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Benefiting from Duplicates of Compressed Data:
Shift-Based Holographic Compression of Images

Yehuda Dar and Alfred M. Bruckstein

Abstract—Storage systems often rely on multiple copies of the
same compressed data, enabling recovery in case of binary data
errors, of course, at the expense of a higher storage cost. In
this paper we show that a wiser method of duplication entails
great potential benefits for data types tolerating approximate
representations, like images and videos. We propose a method
to produce a set of distinct compressed representations for a
given signal, such that any subset of them allows reconstruction
of the signal at a quality depending only on the number of
compressed representations utilized. Essentially, we implement
the holographic representation idea, where all the representations
are equally important in refining the reconstruction. Here we
propose to exploit the shift sensitivity of common compression
processes and generate holographic representations via compres-
sion of various shifts of the signal. Two implementations for the
idea, based on standard compression methods, are presented: the
first is a simple, optimization-free design. The second approach
originates in a challenging rate-distortion optimization, mitigated
by the alternating direction method of multipliers (ADMM),
leading to a process of repeatedly applying standard compression
techniques. Evaluation of the approach, in conjunction with the
JPEG2000 image compression standard, shows the effectiveness
of the optimization in providing compressed holographic rep-
resentations that, by means of an elementary reconstruction
process, enable impressive gains of several dBs in PSNR over
exact duplications.

Index Terms—Holographic representations, rate-distortion op-
timization, signal compression, image compression, alternating
direction method of multipliers (ADMM).

I. INTRODUCTION

Any digital system involving storage or transmission of
signals (e.g., images, videos and other multimedia data) fun-
damentally relies on lossy compression processes to meet
storage-space or transmission bandwidth limitations, incurring
acceptable reductions in the eventual recovered signal quality.
Contemporary storage and content-distribution services im-
plement processes where a binary compressed representation
of a particular signal is exactly duplicated for the purpose
of storage reliability, or for delivery to multiple users in a
network. Clearly, subsequent access to several identical copies
of the compressed signal cannot provide a reconstruction
quality better than that achieved using a single copy. Hence,
there is an inefficiency in the joint bit-cost of several copies
versus the reconstruction quality they provide together. In this
paper we address this type of inefficiency, as will be explained
next.

Holographic representations [1]–[3] of a signal are a set of
data packets designed so that its subsets enable signal approx-
imation at a quality depending only on the number of packets
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utilized, and independent on the particular packets included in
the subset. The holographic representations concept is closely
related to the multiple description coding approach (see,
e.g., [4]–[6]) as, indeed, both methods aim at reconstruction
refinement when increasing the size of the subset of packets
used for approximation. However, the two approaches differ in
the following aspect: when using holographic representations,
increasing the number of packets used for approximation leads
to a quality gain (approximately) independent of the particular
packets added at the expense of considerable higher bit-cost. In
contrast, in multiple description coding, adding various packets
may lead to considerably different quality gains due to serious
concerns about keeping the bit-cost as low as possible [4], [5].
Inherently, the property of holographic representations implies
that some amount of redundancy remains among the packets
and, therefore, the packet bit-costs may be higher than in the
multiple description coding approach. Nevertheless, the special
properties of the holographic representations can significantly
contribute to storage system designs.

In the context of storage systems, the holographic repre-
sentations are intended for improving settings where several
identical copies of compressed data are stored and their
individual usefulness for recovery is more important than
achieving the best possible reduction in their joint bit-cost. A
prevalent case where single copy usefulness in reconstruction
is crucial is in duplication-based reliable storage systems,
where multiple identical versions of the data are stored for
enabling recovery in case of errors in the binary form of
the data. This approach is realized by the Redundant Array
of Independent Disks (RAID) [7] data storage technology in
mirroring-based settings.

In this paper, we focus on signals like audio, images and
videos, commonly represented and processed in conjunction
with lossy compression. Using the principles of holographic
representations, we establish a methodology to store a signal
in several non-identical copies, that are individually equally-
descriptive (with respect to a distortion metric such as the
Mean Squared Error). The important aspect of the proposed
idea is that subsets of the stored, non-identical, duplicates
allow us to improve the quality of the recovered signal via
a simple reconstruction procedure. Hence, the storage cost
increase on the duplicates is exploited for significant quality
improvement in the retrieved signals.

We design the framework for production of holographic rep-
resentations employing binary compressed data. Since many
compression processes are shift sensitive (e.g., due to block-
based designs), we create holographic representations based
on various shifts of the input signal. Then, in the recon-
struction stage the signal is approximated via averaging the
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Fig. 1. General description of holographic compression and decompression processes.

available subset of properly back-shifted representations. The
reconstruction quality improves as the subset of available
representations gets larger.

