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Abstract

The inverse problem of backward diffusion is known to be ill-posed and highly unstable. Backward diffusion processes appear
naturally in image enhancement and deblurring applications. It is therefore greatly desirable to establish a backward diffusion
model which implements a smart stabilisation approach that can be used in combination with an easy-to-handle numerical
scheme. So far, existing stabilisation strategies in the literature require sophisticated numerics to solve the underlying initial
value problem. We derive a class of space-discrete one-dimensional backward diffusion as gradient descent of energies where
we gain stability by imposing range constraints. Interestingly, these energies are even convex. Furthermore, we establish a
comprehensive theory for the time-continuous evolution and we show that stability carries over to a simple explicit time
discretisation of our model. Finally, we confirm the stability and usefulness of our technique in experiments in which we
enhance the contrast of digital greyscale and colour images.
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1 Introduction

Forward diffusion processes are well-suited to describe the
smoothing of a given signal or image. This process of blur-
ring implies a loss of high frequencies or details in the
original data. As a result, the inverse problem, backward dif-
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fusion, suffers from deficient information which are needed
to uniquely reconstruct the original data. The introduction
of noise due to measured data increases this difficulty even
further. Consequently, a solution to the inverse problem—if
it exists at all—is highly sensitive and heavily depends on
the input data: even the smallest perturbation in the initial
data can have a large impact on the evolution and may cause
large deviations. Therefore, it becomes clear that backward
diffusion processes necessitate further stabilisation.

Previous Work on Backward Diffusion Already more than
60 years ago, John [25] discussed the quality of a numer-
ical solution to the inverse diffusion problem given that a
solution exists, and that it is bounded and non-negative.
Since then, a large number of different regularisation meth-
ods have evolved which achieve stability by bounding the
noise of the measured and the unperturbed data [49], by
operator splitting [26], by Fourier regularisation [12], or
by a modified Tikhonov regulariser [55]. Hao and Duc
[22] suggest a mollification method where stability for the
inverse diffusion problem follows from a convolution with
the Dirichlet kernel. In [23], the same authors provide
a regularisation method for backward parabolic equations
with time-dependent coefficients. Ternat et al. [51] suggest
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low-pass filters and fourth-order regularisation terms for sta-
bilisation.

Backward parabolic differential equations also enjoy high
popularity in the image analysis community where they have,
for example, been used for image restoration and image
deblurring, respectively. The first contribution to backward
diffusion dates back to 1955 when Kovédsznay and Joseph
[28] proposed to use the scaled negative Laplacian for con-
tour enhancement. Gabor [13] observed that the isotropy of
the Laplacian operator leads to amplification of accidental
noise at contour lines and at the same time, it enhances the
contour lines. As a remedy, he proposed to restrict the con-
trast enhancement to the orthogonal contour direction and—
in a second step—suggested additional smoothing in tan-
gent direction. Lindenbaum et al. [29] make use of averaged
derivatives in order to improve the directional sensitive fil-
ter by Gabor. However, the authors point out that smoothing
in only one direction favours the emergence of artefacts in
nearly isotropic image regions. They recommend to use the
Perona—-Malik filter [40] instead. Forces of Perona—Malik
type are also used by Pollak et al. [43] who specify a family
of evolution equations to sharpen edges and suppress noise in
the context of image segmentation. In [50], ter Haar Romeny
et al. stress the influence of higher-order time derivatives on
the Gaussian deblurred image. Referring to the heat equa-
tion, the authors express the time derivatives in the spatial
domain and approximate them using Gaussian derivatives.
Steiner et al. [47] highlight how backward diffusion can be
used for feature enhancement in planar curves.

In the field of image processing, a frequently used stabili-
sation technique constrains the extrema in order to enforce a
maximum-minimum principle. This is, for example, imple-
mented in the inverse diffusion filter of Osher and Rudin
[38]. It imposes zero diffusivities at extrema and applies
backward diffusion everywhere else. The so-called forward-
and-backward (FAB) diffusion of Gilboa et al. [18] follows
a slightly different approach. Closely related to the Perona—
Malik filter [40], it uses negative diffusivities for a specific
range of gradient magnitudes. On the other hand, it imposes
forward diffusion for values of low and zero gradient mag-
nitude. By doing so, the filter prevents the output values
from exploding at extrema. However, it is worth mention-
ing that—so far—all adequate implementations of inverse
diffusion processes with forward or zero diffusivities at
extrema require sophisticated numerical schemes. They use,
for example, minmod discretisations of the Laplacian [38],
nonstandard finite difference approximations of the squared
gradient magnitude [53], and splittings into two-pixel inter-
actions [54].

Another, less popular stabilisation approach implies the
application of a fidelity term and has been used to penalise
deviations from the input image [5,46] or from the average
grey value of the desired range [45]. Consequently, both the

@ Springer

weights of the fidelity and the diffusion term control the range
of the filtered image.

Further methods achieve stabilisation using a regularisa-
tion strategy built on FFT-based operators [6—8] and by the
restriction to polynomials of fixed finite degree [24]. Mair et
al. [31] discuss the well-posedness of deblurring Gaussian
blur in the discrete image domain based on analytic number
theory.

In summary, the presented methods offer an insight into
the challenge of handling backward diffusion in practice and
underline the demand for careful stabilisation strategies and
sophisticated numerical methods.

In our paper, we are going to present an alternative
approach to deal with backward diffusion problems. It prefers
smarter modelling over smarter numerics. To understand it
better, it is useful to recapitulate some relations between dif-
fusion and energy minimisation.

Diffusion and Energy Minimisation For the sake of con-
venience, we assume a one-dimensional evolution that
smoothes an initial signal f : [a, b] — R. In this context,
the original signal f serves as an initial state of the diffusion
equation

du = 3y (g(u?) uy) (1

where u = u(x,t) represents the filtered outcome with
u(x,0) = f(x). Additionally, let u, = dyu and assume
reflecting boundary conditions at x = @ and x = b. Given a
non-negative diffusivity function g, growing diffusion times
t lead to simpler representations of the input signal. From
Perona and Malik’s work [40], we know that the smoothing
effect at signal edges can be reduced if g is a decreasing
function of the contrast u2. As long as the flux function
D(uy) = g(u%)ux is strictly increasing in u,, the cor-
responding forward diffusion process d;u = @' (uy)uyy
involves no edge sharpening. This diffusion can be regarded
as the gradient descent evolution which minimises the energy

b
Elu] = / W (u?)dx. )

The potential function l17(14%) = W(u%) is strictly convex
in uy, increasing in u?c, and fulfils d/’(ui) = g(u%). Fur-
thermore, the energy functional has a flat minimiser which
is—due to the strict convexity of the energy functional—
unique. The gradient descent/diffusion evolution is well-
posed and converges towards this minimiser for t — oo0.
Due to this classical emergence of well-posed forward diffu-
sion from strictly convex energies, it seems natural to believe
that backward diffusion processes are necessarily associated



Journal of Mathematical Imaging and Vision (2020) 62:941-960

943

with non-convex energies. However, as we will see, this con-
jecture is wrong.

