = 10 was used. The error for the Toy Vehicle sequence is not monotonically increasing due to large motions and strong occlusions
in certain frames. In the last two columns, the results are displayed for frame-wise optimisation and for static masks with zero flow fields

was always optimised for low angular error by means of a
line search strategy.

The first column of the table lists the parameter λ which
is responsible for the mask density and the second column
contains the corresponding mask density in the first frame.
The other columns list the average reconstruction error over
all 15 frames when (i) using an optimised mask obtained
from the optimal control framework explained in [17] in all
the frames, (ii) the optimisedmask from thefirst frame shifted
in accordance with the ground truth displacement field, (iii)
the mask from the first frame shifted in accordance with the
computed displacement fields for all considered optic flow
implementations, (iv) the mask from the first frame used for
all subsequent frames (i.e. using a zero flow field), and (v)
the mask from the first frame shifted by a random flow field
within the same numerical range between each pair of frames
as the ground truth.

All reconstructions in the upper half of the table have
been done according to Algorithm 1. The lower half exhibits
the same experiment but according to Algorithm 2, without
rounding of the flow fields.

The error evolution with random flow fields serves as a
worst case example. The shifted masks are not completely
random, but the resulting image quality (in terms of MSE)
deteriorates stronger than in all other experiments. As indi-
cated, the random flow fields are in the same numerical range
as the groundtruth flow, i.e. in [−4.0, 2.0] × [−0.051, 4.1].

As expected, a higher mask density yields a smaller error
in the reconstruction in all cases. When shifting the masks
according to Algorithm 1, the reconstruction errors are in
a very similar range for all considered optic flow methods.
Interestingly, we observe that computed flow fields are accu-
rate enough to outperform in many cases the ground truth
flow (rounded to the nearest grid point).
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(a) Optimal mask (b) Details (c) Reconstruction

(d) Shifted mask (e) Details (f) Reconstruction

Fig. 7 a, d Inpainting masks (5.63% density in a and 4.13% in d) with b, e magnified details and c, f corresponding reconstructions for frame 15
of the Yosemite sequence. Black pixels indicate mask pixels, grey regions are to be inpainted. Top: optimal mask, Bottom: shifted mask

The best results are achieved with the TV-L1 model pre-
sented in [40]. When considering the plots in Fig. 3, one sees
that there is a clear benefit of using computed flow fields in
the first 7 or 8 frames of the sequence, when comparing to
a flow field that is zero everywhere. Afterwards, the itera-
tive shifting of the masks has accumulated too many errors
to outperform a zero flow. This suggests that the usage of a
flow field is mostly beneficial for a short time prediction of
the mask. Let us also note that the impact of the quality of the
computed optic flow is visible over a shorter period within
the first 5 frames.

The outcome of this experiment is very different when
using Algorithm 2, as can also be seen in Fig. 4. Since the
rounding errors are not accumulated across all frames, recon-
structions with any of the considered optic flow methods
clearly outperform static masks. Also, when comparing with
Fig. 2, one can see that more accurate optic flow methods
lead to lower reconstruction errors. The more modern meth-
ods (involving coarse-to-finewarping strategies) are accurate
enough to lead to reconstructions with similar quality com-
pared to those obtainedwith the ground truthflow.TheTV-L1

methods from [40] and [29] with b-spline interpolation can
even outperform the ground truth flow across all frames.

4.4 Evaluation of the Density

Here we briefly evaluate the development of the density of
mask pixels at the basis of masks shifted according to Algo-
rithm 2.

The Yosemite sequence is a simulated flight through the
Yosemite valley. Therefore, between two frames there is
always some image content that is moved outside of the
image plane. Consequently, and since the considered optic
flow models also include regularisers, some regions of the
flow field are pointing outside of the image. As can be seen
in Fig. 5, the density descent is rather steadily, reflecting the
smooth change in perspective across the image sequence. On
average there are 25.1% of mask points dropped across the
sequence. Between two frames there are 2.05% of the mask
points dropped on average.

In Fig. 6, the density is displayed for the Walter and Toy
Vehicle sequences. The scenes are more static than the one
of the Yosemite sequence. The perspective is constant and
the background is not changing. Movement of image content
is not in proximity of the image boundary in most cases. As
a result, the density of mask pixels is relatively stable, with
on average 9.66%/2.98% dropped mask points per sequence
and 0.674%/0.336% of dropped mask points between two
frames for the Walter / Toy Vehicle sequence.