We further improve our idea by formulating the problem
as a rate-distortion optimization, minimizing a Lagrangian
cost including the total bit-cost of all the representations
and two distortion penalties: one expresses the distortion
averaged over all the m-packet reconstructions (for a specific
m > 1), and the second reflects the average distortion of
individual packets. Then, we apply our general optimization
approach for intricate compression problems (established in
[8]–[11] for various settings). Specifically, using the alternat-
ing direction method of multipliers (ADMM) we develop an
iterative process relying on repeated applications of standard
compression techniques (that consider squared-error metrics
but no holographic-representations aspects). Accordingly, our
iterative approach decouples the holographic-related distortion
terms from the actual compression stage, leading to holo-
graphic compressed representations compatible to an existing
compression standard.

We present experimental results evaluating the proposed
methodology for image compression in conjunction with the
JPEG2000 standard. The results are analyzed using empirical
quantities reflecting the holographic properties of similar use-
fulness of packets added to the reconstruction, as well as pro-
gressive refinement. Impressive PSNR gains are achieved by
the proposed methods over the approach of exact duplications.
For instance, we evaluate the case of four packets compatible
with the JPEG2000 standard at a compression ratio of 1:50,
and show that using four packets the proposed optimization
framework improves the PSNR of the reconstructed image by
about 5 dB over the PSNR obtained with exact duplications.

II. PROBLEM DEFINITION

A. Holographic Compression and Decompression

In this paper we propose a lossy compression framework
with holographic representation properties (see Fig. 1). Given
a signal x ∈ RN , by definition, a holographic compres-
sion algorithm produces K binary representations (packets)
b1, ..., bK ∈ B, where B is a discrete set of binary compressed

representations of possibly different lengths. The set of packets
fulfill holographic properties either exactly or approximately
(as will be described below). Accordingly, the holographic
compression process can be described as a function CH :
RN → BK , mapping the source signal domain, RN , to the
K-tuples from the domain B of binary compressed represen-
tations.

By definition, the holographic decompression process can
get any subset of m ∈ {1, ...,K} packets from the overall
set of packets, a subset denoted here as {bi1 , ..., bim} ⊂
{b1, ..., bK} where {i1, ..., im} ⊂ {1, ...,K} are the indices
of the packets taken from the range of integers from 1 to
K without repetitions. For each m = 1, ...,K there is a
holographic decompression function, F (m)

H : Bm → RN ,
mapping the given subset of m packets into a reconstructed
signal, namely,

v , F
(m)
H (bi1 , ..., bim) (1)

where v ∈ RN .
We evaluate the fidelity of the reconstructed signal using the

Mean Squared Error (MSE) criterion. Accordingly, the distor-
tion of the reconstruction from the m packets corresponding
to the indices i1, ..., im is formulated as

D̃(m) (x; i1, ..., im) ,
1

N

∥∥∥x− F (m)
H (bi1 , ..., bim)

∥∥∥2

2
. (2)

In the sequel we will use the following notations.
The sequence of integers from 1 to K is denoted as
[[K]] , {1, ...,K}. For m ∈ [[K]], an m-combination of
the set [[K]] is a subset of m distinct numbers from [[K]].
We denote the set of all m-combinations of [[K]] as

(
[[K]]
m

)
,

where the latter contains
(
K
m

)
elements.

B. The Ideal Holographic Properties in Deterministic Settings

The desired holographic properties, in their idealistic forms,
can be described as follows.

1) Equivalent usefulness of individual packets: Each of
the individual packets, {bi}Ki=1, should enable the approxima-
tion of x at the same level of MSE. More generally, given m ∈
{1, ...,K} packets, denoted as {bi1 , ..., bim}, one can construct
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an estimate for x using the function F
(m)
H (bi1 , ..., bim) such

that any subset of packets leads to a reconstruction that
approximates x at the same MSE level, i.e., this ideal property
is formulated as

D̃(m) (x; i1, ..., im) = D̃(m) (x; l1, ..., lm) (3)

for any (i1, ..., im) and (l1, ..., lm) in
(

[[K]]
m

)
.

2) Progressive refinement: The approximation
F

(m)
H (bi1 , ..., bim) of x using any m ∈ {2, ...,K} packets

attains a lower MSE than the approximation F (m̄)
H (bi1 , ..., bil)

constructed using any m̄ < m packets. It is important to
add the progressive refinement property to the equivalent
usefulness concept or, otherwise, exact duplications of the
input data would be a trivial solution to achieve equivalent
usefulness of representations. The union of the above two
properties can be formulated as follows: for m = 1, ...,K,

D̃(m) (x; i1, ..., im) = Em ∀ (i1, ..., im) ∈
(

[[K]]

m

)
(4)

where Em̄ > Em for any m̄ < m in [[K]].

C. Feasible Holographic Properties in Deterministic Settings

In general (in the deterministic settings), the ideal holo-
graphic properties presented above cannot be precisely
achieved. Hence, let us define a feasible version of the
holographic principles.