Our Contribution In our article, we show that a specific class
of backward diffusion processes is gradient descent evolu-
tions of energies that have one unexpected property: they
are convex! Our second innovation is the incorporation of
a specific constraint: we impose reflecting boundary condi-
tions in the diffusion co-domain. This means that in case of
greyscale images with an allowed grey value range of [0,
255], the occurring values are mirrored at the boundary posi-
tions 0 and 255. While such range constraints have shown
their usefulness in some other context (see e.g. [34]), to our
knowledge they have never been used for stabilising back-
ward diffusions. For our novel backward diffusion models,
we show also a surprising numerical fact: A simple explicit
scheme turns out to be stable and convergent. Last but not
least, we apply our models to the contrast enhancement of
greyscale and colour images.

This article is a revised version of our conference con-
tribution [3] which we extend in several aspects. First, we
enhance our model for convex backward diffusion to support
not only a global and weighted setting but also a localised
variant. We analyse this extended model in terms of stability
and convergence towards a unique minimiser. Furthermore,
we formulate a simple explicit scheme for our newly pro-
posed approach which shares all important properties with
the time-continuous evolution. In this context, we provide
a detailed discussion on the selection of suitable time step
sizes. Additionally, we suggest two new applications: global
contrast enhancement of digital colour images and local con-
trast enhancement of digital grey and colour images.

Structure of the Paper In Sect. 2, we present our model
for convex backward diffusion with range constraints. We
describe a general approach which allows to formulate
weighted local and global evolutions. Section 3 includes
proofs for model properties such as range and rank-order
preservation as well as convergence analysis and the deriva-
tion of explicit steady-state solutions. Section 4 provides a
simple explicit scheme which can be used to solve the occur-
ring initial-value problem. In Sect. 5, we explain how to
enhance the global and local contrast of digital images using
the proposed model. Furthermore, we discuss the relation to
the existing literature on contrast enhancement. In Sect. 6,
we draw conclusions from our findings and give an outlook
on future research.

2 Model

Let us now explore the roots of our model and derive—in a
second step—the particle evolution which forms the heart of

our method and which is given by the gradient descent of a
convex energy.

2.1 Motivation from Swarm Dynamics

The idea behind our model goes back to the scenario of
describing a one-dimensional evolution of particles within a
closed system. The recent literature on mathematical swarm
models employs a pairwise potential U : R — R to
characterise the behaviour of individual particles (see e.g. [9—
11,14,16] and the references therein). The potential function
allows to steer attractive and repulsive forces among swarm
mates. Physically simplified models like [15] neglect iner-
tia and describe the individual particle velocity d;v; within a
swarm of size N directly as

N
dv;=—Y VU(vi—v;]), i=1...N, (3)
Jj=1
J#
where v; and v; denote particle positions in R". These mod-
els are also referred to as first-order models. Often they
are inspired by biology and describe long-range attractive
and short-range repulsive behaviour between swarm mem-
bers. The interplay of attractive and repulsive forces leads
to flocking and allows to gain stability for the whole swarm.
Inverting this behaviour—resulting in short-range attractive
and long-range repulsive forces—leads to a highly unstable
scenario in which the swarm splits up into small separating
groups which might never reach a point where they stand still.
One would expect that a restriction to repulsive forces only
will increase this instability even further. However, we will
present a model which copes well with exactly this situation.
In our set-up, every particle moves within the open interval
(0, 1) and has an interaction radius of size 1. Keeping this in
mind, let us briefly examine the two main assumptions of the
evolution. First, there exist reflections for all particles at the
left and right domain boundary. Second, the particles repel
each other and— furthermore—get repelled by the reflec-
tions. However, due to the limited viewing range, only one
of the two reflections of a certain particle is considered at any
given time, namely the one which is closer to the reference
particle (see Fig. 1). A special case occurs if the reference
particle is located at position 0.5: the repulsive forces of both
of its own reflections equal out.

2.2 Discrete Variational Model

We propose a dynamical system which has its roots in a spa-
tial discretisation of the energy functional (2). Furthermore,
we make use of a decreasing energy function ¥ : RS“ - R
and a global range constraint on u. The corresponding flux
function @ is defined as @ (s) := ¥’ (s?)s.
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Fig. 1 Four particles with positions in (0, 1) and their reflections at the left and right domain boundary (labelled ; and , accordingly). Particle 2,

for example, gets repelled by the particles 1, 3, 4, 1;, 2,, 3,, 4,

Table1 Oneexemplary class of penaliser functions ¥ (s2) fors € [0, 1]
with n € N, a > 0 and corresponding diffusivity ¥’ (s?) and flux @ (s)
functions

lI/a,n (52)

v, (s%) D n(s)

a-(s—1D*—1) an (s — -t a-n-(s—1¥-1

Our goal is to describe the evolution of one-dimensional—

not necessarily distinct—particle positions v; € (0, 1),
where i = 1,..., N. Therefore, we extend the position
vector v = (vq,...,vy)T with the additional coordinates
UN+1, - .., 2y defined as vany1—; :=2 —v; € (1,2). This

extended position vector v € (0, 2)2N allows to evaluate the

energy function

2N 2N

1
E@W) =23 ) wij ¥ —v)), )

i=1 j=1

which models the repulsion potential between all posi-
tions v; and v;. The coefficient w; ; denotes entry j in
row i of a constant non-negative weight matrix W =
(w;,j) € (R(‘)Ir V2NX2N 1t models the importance of the
interaction between position v; and v;. All diagonal ele-
ments of the weight matrix are positive, i.e. w; ; > 0,Vi €
{1,2,...,2N}. In addition, we assume that the weights for
all extended positions are the same as those for the original
ones. Namely, we have

Wi j = Wi 2N+1—j = W2N+1—i, j = WaN+1—i 2N+1—j (5)

forl <i,j <N.

For the penaliser function ¥, we impose several restric-
tions which we discuss subsequently. Table 1 shows one
reasonable class of functions ¥, , as well as the correspond-
ing diffusivities lI/a’,n and flux functions @, ,. In Fig. 2,
we provide an illustration of three functions using a = 1
and n = 1,2, 3. The penaliser is constructed following a
three-step procedure. First, the function ¥ (s2) is defined as
a continuously differentiable, decreasing, and strictly con-
vex function for s € [0, 1] with ¥ (0) = 0 and &_(1) =0
(left-sided derivative). Next, ¥ isextended to[—1, 1] by sym-
metry and to R by periodicity ¥ ((2 + 5)?) = ¥ (s%). This
results in a penaliser W (s2) which is continuously differen-
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tiable everywhere except at even integers, where it is still
continuous. Note that ¥ (s2) is increasing on [—1, 0] and
[1, 2]. The flux @ is continuous and increasing in (0, 2) with
jump discontinuities at 0 and 2 (see Fig. 2). Furthermore, we
have that @ (s) = —®(—s) and @ (2 + 5) = D(s). Exploit-
ing the properties of ¥ allows us to rewrite (4) without the
redundant entries vy 41, ..., U2y as

1 N N
E@W) =23 ) wij- (lIJ((v‘,' — 1))
i=1 j=1 (6)
+ W ((v; + u,-)2)).

A gradient descent for (4) is given by
vy = —0,, E(v, W)
= Zwi,jﬂ)(vj—vi), i = 1,...

jelJj

,2N, N

where v; now are functions of the time ¢ and
Ji=1{je{l,2,....2N}|v; # vi}. (8)

Note that for 1 < 7, j < N, thus |[v; — v;| < 1, the flux
@ (v; — v;) is negative for v; > v; and positive otherwise,
thus driving v; always away from v;. This implies that we
have negative diffusivities ¥’ for all [v; — v;| < 1. Due to
the convexity of W (s2), the absolute values of the repulsive
forces @ are decreasing with the distance between v; and v;.
We remark that the jumps of @ at 0 and 2 are not problematic
here, as all positions v; and v; in the argument of @ are
distinct by the definition of Ji.