The number of mask points can be viewed as the budget
for the reconstruction process. In a scenario were this budget
is constant for all frames, one could redistribute the dropped
mask points within the image plane. This may also be cou-
pled with the detection of occlusions, such that mask points
are redistributed in regions of objects that are not visible in
previous frames. However, this is not investigated further in
our current work.

123



Journal of Mathematical Imaging and Vision (2021) 63:144–156 153

Fig. 8 Toy Vehicle sequence, frames (left-to-right) 1, 4, 7 and 10. Dis-
played are (top-to-bottom) the original images, optimal masks with
densities of 3.00% to 3.50%, images reconstructed with optimal masks,
shifted masks with densities of 2.98% to 3.00%, images reconstructed
with shifted masks. Optical flow was computed according to [40] with

α = 10 in (6). The train model is not present in the first frame, hence
it has too few mask points allocated. The magnitude of the estimated
flow field for the car is too small, hence the associated mask points stay
on the left side
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Fig. 9 Toy Vehicle sequence, frames (left-to-right) 1, 4, 7 and 10. Dis-
played are (top-to-bottom) shifted masks with densities of 2.86% to
3.00%, images reconstructedwith shiftedmasks. Optical flowwas com-

puted according to [40] with α = 100 in (6). The train model is not
present in the first frame, hence it has too few mask points allocated

4.5 Evaluation of the Reconstruction Error

Overall, the error evolution, as observed in the Yosemite
sequence, is rather steady and predictable, even though such
a behaviour can only be expected in well-behaved sequences.
The Toy Vehicle sequence from [37] exhibits strong occlu-
sions and non-monotonic behaviour of the error, see Table 2.
Nevertheless, the behaviour of the error evolution could be
used to automatically detect frames after which a full mask
optimisation becomes again necessary.

Figure 7 presents an optimal mask for the last frame of the
Yosemite sequence as well as the shifted mask. The corre-
sponding reconstructions are also depicted. Fine details are
lost with the reconstruction from the shifted mask, e.g. some
of the object boundaries are blurred in comparison with the
optimal mask. However, the overall structure of the scene
remains preserved. We remark that the bright spots appear
due to our choice of the inpainting operator, see [13].

In Fig. 8, we examine the Toy Vehicle sequence, which
contains large occlusions as well as large motions. When
using the method from [40] with α = 10 in (6), the mag-
nitudes of the estimated flow field are too small. For this
parameter choice, the highest magnitudes of the flow fields
in each frame are between 1.8 and 8.8. Consequently, the
mask locations for the car do not move anymore after the
first few frames.With a regularisation parameter of α = 100,
the highest magnitudes are between 21 and 79, resulting in

more accuratemaskmovement and reconstructions, as can be
seen in Fig. 9. This highlights the dependence on a somewhat
reliable flow field.

Finally, Table 2 contains further evaluations of the MSE
as well as the SSIM for the image sequences from [37].
Both measures show a similar behaviour. Denser masks have
higher SSIM (resp. lower MSE), and the SSIM decreases
(resp.MSE increases) with the number of considered frames.
The error evolution is usually monotone. However, if occlu-
sions occur, then important mask pixels may be badly
positioned or even completely absent. In that case, notable
fluctuations in the error will occur. This is especially visible
in the “Toy Vehicle” sequence where the maximal error is
not the error in the last frame.

For almost all sequences, Algorithm 2 leads to better
reconstructions than the previously in [19] proposed Algo-
rithm 1. Therefore, we omit the results for Algorithm 1 in
Table 2 and refer to [19] for the corresponding error values.
For the Toy Vehicle sequence, the error measures are very
similar, due to the usage of inaccurate flow fields in both
algorithms.

5 Summary and Conclusion

Our work shows that it is possible to replace the expensive
frame-wise computation of optimal inpainting data with the
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simple computation of a displacement field. Since run times
to compute the latter are almost negligible when compared
to the former, we gain a significant increase in performance.
Our experiments demonstrate that simple and fast optic flow
methods are sufficient for the task at hand, yet onemay spend
higher attention to movement of object boundaries.

In addition, the loss in accuracy along the temporal axis
can easily be predicted. We may decide automatically when
it becomes necessary to recompute an optimal mask while
traversing the individual frames. We conjecture that the pre-
sented insights and the documented computational aspects on
possible design choices will be helpful in the future develop-
ment of PDE-based video compression techniques.
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