First let us define the average MSE of the m-packet recon-
structions as

mean(m)
D (x; b1, ..., bK) , (5)

1(
K
m

) ∑
(i1,...,im)∈([[K]]

m )

D̃(m) (x; i1, ..., im)

Furthermore, the empirical variance of the m-packet recon-
struction MSE is defined via

var(m)
D (x; b1, ..., bK) ,

1(
K
m

)× (6)∑
(i1,...,im)

∈([[K]]
m )

(
D̃(m) (x; i1, ..., im)−mean(m)

D (x; b1, ..., bK)
)2

The definitions of average and variance of the reconstruction
MSE allow us to formulate softened versions of the strict
holographic properties defined in the former subsection. These
practical features are

1) σ-Similar usefulness of individual packets: Consider
the task of reconstructions based on subsets of m ∈ {2, ...,K}
packets. A set of K packets, {bi}Ki=1, will be considered to
satisfy the property of σ-similar usefulness of packets for m-
packet reconstructions, if it obeys

var(m)
D (x; b1, ..., bK) ≤ σ2. (7)

Namely, the variance of the reconstruction MSE, empirically
considering all the m-combinations of subsets, does not exceed
the value σ2. Clearly, for σ = 0 the property defined here
reduces to the strict equivalence of packet usefulness presented
in (3).

2) Progressive refinement on average: This property is
implemented by a set of K packets where the approximations
of x using m ∈ {2, ...,K} packets yield a lower average MSE
than the approximations constructed using m̄ < m packets.
Namely,

mean(m)
D (x; b1, ..., bK) = Em (8)

where Em̄ > Em for any m̄ < m in [[K]]. It is again worth
noting the significance of demanding progressive refinement
(on average) in conjunction with the similar-usefulness con-
cept, or else exact duplications of the input data would trivially
provide equivalent usefulness of representations.

III. SHIFT-BASED HOLOGRAPHIC COMPRESSION: A
BASELINE APPROACH

We next describe an elementary, yet effective, design for
holographic compression. The simplicity of this baseline ar-
chitecture stems from the utilization of shift operators in
conjunction with standard compression methods that are in-
herently shift-sensitive. Specifically, the regular compression
of the various shifts of the given signal will produce different
compressed representations that are, in principle, of about the
same usefulness for reconstruction. The progressive refine-
ment ability is also immediate here due to the collection of
different decompressed signals that, together, can provide a
reconstruction with a lower distortion and reduced amount of
compression artifacts.

For a start, let us formulate a process of regular (non
holographic) lossy compression as a mapping C : RN → B
from the N -dimensional signal domain to a discrete set B
of binary compressed representations (of possibly different
lengths) supported by the compression architecture. The com-
pression of the signal w ∈ RN provides the compressed binary
data b = C (w) that can be decompressed to form the signal
y = F (b), where F : B → S represents the decompression
mapping between the binary compressed representations in B
to the corresponding decompressed signals in the discrete set
S ⊂ RN . Accordingly, we consider the pair of sets B and S
as a description of a standard non-holographic compression
architecture.

Note that we intentionally associated the holographic com-
pression design in Section II-A with the standard compression
definition given here, by referring to the same set B of binary
compressed representations. Indeed, this means that the holo-
graphic decompression process should start with individual
standard decompression of the obtained packets, namely,

yj = F (bj) for j = i1, ..., im (9)

where yj is the decompressed signal associated with the
jth packet. We will refer to yi1 , ...,yim as decompressed
packets. Since the holographic decompression, associated with
the function F (m)

H defined in (1), starts with standard decom-
pression of the individual packets, we can define the relation

G
(m)
H (yi1 , ...,yim) , F

(m)
H (bi1 , ..., bim) (10)

i.e., G(m)
H : Sm → RN is the holographic reconstruction

function, receiving m decompressed packets and returning the
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Fig. 2. The baseline unoptimized process for holographic compression and decompression.

decompressed signal v ∈ RN . For simplicity of notations, the
developments in this paper mainly refer to the holographic
decompression function G

(m)
H having inputs and outputs in

the signal domain RN .
Signal compression methods usually rely on various block-

based vector quantization designs that inherently make them
shift sensitive. Accordingly, we consider in this paper the
creation of holographic compressed representations based on
shift operators coupled with standard compression techniques.
For this purpose we define the operator of a cyclic shift, to
cyclically move components of an N -length column vector in
one place upward, via the N ×N matrix

S ,


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 (11)

and the corresponding inverse shift can be applied using ST

since STS = I. The cyclic shift in an amount of l places is
obtained via Sl, which is the product of l basic matrices S,
and its inverse is accordingly defined as the transpose of Sl.