Let us discuss shortly how the interval constraint for the
vi,i =1,..., N,isenforced in (4) and (7). First, notice that
van+1—i fori =1,..., N is the reflection of v; on the right
interval boundary 1. For v; and voy1—; with1 <i,j < N
and voy41-; — v; < 1, there is a repulsive force due to
P (van+1—j — Vi) < O that drives v; and vay41—; away
from the right interval boundary. The closer v; and von 11—
come to this boundary, the stronger is the repulsion. For
VoN4+1—j — v; > 1, we have @(vay41—; — v;) > 0. By
D (VaN+1—j— Vi) = P(2—vj)—v;) = ®((—vj) —v;), this
can equally be interpreted as a repulsion between v; and —v;
where —v; is the reflection of v; at the left interval boundary
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Fig. 2 Top: Exemplary penaliser functions l1~/1_ 1, 1171,2, and 1171,3
extended to the interval [—1, 3] by imposing symmetry and periodicity
with ¥, ,(s) = Y, n (s2). Middle: Corresponding diffusivities 11/{ >

0. In this case, the interaction between v; and voy 41— ; drives
v; and —v; away from the left interval boundary. Recapitu-
lating both possible cases, it becomes clear that every v; is
either repelled from the reflection of v; at the left or at the

IIII,AVZ’ and l171’3 with lf/‘fyn(s) =Y, (s%). Bottom: Corresponding flux
functions @11, @12, and P 3 with Py, (s) = ¥, ,(s)s

right interval boundary, but never from both at the same time.
As 0;vaN4+1—-i = —0yv; holds in (7), the symmetry of v is
preserved. Dropping the redundant entries vy 41, . -
Equation (7) can be rewritten as

-» V2N,

@ Springer
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N
v = Z wi ;- P —v;) — Zwi,j @ +v), (9)

jels Jj=l1

for i = 1,..., N, where the second sum expresses the
repulsions between original and reflected coordinates in a
symmetric way. The set J; is defined as

Jii=1{je{l,2,....,N}|vj # v} (10)

Equation (9) denotes a formulation for pure repulsion among
N different positions v; with stabilisation being achieved
through the consideration of their reflections at the domain
boundary. It is worth mentioning that within (6) and (9), we
only make use of the first N x N entries of W. In the follow-
ing, we denote this submatrix by W and refer to its elements
as w; ;. Given an initial vector f € (0, 1)" and initialising
v;(0) = fi, vuN4+1-i(0) =2 — fifori = 1,..., N, the
gradient descent (7) and (9) evolves v towards a minimiser
of E.

3 Theory
Below we provide a detailed analysis of the evolution and

discuss its main properties. For this purpose, we consider the
Hessian of (6) whose entries for 1 <i < N read

BviviE(v, W) = Z lZ}i,j . ¢/(vj _ vi)

jels
N
+ ) i P (v + ), (11)
j=1
wi i (D' (i +v;)— )
. i /( i) VjeJi,
3vinE(vv W) = @ (Uj - Uj)), (12)
Wi @' (v +v), VYjeli
where
Jii=1{jef(l,2,...,N}|v = v;}. (13)

3.1 General Results

In a first step, let us investigate the well-posedness of the
underlying initial value problem in the sense of Hadamard
[21].

Theorem 1 (Well-Posedness) Let ¥ = ¥, , as defined in
Table 1. Then, the initial value problem (9) is well-posed
since

(a) it has a solution,
(b) the solution is unique, and
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(c) it depends continuously on the initial conditions.
Proof The initial value problem (9) can be written as

v(t) = f(u() = —-V,E((), W) (14)
v(0) = vg (15)

with v(r) e R?N and 1 € RS‘ where we make use of the fact
that W is a constant weight matrix.

In case f(v(¢)) is continuously differentiable and Lips-
chitz continuous, all three conditions (a)—(c) hold. Existence
and uniqueness directly follow from [39, chapter 3.1, The-
orem 3]. Continuous dependence on the initial conditions
is guaranteed due to [39, chapter 2.3, Theorem 1] which is
based on Gronwall’s Lemma [20]. Thus, let us now prove
differentiability and Lipschitz continuity of f(v(¢)).

Differentiability Differentiability follows from the fact that
all functions @, , are continuously differentiable. As a con-
sequence, the partial derivatives of (8) w.r.t. v; exist for
i=1,...,2N.

Lipschitz Continuity The Gershgorin circle theorem [17]
allows to estimate a valid Lipschitz constant L as an upper
bound of the spectral radius of the Jacobian of (9). For
1 <i < N the entries read

dy; (9 v;) = — Z Wi (P'(vj —v) + @ (v +1;))

jeli
=2 i P () +v), (16)
jelti
d)i,j . (@:(Uj —v;)— Vje Jé,
0u; (Bvi) = @' (vj +v)), (17
—ﬁ}i,j . 45/(1)]' +v;), Vje ]31.
The radii of the Gershgorin discs fulfil
N
rio =) |, (@)
j=1
J#
= > i |9 —v) — (v + )|
jelds
+ ) g 1 () 4 vi)
jedi
J#F
< Y Wi 19w =) — @ (v + v
jedi
+ > P (v + i)
jeli
=: 7, i=1,...,N. (18)
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Then, we have |A; — 9, (0;v;)| < 7; for 1 <i < N where A;
denotes the ith eigenvalue of the Jacobian of (9). This leads
to the bounds

Mo< Y i (190 —vi) — @' (v + vy

JjeJ;

— (@' (vj —vi) + D' (vj + 1))

+ Y Wi (19 + ) —2- D' + )
jeJs

< i (19 — vl + 1@/ (v) + )|

Jjed;

+ @' (vj —v)| + @' (v + vy)])

+ Y Wi (19 + o)+ 219" (v + vi)l)
jeJs

§4~L¢~Zi}i,/+3-L:p-Zi}i,/

jeli jeli

N
<4-Lo-Y . i=1...N, (19)
j=1

where L represents the Lipschitz constant of the flux func-
tion @. Using the same reasoning, one can show that

N
)"i > —4~L¢. 'Zwi,j’
j=l1

i=1,...,N. (20)

Consequently, an upper bound for the spectral radius—and
thus for the Lipschitz constant L of the gradient of (9)—reads

N

L < max |Aj|] <4 -Lp - max Wi, j =: Lmax. 21
=1

1<i<N 1<i<N 4
J

For our specific class of flux functions @, ,, a valid Lipschitz
constant L is given by

Leo=a-n-Q2n—1) 22772 (22)
such that we have
N
L<4-a-n-Qn—1)-2""%. max Y o ;. (23)
1<i<N 4
j=1
This concludes the proof. O

Next, let us show that no position v; can ever reach or cross
the interval boundaries 0 and 1.