As a baseline unoptimized design let us consider the fol-
lowing implementations of the holographic compression and
decompression processes (see Fig. 2). The holographic com-
pression procedure CH (x) produces the K binary compressed
representations via

bi = C (Six) for i = 1, ...,K (12)

where S1, ...,SK are K different cyclic shift operators in
the forms of N × N matrices. Accordingly, in this baseline
architecture, the ith holographic compressed representation is
formed by a standard compression of a (cyclically) shifted
version of the input x (where the amount of shift is defined
by the matrix Si). The holographic decompression based on
a subset of m packets is defined as

F
(m)
H (bi1 , ..., bim) =

1

m

m∑
j=1

STijF
(
bij
)

(13)

or, alternatively, by describing the reconstruction given the
decompressed packets as

G
(m)
H (yi1 , ...,yim) =

1

m

m∑
j=1

STijyij (14)

The MSE of the reconstruction from the m packets corre-
sponding to the indices i1, ..., im is

D(m) (x;yi1 , ...,yim) ,
1

N

∥∥∥∥∥∥x− 1

m

m∑
j=1

STijyij

∥∥∥∥∥∥
2

2

, (15)

where we use a simplified notation assuming that the indices
of the packets (i.e., i1, ..., im) are available to the distortion
function in order to associate the shift operators corresponding
to the decompressed packets.

IV. AN OPTIMIZATION-BASED APPROACH FOR
HOLOGRAPHIC COMPRESSION

Returning to the baseline implementation described in (12)-
(14) clearly shows that while the baseline design is a new and
intriguing compression approach, it is not designed to optimize
the output quality. The main goal of this section is to present
an optimized design for holographic compression based on
the same, relatively simple, reconstruction procedures in
(13)-(14), while replacing the encoding process of (12) by
our optimization-induced procedure.

We now turn to define the holographic compression prob-
lem in the form of a rate-distortion optimization, posed for
improving the average quality of m-packet reconstructions for
a specific m ∈ {2, ...,K}. Our initial problem formulation is
inspired by the rate-distortion Lagrangian optimization that
is commonly used in the state-of-the-art image and video
compression methods (see, for examples, [12]–[15]). Here
we formulate the task as the minimization of an extended
rate-distortion Lagrangian cost, including three main terms:
the total compression bit-cost of the packets, the average
MSE of m-packet reconstructions (defined for a particular
m ∈ {2, ...,K}), and the average MSE of reconstructions from
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individual packets. This optimization is formulated as

{ŷi}Ki=1 = argmin
{yi}Ki=1∈S

K∑
i=1

R (yi) (16)

+µ
1(
K
m

) ∑
(i1,...,im)∈([[K]]

m )

D(m) (x;yi1 , ...,yim)

+λ
1

K

K∑
i=1

D(1) (x;yi)

where µ and λ are Lagrange multipliers corresponding to some
trade-off among the bit-cost and the distortion quantities. It is
important to note that the reduction in the average MSE of m-
packet reconstructions usually leads to increase in the average
MSE of individual-packet reconstructions. Therefore, in our
experiments (see Section V) we will set the values of µ and λ
such that the average MSE of m-packet reconstructions will
be the desired distortion value to minimize, and the inclusion
of the average MSE of individual-packet reconstructions is
for regularization purposes, namely, to limit the degradation
introduced to single-packet representations. This aspect of the
optimization is clearly exhibited in the empirical demonstra-
tions provided in Section V.

We suggest to address the optimization in (16) using the
alternating direction method of multipliers (ADMM) approach
[16]. For a start, we apply variable splitting on the optimization
in (16), translating the problem to

(
{ŷi}Ki=1, {ẑi}Ki=1

)
= argmin
{yi}Ki=1∈S,
{zi}Ki=1∈R

N

K∑
i=1

R (yi)

+µ
1(
K
m

) ∑
(i1,...,im)∈([[K]]

m )

D(m) (x; zi1 , ..., zim)

+λ
1

K

K∑
i=1

D(1) (x; zi)

subject to zi = yi ∀ i ∈ [[K]] (17)

where z1, ..., zK are auxiliary variables, which are not di-
rectly restricted to the discrete set S. Then, the augmented
Lagrangian and the method of multipliers [16] provide an iter-
ative form of the problem where its tth iteration is formulated
as (
{ŷ[t]

i }
K
i=1, {ẑ

[t]
i }

K
i=1

)
= argmin
{yi}Ki=1∈S,
{zi}Ki=1∈R

N

K∑
i=1

R (yi)+

+µ
1(
K
m

) ∑
(i1,...,im)∈([[K]]

m )

D(m) (x; zi1 , ..., zim)

+λ
1

K

K∑
i=1

D(1) (x; zi)

+β

K∑
i=1

∥∥∥yi − zi + u
[t]
i

∥∥∥2

2

u
[t+1]
i = u

[t]
i +

(
ŷ

[t]
i − ẑ

[t]
i

)
∀ i ∈ [[K]] (18)

where β is a parameter originating in the augmented La-
grangian, and u

[t]
1 , ...,u

[t]
K are scaled dual variables. We denote

correspondence to specific iterations using superscript square-
brackets, whereas other types of superscripts (e.g., including
round brackets) correspond to former definitions given above.

Addressing the optimization in (18) using one iteration
of alternating minimization establishes the following ADMM
form of the problem, where its tth iteration is

ŷ
[t]
i = argmin

yi∈S
R (yi) + β

∥∥∥yi − z̃
[t]
i

∥∥∥2

2
∀ i ∈ [[K]] (19)

ẑ
[t]
i = argmin

zi

µ(
K
m

)× (20)

∑
(i1,...,im)∈I(m)

i

D(m)

(
x; {ẑ[t]

ij
} ij<i
j∈[[m]]

, zi, {ẑ[t−1]
ij
} ij>i
j∈[[m]]

)

+
λ

K
D(1) (x; zi) + β

∥∥∥zi − ỹ
[t]
i

∥∥∥2

2
∀ i ∈ [[K]]

u
[t+1]
i = u

[t]
i +

(
ŷ

[t]
i − ẑ

[t]
i

)
∀ i ∈ [[K]] (21)

where z̃
[t]
i , ẑ

[t−1]
i −u

[t]
i and ỹ

[t]
i , ŷ

[t]
i +u

[t]
i . Moreover, the

optimization of zi in (20) considers the average reconstruction
MSE corresponding to all the m-combinations of packets
including the ith packet – the set of these m-combinations
is denoted as I(m)

i . Note also that the size of this set is
|I(m)
i | =

(
K−1
m−1

)
.

The optimizations in (19) are standard rate-distortion opti-
mizations with respect to a squared error metric, considering
the individual compression of z̃

[t]
i for each i = 1, ...,K.

Therefore, we suggest to replace the optimizations in (19)
with applications of standard compression and decompression
operated based on a parameter θ (β) determining the bit-rate
(see stage 8 of Algorithm 1). For example, the experiments
presented in Section V leverage the JPEG2000 compression
technique, applied using a compression-ratio parameter. Inter-
estingly, in our experiments we find it sufficient to set θ (β)
to a constant value (heuristically determined based on the β
value) and kept fixed throughout the iterations (i.e., θ (β) is
considered to be independent of t).

The second optimization stage, Eq. (20), can be analytically
solved with respect to the explicit expressions provided in (15)
for the distortion measures, showing that

ẑ
[t]
i =

Nβỹ
[t]
i + λ

KSix + µ

m2·(Km)
Siw

(m)
i

Nβ + λ
K + µ

m2·(Km)
· |I(m)

i |
(22)

where

w
(m)
i , (23)

∑
(i1,...,im)∈I(m)

i

mx−
∑
ij<i
j∈[[m]]

STij ẑ
[t]
ij
−
∑
ij>i
j∈[[m]]

STij ẑ
[t−1]
ij

 .

The expression in (22) exhibits ẑ
[t]
i as a linear combination of

the corresponding decompressed packet ỹ[t]
i , the shifted input

signal x, and the shifted residual between x and its m-packet
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approximations excluding the ith packet. Note that in the case
of m = K (namely, optimizing the reconstruction using all
the packets), the expression in (23) is somewhat simplified to

w
(K)
i = Kx−

i−1∑
j=1

STj ẑ
[t]
j −

K∑
j=i+1

STj ẑ
[t−1]
j . (24)

The method developed in this section is summarized in Al-
gorithm 1, where the processing of packets in each iteration is
done sequentially. This reordering of computations is allowed
due to the formation of dependencies obtained in Eq. (19)-
(21).

Algorithm 1 Holographic Compression Optimized for m-
Packet Reconstructions

1: Inputs: x, β, µ, λ, m, K.
2: Initialize t = 0.
3: Initialize (for i = 1, ...,K) ẑ(0)

i = Six and u
(1)
i = 0.

4: repeat
5: t← t+ 1
6: for i = 1, ...,K do
7: z̃

[t]
i = ẑ

[t−1]
i − u

[t]
i

8: b[t]
i = StandardCompress

(
z̃

[t]
i , θ (β)

)
9: ŷ

[t]
i = StandardDecompress

(
b[t]
i

)
10: ỹ

[t]
i = ŷ

[t]
i + u

[t]
i

11: ẑ
[t]
i =

Nβỹ
[t]
i + λ

K Six+ µ

m2·(Km)
Siw

(m)
i

Nβ+ λ
K+ µ

m2·(Km)
·|I(m)
i |

where w
(m)
i is defined in (23).

12: u
[t+1]
i = u

[t]
i +

(
ŷ

[t]
i − ẑ

[t]
i

)
13: end for
14: until stopping criterion is satisfied
15: Output: The binary compressed packets b[t]

1 , ..., b
[t]
K .

V. EXPERIMENTAL RESULTS

In this section we present experimental results for the imple-
mentation of the proposed method for holographic compressed
representations of images in conjunction with the JPEG2000
compression technique (available in Matlab). In the presented
evaluation we consider several settings for the storage of
a given image using four copies (that are not necessarily
identical) or packets. Each packet/copy is a compressed image
in a binary form obtained from the JPEG2000 compression
method operated at the same compression ratio. Therefore, all
the individual copies and packets are of about the same bit-
rate, allowing to evaluate reconstruction quality as the function
of the number of packets/copies utilized. The four approaches
examined here are:
• Exact duplication where all the stored copies are exactly

the same binary data, obtained from the JPEG2000 com-
pression of the given image.

• The baseline (unoptimized) design, as presented in Sec-
tion III, relying on JPEG2000 compression of different
shifts of the input image.