Theorem 2 (Avoidance of Range Interval Boundaries) For
any weighting matrix W € (Rar YNXN all N positions v;

which evolve according to (9) and have an arbitrary initial
value in (0, 1) do not reach the domain boundaries 0 and 1
for any time t > 0.

Proof Equation (9) can be written as

0V = Z Wi, j - <<D(vj —v;) —P(v; + U,'))

jeli

(24)
- Z w; j - P(2v),
jelti
where 1 <i < N. Notice that for j € J. ! we have
lim ®(; —v;) —@(; +v;) =0, (25)
U,‘—)O+
lim @(vj —v;) — P +v;) =0, (26)
vi—>1—

where the latter follows from the periodicity of @. Conse-
quently, any position v; which gets arbitrarily close to one
of the domain boundaries 0 or 1 experiences no impact by
positions v; with j € Jzi7 and the first sum in (24) gets zero.
The definition of ¥ (s%) implies that

U'(s?) <0, Vse(,1), (27)
w'(s?) >0, Vse(l,?2), (28)
from which it follows for 1 <i < N that
1
—®dQ2v;)) >0, Yy € (0, 5), (29)
1
—®2v;) <0, Vv € (E’ 1) . 30)

Now remember that W & RHN*N and @; ; > 0. In com-
bination with (29) and (30), we get

lim o,v; >0 and lim o,v; <O, 3D
v;—0t vi—>1-
which concludes the proof. O

Let us for a moment assume that the penaliser function is
given by ¥ = ¥, , from Table 1. Below, we prove that this
implies convergence to the global minimum of the energy
E(, W).

Theorem 3 (Convergence for ¥ = ¥, ,—1) Fort — oo,
given a penaliser W, 1 with arbitrary a > 0, any initial con-
figuration v € (0, )N converges to a unique steady state v*
which is the global minimiser of the energy given in (6).

@ Springer
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Proof As a sum of convex functions,~ (6) is convex. There-
fore, the function V (v, W) := E(v, W) — E(v*, W) (where
v* is the equilibrium point) is a Lyapunov function with

V(v* W) = 0and V(v, W) > 0 for all v # v*. Further-
more, we have
N
oV W)=—> (9, Ew. W))* <0. (32)

i=1

According to Gershgorin’s theorem [17], one can show that
the Hessian matrix of (6) is positive definite for ¥ = ¥,
from which it follows that E (v, W) has a strict (global) min-
imum. This implies that the inequality in (32) becomes strict
except in case of v = v* and guarantees asymptotic Lya-
punov stability [30] of v*. Thus, we have convergence to v*
for t — oo. O

Remark 1 Theorem 3 can be extended to the case of n = 2
and—in a weaker formulation—to arbitrary n € N. The
proofs for both cases are based on a straightforward applica-
tion of the Gershgorin circle theorem. For details, we refer
to the supplementary material.

(a) Given that ¥ = ¥, ,—, let us assume that one of the
following two conditions

- v # %, or
— thereexists j € J; forwhichv; # 1 —v; and w; ; >
0,

is fulfilled for every i € [1, N] and r > 0. Then, the
Hessian matrix of (6) is positive definite and convergence
to the strict global minimum of E (v, W) follows.

(b) For all penaliser functions ¥ = ¥, ,, one can show that
the Hessian matrix of (6) is positive semi-definite. This
means that our method converges to a global minimum
of E(v, W). However, this minimum does not have to be
unique.

In general, the steady-state solution of (9) depends on the
definition of the penaliser function ¥. Based on (24), and
assuming that ¥ = ¥, ,, aminimiser of E (v, W) necessarily
fulfils the equation

0= Z Wi j - (0] = v = 2=t~ @} + v — D)
jeJﬁ
=Y g @uf = D (33)
jels
wherei =1,..., N.
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3.2 Global Model

If all positions v; interact with each other during the evo-
lution, i.e. w; ; > O for 1 < i,j < N, we speak of our
model as acting globally. Below, we prove the existence of
weight matrices W for which distinct positions v; and v;
(withi # j)cannever become equal (assuming that the posi-
tions v;, i = 1, ..., N, are distinct for + = 0). This implies
that the initial rank order of v; is preserved throughout the
evolution.

Theorem 4 (Distinctness of v; and v;) Among N initially
distinct positions v; € (0, 1) evolving according to (9), no
two ever become equal if Wy = w;x > O0for1 <1i,j, k <
N,i#]j.

Proof Given N distinct positions v; € (0, 1), equation (9)
can be written as

N N

dvi =Y Wik Pop —vi) — Y Wi P +v;), (34)
k=1 k=1
ki

fori =1,...,

ence

N. We use this equation to derive the differ-

d (vj - Ui) = (Wj,; +w ;) P —vj)

=

+ Z (’D/’,k D (vk —vj) — Wik Pvk — Ui))
1

k=
ki,

=

- Z <ﬁ)j,k c D (v +vj) — Wik Pvg + Ui)>, (35)

k=1

where 1 < i,j < N. Assume w.l.o.g. that v; > v; and
consider (35) in the limit v; — v; — 0. Then, we have

lim (w],—i—w,]) D (v; —vj) >0, (36)

vj—vj—>

if w;; + w; ; > 0, which every global model fulfils by the
assumption that w; ; > 0 for 1 < i, j < N. This follows
from the fact that @(s) > O for s € (—1, 0). Furthermore,
we have

N

,Jim ]; (wj,k F P (v = vj) = Wik P vk — w))
K]

N
-3 (w, kP +v)) — ik - P(ug + v,))

k=1
N
= >
k=1

kaﬁ:t/

— Wi k) - P(vk — ;)
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N
N

— Z(w/}k — Wi k) - P(vk + vi) I = (Si’j)i,j:l’ (43)

= N
=t i Tk = (8j-ik); ;- (44)

= 0 ifw; =W forl <k<N. (37) I’
Hy = (8i+-j’k)i,j:l' (45)

In conclusion, we can guarantee for global models with dis-
tinct particle positions that

lim o, (

om — v,) > 0, (38)
ifw; =w,;rwherel <i,j,k<Nandi # j. According
to (38), v; will always start moving away from v; (and vice
versa) when the difference between both gets sufficiently
small. Since the initial positions are distinct, it follows that
v; # vj fori # j for all times . m}

A special case occurs if all entries of the weight matrix
W are set to 1—i.e. W = 117 with 1 := 1,...,HDT e RV,
For this scenario, we obtain an analytic steady state solution
which is independent of the penaliser ¥:

Theorem 5 (Analytic Steady-State Solution for w =117)
Under the assumption that (v;) is in increasing order
W = 117, and that ¥ (s?) is twice continuously differ-
entiable in (0,2) the unique minimiser of (4) is given by
=}, ... 5L v =G —12)/N,i=1,...,2N.

Proof With W = 117, Equation (4) can be rewritten without
the redundant entries of v as

E(w) =

Z Z W ((vj — v)? )+— ZlI/(4v2)

ll/l+l

+Z Z W ((vj +v)?).

i=1 j=i+1

(39)

From this, one can verify by straightforward, albeit lengthy
calculations that V E(v*) = 0. Moreover, one finds that the
Hessian of E at v™* is

N
k
D’Ew") =) A@'(— ). 40
) =" A ( N) (40)
k=1
Here, Ay are sparse symmetric N x N-matrices given by

Ay =21 —-T;—T + Hiy1 + Hon jy1, (41)
AN=I+HN+1, (42)

fork = 1,..., N — 1, where the unit matrix I, the single-
diagonal Toeplitz matrices T, and the single-antidiagonal
Hankel matrices H are defined as

Here, §; ; denotes the Kronecker symbol, §; ; = 1ifi = j,
and §; ; = O otherwise. All Ay, k = 1,..., N are weakly
diagonally dominant with positive diagonal, thus positive
semidefinite by Gershgorin’s Theorem. Moreover, the tridi-
agonal matrix A1 is of full rank, thus even positive definite.
By strict convexity of W (s2), all ®'(k/N) are positive; thus,
D?E (v*) is positive definite.

As a consequence, the steady state of the gradient descent
(9) for any initial data f (w1th arbitrary rank-order) can—
under the condition that W = 11T—be computed directly
by sorting the f;: let o be the permutation of {1,..., N}
for which (f,- 1iy)i=1,.... is increasing (this is what a
sorting algorithm computes) the steady state is given by

= (o) —12)/N fori =1, ..., N (cf. Fig. 3). O

Additionally, we present an analytic expression for the
steady state of the global model given a penaliser function
¥ =Y,, (cf. Table 1) withn = 1.

Theorem 6 (Analytic Steady-State Solution for¥ = ¥, ,—1)
Given N distinct positions v; in increasing order and a
penaliser function ¥ = W, ,—1, the unique minimiser of
(4) is given by

l\)l'—

l
Z i,
v?“z_—, i=1,...,N. (46)

.MZ
§1

1

J

Proof The presented minimiser follows directly from (33).
Figure 4 provides an illustration of the steady state. O

Finally, and in case all entries of the weight matrix w
are set to 1, we show that the global model converges—
independently of ¥—to a unique steady state:

Theorem 7 (Convergence for W = 117) Given that W =
117, any initial configuration v € (0, )N with distinct
entries converges to a unique steady state v* fort — oo.
This is the global minimiser of the energy given in (6).

Proof Using the same reasoning as in the proof for Theorem
3, we know that inequality (32) holds. Due to the positive def-
initeness of (40), it follows that E (v, W) has a strict (global)
minimum which implies that the inequality in (32) becomes

strict except in case of v = v*. This guarantees asymp-
totic Lyapunov stability of v* and thus convergence to v*
for t — oo. O
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Fig.3 Application of the global

[
model to a system of seven :
particles with weight matrix |
w=11"T 0

Fig.4 Application of the global
model to a system of seven
particles with w; x = 1/k for
1<i,k<N

I
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initial state 1
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I
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_ = == =

initial state

3.3 Relation to Variational Signal and Image
Filtering

Let us now interpret vy, ..., vy as samples of a smooth 1D
signal u : £2 — [0, 1] over an interval £2 of the real axis,
taken at sampling positions x; = xo + i & with grid mesh
size h > 0. We consider the model (4) with w; ; := y(]x; —
xil), where y : ]R(J{ — [0, 1] is a non-increasing weighting
function with compact support [0, o).

Theorem 8 (Space-Continuous Energy) Equation (4) can be
considered as a discretisation of

E[u] = %/(W(ui) + B(u)) dx (47)
2

with penaliser W(u2) ~ CW(u2) and barrier function
B(u) ~ D W (4u?), where C and D are positive constants.

Remark 2 (a) The penaliser W is decreasing and convex in
u,. The barrier function B is convex, and it enforces
the interval constraint on u by favouring values u away
from the interval boundaries. The discrete penaliser ¥
generates both the penaliser W for derivatives and the
barrier function B.

(b) Note that by construction of W, the diffusivity
gW?) := W' (u?) ~ W' (u?) has a singularity at 0 with
—o0 as limit.

(c) The cut-off of y at radius o implies the locality of the
functional (47) that can thereby be linked to a diffusion
equation of type (1). Without a cut-off, a nonlocal diffu-
sion equation would arise instead.

@ Springer

(o)
N

Proof of Theorem 8 We notice first that v; — v; and v; 4 v;
for 1 < i,j < N are first-order approximations of (j —
i) huy(x;) and 2u(x;), respectively.

steady state

Derivation of the Penaliser W Assume first for simplicity
that ¥ (s2) = —«s, k > 0 is linear in s on [0, 1] (thus not
strictly convex). Then, we have for a part of the inner sums
of (4) corresponding to a fixed i:

1 N

5(2 vl = xil) - ¥ (v — v)?)
j=1

2N

+ Z y(xj — xang1-il) - ¥ ((vj — UZN+1—i)2)>

j=N-+1

N
= y(xj —xih - @ ((v; — vi)?)
Jj=1

N (48)
N =i huy () Yy (i —ilh) - 1j—il
j=1
N—i
=h¥(uc(x)?) Y Ikly (kI h)
k=1—i
2 2 e
~ hW (ux(x;) )-—2/ 2y (2)dz
h= Jo
= hCW (ux (x;)?),
where in the last step the sumoverk =1 —1i,...,N —i

has been replaced with a sum over k = —|o/h], ..., lo/h],
thus introducing a cut-off error for those locations x; that are
within the distance o from the interval ends. Summation over
i = 1,..., N approximates fg cy (u)zc)dx from which we
can read off W(u)%) % Cllf(uﬁ).
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For ¥ (s?) that are nonlinear in s, ¥ (uy(x;)%) in (48)
is changed into a weighted sum of W ((ku (x;))?) for k =
I,..., N — 1, which still amounts to a decreasing function
W(u%) that is convex in u,. Qualitatively, W’ then behaves
the same way as before.

Derivation of the Barrier Function B Collecting the sum-
mands of (4) that were not used in (48), we have, again for
fixed i,

2N

1
5( Z y(Ixj = xil) - o ((v; — v)?)
j=N+1
Z (Ixj — xon41=il) - ¥ ((vj — U2N+1i)2)>
j=1

N (49)
ZV lxj = xil) - @ (i +v))?)