Fig. 3. The evolution of the optimization cost and its components throughout
the proposed iterative optimization. The demonstration here is for the Cam-
eraman image and the optimization of 4-packet reconstruction composed of
JPEG2000 packets having compression ratio of 1:50. The presented values of
the cost-components include the multiplication by the respective parameters.

• The shift-based holographic compression approach op-
timized for 2-packet reconstructions, as developed in
Section IV for optimizing the quality of m-packet re-
constructions. This design also relies on the JPEG2000
compression standard. The parameters for this mode are
µ = 25 ·K ·

(
K
m

)
, β = 90

N , λ = 5 ·K2, and a run of 35
iterations.

• The shift-based holographic compression approach op-
timized for K-packet reconstructions, namely, the case
of optimizing the reconstruction using all the packets. The
parameters for this mode are µ = 125 ·K ·

(
K
m

)
, β = 50

N ,
λ = 2.5 ·K2, and a run of 35 iterations.

The first evaluation is based on JPEG2000 compression at
a compression ratio of 1:50 that in practice creates packets
at bit-rates of 0.160 bits per pixel (bpp), with the addition of
some overhead bit-rate due to syntax (note that the overhead
bit-rate is smaller for larger images). The baseline and the
two optimized modes produce their four holographic packets
based on the following offsets of the upper-left coordinate
of the image by (0, 0), (3, 0), (0, 3), (3, 3) pixels (namely,
in practice, the shifts are not cyclic and implemented by
appending a suitable number of duplicated rows and columns
at the upper and left sides of the image, respectively). The
evolution of the optimization cost (formulated in Eq. (16))
and its components is demonstrated in Fig. 3, showing the
reduction in the optimization cost (the blue curve) and a
convergence behavior.

In Fig. 4 we demonstrate the reconstructions obtained using
the proposed holographic compression method optimized for
4-Packet reconstructions. First, in Fig. 4a-4d, we present the
reconstructions retrieved from each of the single packets alone:
while the PSNR values are relatively similar, the approxima-
tions are clearly distinct and each of them suffers differently
from compression artifacts. This observation explains the
benefits from jointly using several packets for reconstruction.
Then, in Fig. 4e-4g, several examples for approximations using
an increasing number of packets show the significance of the
obtained improvements in PSNR and visual quality.
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Figure 5 allows to compare the examined methods through
their corresponding curves of PSNR versus number of packets
utilized for reconstruction. The results provided here are for
the Cameraman (256× 256 pixels), House (256× 256 pixels),
Lena (512× 512 pixels) and Barbara (512× 512 pixels)
grayscale images. Each of the four examined methods is
associated in Fig. 5 with a group of curves having the same
color (which is method specific). The curves corresponding to
a particular method differ by the order of appending packets
for the reconstruction (and, therefore, the number of curves
corresponding to each method is K! = 4! = 24). A good im-
plementation of the holographic property of similar usefulness
(see Section II) means here that the diversity in PSNR values
using the various combinations of m packets should be rela-
tively small – we quantify this in Table I using the standard
deviation of the PSNR obtained using the various subsets of
m packets. The second important property is the progressive
refinement (see Section II) that can be observed in the PSNR
curves of all the shift-based holographic compression methods
(see Fig. 5), and is completely absent in the exact duplication
approach. It is also evident that our optimization framework
improves the average PSNR of the m-packet reconstructions
for the specific m set to be optimized (see Table I and Fig.
5). For instance, our optimization for 4-packet reconstructions
achieved a PSNR gain of about 5 dB over the method of exact
duplications, and a PSNR improvement around 3 dB over the
baseline (unoptimized) shift-based approach.

The presented comparison also demonstrates the fundamen-
tal, intuitive, trade-off in the average quality of m-packet re-
constructions among the various subset sizes m. For example,
the significant increase in the 4-packet reconstruction quality is
at the expense of the qualities of the 1-packet reconstructions.
Nonetheless, the optimizations for reconstructions using 4 or
2 packets indirectly led to significant improvement in the
average quality of the 3-packet reconstructions in addition to
the explicit optimization goal.

We repeat the experiment but for JPEG2000 compression
at a ratio of 1:25, namely, a higher bit-rate of approximately
0.320 bits per pixel. The formulas for setting the parameters
are as in the first setting described above, except for the β
parameter, set in the 2-packet optimization mode to 65

N , and
in the 2-packet optimization mode to 120

N . The results are
presented in Table II and Fig. 6. Evidently, our framework
consistently provides improved qualities of the reconstructions
specified in the optimization task.

In addition, we also examine the case where the complete
set of representations includes 9 packets. In this case, the shifts
are based on offsets of the upper-left coordinate of the image
by (3∆x, 3∆y) pixels for all ∆x,∆y ∈ {0, 1, 2}. The formulas
for setting the parameters are as in the first setting described
above, except for the λ parameter in the 2-packet optimization
mode that is now set to K2. The comparison presented in
Fig. 7 and Table III demonstrates the improvements in PSNR
achievable using the proposed optimization framework. In Fig.
8 we visually demonstrate the progressive refinement when
increasing the number of packets utilized.