( / y (2)dz + 1) W (du(x;)?)
0
= hD - ¥ (4u(x;)?),

&

E‘Il\)

and thus after summation over i analogous to the previous
step [, B(u) dx with B(u) ~ DW (4u?). 0

Similar derivations can be made for patches of 2D images.
A point worth noticing is that the barrier function B is
bounded. This differs from usual continuous models where
such barrier functions tend to infinity at the interval bound-
aries. However, for each given sampling grid and patch size
the barrier function is just strong enough to prevent W from
pushing the values out of the interval.

4 Explicit Time Discretisation

Up to this point, we have established a theory for the time-
continuous evolution of particle positions. In order to be able
to employ our model in simulations and applications, we need
to discretise (9) in time. Subsequently, we provide a sim-
ple yet powerful discretisation which preserves all important
properties of the time-continuous model. An approximation
of the time derivative in (9) by forward differences yields the
explicit scheme

vf“ = vf‘ +7- Z Wi ¢ - @(v/g — vl{‘)
tels
N
—T ) Wi PO+ ),
(=1

(50)

fori = 1,..., N, where t denotes the time step size and
an upper index k refers to the time k7. In the following, we

derive necessary conditions for which the explicit scheme
preserves the position range (0, 1) and the position ordering.
Furthermore, we show convergence of (50) in dependence
of 7.

Theorem 9 (Avoidance of Range Interval Boundaries of the
Explicit Scheme) Let Ly be the Lipschitz constant of @
restricted to the interval (0, 2). Moreover, let 0 < vl{‘ <1,
forevery 1 <i < N, and assume that the time step size T of
the explicit scheme (50) satisfies

1
0<rt<

v &1y}

2-Le- max > Wiy
1<l<Ng 1

Then, it follows that 0 < vf“ < 1 foreveryl <i < N.

Proof In accordance with (24), the explicit scheme (50) can
be written as

vt =0f 1Y (gb(v;f — -k + vf))

Eejé
—T Y i PQ20f), (52)
teli
wherei = 1,..., N. Now assume that 0 < vf‘, v/j‘. < 1 and

let us examine the contribution of the two summation terms
in (52). We need to distinguish the following five cases:

1. va —v <3 then2v € (0, 1]. Thus,
0 < —d2vh). (53)
2.If 1 <of = vf then 2v¥ € (1,2). Thus, using @ (1) = 0,

1@ (20| = |@2vF) — @ (1))

< [2vf—1]-L (54)
< ZUIZ(-L.;b.

3. va < thenvj—v v +v € (0, 2). Thus,

28 + 0 — @k — v < Lo - 20F. (55)

4. 1f v* <v§ henv —v e(lO)andv +ve

1
2

(0, 1). Thus,
0< @ —vf) — PO +v)), (56)
0 < —@(2vh). (57)

: ek k 1 k
5. Finally, if v; < and 5 < v;

we get

, using the periodicity of @

k k k k
|¢(Uj — ;) _Q(Uj +v;)|
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ko ok k_ ok
=[PW; +v;) - P2+ v; —v;)l
<2 Lg. (58)

Combining (50) with (51) and (53)—(58), we obtain that

UIH] — vf =—7- Z Wi g - (@(vf + vf) - @(vif - vf))

ZeJé
—T Y e @20
teJi
N
2—T-L¢~2U?-Zﬁ),"g
=1
> — vl’-‘, 59)

from which it directly follows that vf“
k+1

> (0, as claimed.

The proof for v; < 1 is straightforward. Assume

w.l.o.g. that v vl = 1 vl. . For the reasons given above, we
~k+1 k+1 k+1

obtain v; " > 0. Consequently, I —v; " > Oandv; " <1

follows. O

Theorem 10 (Rank-Order Preservation of the Explicit
Scheme) Let Lg be the Lipschitz constant of @ restricted to
the interval (0, 2). Furthermore, let v?, fori =1,...,N,
denote the initially distinct positions in (0,1) and —in
accordance with Theorem 4—Ilet the weight matrix W have
constant columns, i.e. Wjp = Wi for 1 < i,j, £ < N.
Moreover, let 0 < vl{‘ < v < 1 and assume that the time

step size T used in the explicit scheme (50) satisfies

1
0<t< v . (60)
2-Le- max > Wiy
1<l<Ng

Then, we have vk+1 < v?“.

Proof For distinct positions, (50) reads

N
k+1 k ~ k k
v; =vi+r-Zw,~,g-q§(v£—vi)

£=1
23 (61)
N
-7 Zﬁ)i,[ . @(véf + vllf)
=1
fori =1, ..., N.Considering this explicit discretisation for
0;v; and d;v;, we obtain for i, j € {1,2,..., N}
k+1 k+1 k k
v; v o= v -

+T (D + i) P — )
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N

+T - Z (lf)j,g . @(v? — v];)

=1

0£iLj
—W; ¢ - q)(véf — vf))

N
- (wm Dk + b

=1
—iq - D(vf + ul.k)). (62)

Now remember that vl].‘ < vj? by assumption and that—as a
consequence—

T (i) + Wi j) - P —vh) >0, (63)

Using the fact that w; y = w; x for 1 < i, j,k < N and that
@ is Lipschitz in (0, 2), we also know that

Do P vy — ) =i Doy —vf)

@(vif — v]]‘-) — @(vlg — vf)

%
fo

IA

N

T-Lo-Jof = Vil D e (64)
(=1
O£, ]

N
=T Z Wi - Qﬁ(vl—i—vk)—wl/g @(vl—l—vk)

=1

N
=T Z wj.e

=

‘qﬁ(uf +05) — df +0f)

—

N
<t Lo 05 —of|-) i (65)
=1

Let the time step size t fulfil (60). Then, we can write
T +Th <2 -Le-2- |v —V; | Zw]g<v —v . (66)
=1

In combination with T, T» > 0, it follows that

=T = -Th— Ty > —(v} — ), (67)
and we immediately know that v — v — T1 + 7, > 0.
Together with (62) and (63), we get 0 < vj o vf“, as
claimed. o
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Theorem 11 (Convergence of the Explicit Scheme) Let (6)
be a twice continuously differentiable convex function. Then,
the explicit scheme (50) converges for time step sizes

1

0<‘L’§ <

; (68)

~ N

N
2. Lg - max w;, i

? 1<i<N /Z:l "
where Lg denotes the Lipschitz constant of @ restricted to
the interval (0, 2) and L refers to the Lipschitz constant of
the gradient of (6).

Proof Convergence of the gradient method to the global
minimum of E (v, W) is well known for continuously differ-
entiable convex functions with Lipschitz continuous gradient
and time step sizes 0 < v < 2/L (see e.g. [33, Theo-
rem 2.1.14]). A valid Lipschitz constant is given by Lmax
as defined in (21). Consequently, the time step sizes 7 need
to fulfil (68) in order to ensure convergence of (50). The
smaller or equal relation results from (21). The latter defines
Lmax > L suchthat T = 2/L .« represents a valid time step
size. O

Remark 3 (Optimal Time Step Size) The optimal time step
size, i.e. the value of T which leads to most rapid descent, is
given by T = 1/L (see e.g. [33, Section 2.1.5]). Thus, we
suggest to use T = 1/ Lmax.