VI. CONCLUSION

In this paper we proposed a new methodology for signal and
image compression, intended for systems where compressed
data is often trivially duplicated in exact forms. Our idea
relies on the concept of holographic representations that are
equally descriptive and useful for progressive refinement of
the reconstructed signal. Based on the shift-sensitivity of
signal compression techniques, we developed a baseline and
an ADMM-based optimized framework for the construction of
binary compressed representations compatible with standard
compression techniques. Our experiments clearly demonstrate
the effectiveness of the proposed framework, reaching re-
markable improvements in the reconstruction quality over
the approach of using exact duplications. Future work can
extend the proposed framework for optimizing holographic
compression based on projection operators other than shifts.
Moreover, the guidelines established here for optimized holo-
graphic compression can be generalized further to holographic
representations using various regularization types, replacing
the role of the bit-cost measures in this paper.
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(a) 1-packet reconstruct. using
packet #1 (23.04 dB)

(b) 1-packet reconstruct. using
packet #2 (23.02)

(c) 1-packet reconstruct. using
packet #3 (22.96 dB)

(d) 1-packet reconstruct. using
packet #4 (23.01 dB)

(e) 2-packet reconstruct. (25.98 dB) (f) 3-packet reconstruct. (28.20) (g) 4-packet reconstruct. (29.73 dB)

Fig. 4. Examples for m-packet reconstructions of the ’Cameraman’ image using multiple packets from the set of 4 holographic representations. Demonstration
of m-packet reconstructions obtained from a set of 4 holographic packets optimized by the proposed framework for a 4-packet reconstruction. The utilized
compression is JPEG2000 at a compression ratio of 1:50. (a)-(d) the 1-packet reconstructions using each of the individual packets. (e)-(g) examples for the
m-packet reconstructions for m = 2, 3, 4.

(a) Cameraman (b) House (c) Lena (d) Barbara

Fig. 5. PSNR versus the number of packets used for the reconstructions. The complete set contains 4 packets, each obtained from JPEG2000 compression
at 1:50 compression ratio. The black, red, green and blue curves respectively represent the methods of exact duplications, baseline (unoptimized), optimized
for reconstruction from pairs of packets, and optimized for reconstruction from 4 packets.

(a) Cameraman (b) House (c) Lena (d) Barbara

Fig. 6. PSNR versus the number of packets used for the reconstructions. The complete set contains 4 packets, each obtained from JPEG2000 compression
at 1:25 compression ratio. The black, red, green and blue curves respectively represent the methods of exact duplications, baseline (unoptimized), optimized
for reconstruction from pairs of packets, and optimized for reconstruction from 4 packets.
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TABLE I
EVALUATION OF QUALITY AND DIVERSITY IN THE RECONSTRUCTIONS FROM A SET OF 4 PACKETS (THE MEAN AND STANDARD DEVIATION VALUES

REFER TO PSNR VALUES IN DB UNITS): THE RESULTS ARE BASED ON JPEG2000 COMPRESSION AT 1:50 COMPRESSION RATIO

Image Method 1 Packet 2 Packets 3 Packets 4 Packets

mean(1)D std(1)D mean(2)D std(2)D mean(3)D std(3)D mean(4)D std(4)D

Cameraman Exact Duplication 25.66 0 25.66 0 25.66 0 25.66 0
Baseline (Unoptimized) 25.55 0.10 26.41 0.16 26.74 0.06 26.92 0

Optimized for 2-Packet Reconstruction 25.07 0.06 27.04 0.20 27.95 0.03 28.50 0
Optimized for 4-Packet Reconstruction 23.01 0.03 26.24 0.20 28.23 0.06 29.73 0

House Exact Duplication 31.14 0 31.14 0 31.14 0 31.14 0
Baseline (Unoptimized) 31.23 0.06 32.24 0.20 32.63 0.03 32.84 0

Optimized for 2-Packet Reconstruction 30.42 0.12 32.64 0.33 33.72 0.07 34.39 0
Optimized for 4-Packet Reconstruction 28.19 0.04 31.64 0.46 33.85 0.02 35.62 0

Lena Exact Duplication 31.81 0 31.81 0 31.81 0 31.81 0
Baseline (Unoptimized) 31.86 0.03 32.86 0.20 33.24 0.03 33.45 0

Optimized for 2-Packet Reconstruction 31.25 0.03 33.35 0.30 34.35 0.02 34.95 0
Optimized for 4-Packet Reconstruction 28.75 0.13 32.22 0.40 34.45 0.04 36.25 0

Barbara Exact Duplication 26.12 0 26.12 0 26.12 0 26.12 0
Baseline (Unoptimized) 26.12 0.04 27.29 0.13 27.76 0.01 28.02 0

Optimized for 2-Packet Reconstruction 25.31 0.01 27.70 0.19 28.91 0.05 29.67 0
Optimized for 4-Packet Reconstruction 22.51 0.10 26.30 0.45 28.96 0.07 31.39 0