5 Application to Image Enhancement

Now that we have presented a stable and convergent numer-
ical scheme, we apply (50) to enhance the contrast of digital
greyscale and colour images. Throughout all experiments,
we use ¥ = ¥ | (cf. Table 1 and Fig. 2).

5.1 Greyscale Images

The application of the proposed model to greyscale images
follows the ideas presented in [4]. We define a digi-
tal greyscale image as a mapping f {1,...,n} %
{1,...,ny} — [0, 1]. Note that all grey values are mapped
to the interval (0, 1) to ensure the validity of our model
before processing. The grid position of the i-th image pixel is
given by the vector x;, whereas v; denotes the corresponding
grey value. Subsequently, we will see that a well-considered
choice of the weighting matrix W allows either to enhance
the global or the local contrast of a given image.

5.1.1 Global Contrast Enhancement
For global contrast enhancement, we make use of the global

model as discussed in Sect. 3.2. Only the N different occur-
ring grey values v;—and not their positions in the image

—are considered. We let every entry w; ; of the weighting
matrix denote the frequency of grey value v; in the image.
Assuming an 8-bit greyscale image, this leads to a weighting
matrix of size 256 x 256 which is independent of the image
size. As illustrated in Fig. 5, global contrast enhancement
can be achieved in two ways: as a first option one can use
the explicit scheme (50) to describe the evolution of all grey
values v; up to some time ¢ (see column two of Fig. 5). The
amount of contrast enhancement grows with increasing val-
ues of . In our experiments, an image size of 481 x 321 pixels
and the application of the flux function @1 with Ly = 1
imply an upper bound of 1/(2 - 481 - 321) for . Thus, we
can achieve the time = 2 - 107% in Fig. 5 in a single iter-
ation. If one is only interested in an enhanced version of
the original image with maximum global contrast, there is
an alternative, namely the derived steady-state solution for
linear flux functions (46). The results are shown in the last
column of Fig. 5. This figure also confirms that the solu-
tion of the explicit scheme (50) converges to the steady-state
solution (46) for t — o0. From (46), it is clear that this
steady state is equivalent to histogram equalisation. In sum-
mary, this means that the application of our global model to
greyscale images offers an evolution equation for histogram
equalisation which allows to control the amount of contrast
enhancement in an intuitive way through the time parameter
t.

5.1.2 Local Contrast Enhancement

In order to achieve local contrast enhancement, we use our
model to describe the evolution of grey values v; atall ny -ny,
image grid positions. The change of every grey value v;
depends on all grey values within a disk-shaped neighbour-
hood of radius ¢ around its grid position x;. We assume that
wiji=y(x; —x;)), Vi,je{l,2,...,N}, (69)
where we weight the spatial distance |x ; — x;| by a function
y R(‘)" — [0, 1] with compact support [0, o) which fulfils

y(x) € (0, 1],
y(x) =0,

if x < o, (70)
if x > o.

The choice of y is application dependent. However, it usually
makes sense to define y (x) as a non-increasing function in
x. Possible choices are, for example,

1, ifx <o,
(x) = (71)
" 0, else,
2 3.
1—62—2+6Z—3, if0<x <4,
r@=412-1-%°>% iff<x<o (72)
0, else,
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Original image

Fig.5 Global contrast enhancement using @ = @11 and greyscale versions of images from the BSDS500 [1]

71 (z) y2(2)
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|
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I
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I
I
|
I
I
l
4

Fig.6 Box function y; and scaled cubic B-spline y»

which are both sketched in Fig. 6. When applying this local
model to images, we make use of mirroring boundary con-
ditions in order to avoid artefacts at the image boundaries.
Figure 7 provides an example for local contrast enhancement
of digital greyscale images. Again, we describe the grey value
evolution with the explicit scheme (50). Furthermore, we use
y1 to model the influence of neighbouring grey values. As is
evident from Fig. 7, increasing the values for ¢ goes along
with enhanced local contrast.

5.2 Colour Images
Based on the assumption that our input data is given in

sRGB colour space [48] (in the following denoted by RGB),
we represent a digital colour image by the mapping f :

@ Springer

{1, ....n ) x {1, ..., ny} = [0, 1]3. Subsequently, our aim
is the contrast enhancement of digital colour images with-
out distorting the colour information. This means that we
only want to adapt the luminance but not the chromaticity
of a given image. For this purpose, we convert the given
image data to YCbCr colour space [44, Section 3.5] since
this representation provides a separate luminance channel.
Next, we perform contrast enhancement on the luminance
channel only. Just as for greyscale images, we map all Y-
values to the interval (0, 1) to fulfil our model requirements.
After enhancing the contrast, we transform the colour infor-
mation of the image back to RGB colour space.

At this point, it is important to mention that the colour
gamut of the RGB colour space is a subset of the YCbCr
colour gamut and during the conversion process of colour
coordinates from YCbCr to RGB colour space, the so-called
colour gamut problem may occur: Colours from the YCbCr
colour gamut may lie outside the RGB colour gamut and thus
cannot be represented in RGB colour coordinates. Naik and
Murthy [32] state that a simple clipping of the values to the
bounds creates undesired shift of hue and may lead to colour
artefacts. In order to avoid the colour gamut problem, we
adapt the ideas presented by Nikolova and Steidl [34] which
are based on the intensity representation of the HSI colour
space [19, Section 6.2.3]. Using the original and enhanced
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Original image

Fig.7 Local contrast enhancement using @ = @11, y = y1, 0 = 60, and greyscale versions of images from the BSDS500 [1]

intensities, they define an affine colour mapping and trans-
form the original RGB values. This preserves the hue and
results in an enhanced RGB image. It is straightforward to
show that their algorithms are valid for any intensity f of

type

A

f:cr‘r+cg'g+cb-b, (73)

with ¢, +¢g + ¢, = 1 and ¢, ¢g, ¢p € [0, 1], where r, g,
and b denote RGB colour coordinates. Thus, they are appli-
cable to the luminance representation of the YCbCr colour
space, too, i.e. ¢, = 0.299, ¢, = 0.587, ¢, = 0.114. Tian
and Cohen make use of the same idea in [52]. As in [34], our
result image is a convex combination of the outcomes of a
multiplicative and an additive algorithm (see [34, Algorithm
4 and 5]) with coefficients A and 1 — A for A € [0, 1]. Dur-
ing our experiments, we use a fixed value of A = 0.5 (for
details on how to choose X, we refer to [34]). An overview of
our strategy for contrast enhancement of digital colour value
images is given in Fig. 8.

5.2.1 Global Contrast Enhancement

Again, we apply the global model from Sect. 3.2 in order to
achieve global contrast enhancement. As mentioned before,

we consider the N different occurring Y-values of the YCbCr
representation of the input image and denote them by v; (sim-
ilar to Sect. 5.1.1 we neglect their positions in the image).
Every entry of the weighting matrix w; ; contains the number
of occurences of the value v; in the Y-channel of the image.
It becomes clear that the application of our model—in this
setting—basically comes down to histogram equalisation of
the Y-channel. Figure 9 shows the resulting RGB images
after global contrast enhancement. Similar to the greyscale
scenario, we can either apply the explicit scheme (50) or—
for @ = @, 1— estimate the steady-state solution following
(46). For the first case, the amount of contrast enhancement
grows with the positive time parameter ¢. The second column
of Fig. 9 shows the results for @ = @ | given time ¢. The
corresponding steady-state solutions are illustrated in the last
column of Fig. 9.

5.2.2 Local Contrast Enhancement

In a similar manner—and adapting the ideas from Sect.
5.1.2—we achieve local contrast enhancement in colour
images. For this purpose, we describe the evolution of Y-
values v; atall ny-ny image grid positions using a disk-shaped
neighbourhood of radius o around the corresponding grid
positions x;. The entries of the weighting matrix W follow
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Fig.8 Procedure of contrast

sRGB to YCbCr

Backward Diffusion

enhancement for digital colour
images following [34]

Input Image
sRGB

|

Converted Image
YCbCr

Enhanced Image
YCbCr

Affine Colour Transform

Multiplicative Enhanced Image
sRGB

Additive Enhanced Image
sRGB

Convex Combination

Output Image
sRGB

Original image

t=5-10""7

Steady state (46)

Fig.9 Global contrast enhancement using @ = @ 1, A = 0.5, and images from [27]

(69). In combination with mirrored boundary conditions, the
explicit scheme (50) allows to increase the local contrast of an
image with growing ¢. Figure 10 shows the exemplary results
for @ = @y | and y = y; (cf. (71)). Note, how well— in
comparison with the global set-up in Fig. 9—the structure
of the door gets enhanced while the details of the door knob
are preserved. The differences are even larger in the second
image: for both the couple in the foreground and the back-
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ground scenery, contrast increases which implies visibility
also for larger times 7.

5.3 Parameters

In total, our model has up to six parameters: @, t, ¢, A, 0,
and y. During our experiments, we have fixed @ (s) to the
linear flux function @4 1 (s) and A to 0.5. Valid bounds for the
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Original image

t=1-10"2

Fig. 10 Local contrast enhancement using @ = @ 1,y = y1, 0 = 60, 1 = 0.5, and images from [27]

time step size t are given in Theorems 9—11. From the theory
in Sect. 3 and the subsequent experiments on greyscale and
colour images, it becomes clear that the amount of contrast
enhancement grows with the diffusion time. Thus, it remains
to discuss the influence of the parameters o and y. We found
out that the neighbourhood radius o affects the diffusion
time and controls the amount of perceived local contrast
enhancement, i.e. it steers the localisation of the contrast
enhancement process. Whereas small radii lead to high con-
trast in already small image areas, the size of image sections
with high contrast increases with o. For sufficiently large
values of o, global histogram equalisation is approximated.
Another interesting point is the choice of the weighting func-
tion y. Overall, choosing y = yj leads to more homogeneous
contrast enhancement resulting in smoother perception. For
y = y», the focus always lies on the neighbourhood cen-
tre which implies even more enhancement of local structures
than in the preceding case. In summary, y» leads to more
enhancement which, however, also creates undesired effects
in smooth or noisy regions. Thus, we prefer y; over y,. Fur-
ther experiments which visualise the effect of the parameters
can be found in the supplementary material.

5.4 Related Work from an Application Perspective

Now that we have demonstrated the applicability of our
model to digital images we want to discuss briefly its relation
to other existing theories in the context of image processing.

As mentioned in Sect. 5.1.1, applying the global model—
with the entries of W representing the grey value frequencies—
is identical to histogram equalisation (a common formulation
can, for example, be found in [19]). Furthermore, there exist
other closely related histogram specification techniques—
such as [35,36,45]—which can have the same steady state.
If we compare our evolution with the histogram modifica-
tion flow introduced by Sapiro and Caselles [45], we see that
their flow can also be translated into a combination of repul-
sion among grey values and a barrier function. However, in
[45] the repulsive force is constant and the barrier function
quadratic. Thus, they cannot be derived from the same kind
of interaction between the v; and their reflected counterparts
as in our paper.

Referring to Sect. 5.1.2, there also exist well-known
approaches which aim to enhance the local image contrast
such as adaptive histogram equalisation—see [42] and the
references therein—or contrast limited adaptive histogram
equalisation [56]. The latter technique tries to overcome
the over-amplification of noise in mostly homogeneous
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image regions when using adaptive histogram equalisation.
Both approaches share the basic idea with our approach in
Sect. 5.1.2 and perform histogram equalisation for each pixel,
i.e. the mapping function for every pixel is determined using
a neighbourhood of predefined size and its corresponding
histogram.

Another related research topic is the rich field of colour
image enhancement which we broach in Sect. 5.2. A short
review of existing methods—as well as two new ideas—
is presented in [2]. Therein, Bassiou and Kotropoulus also
mention the colour gamut problem for methods which per-
form contrast enhancement in a different colour space and
transform colour coordinates to RGB afterwards. Of par-
ticular interest are the publications by Naik and Murthy
[32] and Nikolova and Steidl [34] whose ideas are used in
Sect. 5.2. Both of them suggest—based on an affine colour
transform—strategies to overcome the colour gamut prob-
lem while avoiding colour artefacts in the resulting image.
A recent approach which also makes use of these ideas is
presented by Tian and Cohen [52]. Ojo et al. [37] make use
of the HSV colour space to avoid the colour gamut problem
when enhancing the contrast of colour images. A variational
approach for contrast enhancement which tries to approxi-
mate the hue of the input image was recently published by
Pierre et al. [41].

6 Conclusions and Outlook

In our paper, we have presented a mathematical model which
describes pure backward diffusion as gradient descent of
strictly convex energies. The underlying evolution makes
use of ideas from the area of collective behaviour and—in
terms of the latter—our model can be understood as a fully
repulsive discrete first-order swarm model. Not only it is
surprising that our model allows backward diffusion to be
formulated as a convex optimisation problem but also that it
is sufficient to impose reflecting boundary conditions in the
diffusion co-domain in order to guarantee stability. This strat-
egy is contrary to existing approaches which either assume
forward or zero diffusion at extrema or add classical fidelity
terms to avoid instabilities. Furthermore, discretisation of
our model does not require sophisticated numerics. We have
proven that a straightforward explicit scheme is sufficient
to preserve the stability of the time-continuous evolution.
In our experiments, we show that our model can directly
be applied to contrast enhancement of digital greyscale and
colour images.

We see our contribution mainly as an example of stable
modelling of backward parabolic evolutions that create nei-
ther theoretical nor numerical problems. We are convinced
that this concept has far more widespread applications in

@ Springer

inverse problems, image processing, and computer vision.
Exploring them will be part of our future research.
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