TABLE II
EVALUATION OF QUALITY AND DIVERSITY IN THE RECONSTRUCTIONS FROM A SET OF 4 PACKETS (THE MEAN AND STANDARD DEVIATION VALUES

REFER TO PSNR VALUES IN DB UNITS): THE RESULTS ARE BASED ON JPEG2000 COMPRESSION AT 1:25 COMPRESSION RATIO

Image Method 1 Packet 2 Packets 3 Packets 4 Packets

mean(1)D std(1)D mean(2)D std(2)D mean(3)D std(3)D mean(4)D std(4)D

Cameraman Exact Duplication 28.86 0 28.86 0 28.86 0 28.86 0
Baseline (Unoptimized) 28.84 0.06 30.01 0.14 30.47 0.04 30.73 0

Optimized for 2-Packet Reconstruction 28.34 0.04 30.35 0.22 31.29 0.03 31.85 0
Optimized for 4-Packet Reconstruction 26.03 0.08 29.54 0.24 31.85 0.02 33.74 0

House Exact Duplication 34.58 0 34.58 0 34.58 0 34.58 0
Baseline (Unoptimized) 34.59 0.06 35.54 0.14 35.91 0.01 36.10 0

Optimized for 2-Packet Reconstruction 34.20 0.03 35.85 0.19 36.58 0.01 36.99 0
Optimized for 4-Packet Reconstruction 31.41 0.14 34.79 0.30 36.93 0.02 38.62 0

Lena Exact Duplication 35.00 0 35.00 0 35.00 0 35.00 0
Baseline (Unoptimized) 35.00 0.02 36.06 0.14 36.48 0.01 36.71 0

Optimized for 2-Packet Reconstruction 34.57 0.02 36.38 0.23 37.18 0.01 37.66 0
Optimized for 4-Packet Reconstruction 32.45 0.05 35.60 0.36 37.49 0.04 38.87 0

Barbara Exact Duplication 29.34 0 29.34 0 29.34 0 29.34 0
Baseline (Unoptimized) 29.33 0.02 30.88 0.22 31.54 0.01 31.92 0

Optimized for 2-Packet Reconstruction 28.86 0.02 31.27 0.33 32.48 0.02 33.26 0
Optimized for 4-Packet Reconstruction 26.58 0.09 30.33 0.50 32.91 0.03 35.22 0

(a) Cameraman (b) House (c) Lena (d) Barbara

Fig. 7. PSNR versus the number of packets used for the reconstructions. The complete set contains 9 packets, each obtained from JPEG2000 compression
at 1:50 compression ratio. The black, red, green and blue curves respectively represent the methods of exact duplications, baseline (unoptimized), optimized
for reconstruction from pairs of packets, and optimized for reconstruction from 9 packets.
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(a) 1-packet reconstruction (23.81 dB) (b) 2-packet reconstruction (26.28 dB) (c) 3-packet reconstruction (27.47)

(d) 4-packet reconstruct (29.10 dB) (e) 5-packet reconstruction (30.11 dB) (f) 6-packet reconstruction (30.50)

(g) 7-packet reconstruct (31.33 dB) (h) 8-packet reconstruction (31.89 dB) (i) 9-packet reconstruction (32.19)

Fig. 8. Examples for m-packet reconstructions of the ’Barbara’ image using multiple packets from the set of 9 holographic representations. Demonstration
of m-packet reconstructions obtained from a set of 9 holographic packets optimized by the proposed framework for a 9-packet reconstruction. The utilized
compression is JPEG2000 at a compression ratio of 1:50.
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TABLE III
EVALUATION OF QUALITY AND DIVERSITY IN THE RECONSTRUCTIONS FROM A SET OF 9 PACKETS (THE MEAN AND STANDARD DEVIATION VALUES

REFER TO PSNR VALUES IN DB UNITS): THE RESULTS ARE BASED ON JPEG2000 COMPRESSION AT 1:50 COMPRESSION RATIO. THIS TABLE
PRESENTS THE MEAN AND STANDARD DEVIATION FOR RECONSTRUCTIONS USING 1,2,3 AND 9 PACKETS. THE CORRESPONDING PROPERTIES FOR

RECONSTRUCTIONS BASED ON 4,5,7, AND 8 PACKETS CAN BE COARSELY EXAMINED USING THE CURVES IN FIG. 7.

Image Method 1 Packet 2 Packets 3 Packets 9 Packets

mean(1)D std(1)D mean(2)D std(2)D mean(3)D std(3)D mean(9)D std(9)D

Cameraman Exact Duplication 25.66 0 25.66 0 25.66 0 25.66 0
Baseline (Unoptimized) 25.57 0.10 26.43 0.21 26.74 0.17 27.19 0

Optimized for 2-Packet Reconstruction 25.40 0.10 26.73 0.24 27.26 0.18 28.09 0
Optimized for 9-Packet Reconstruction 23.55 0.10 26.15 0.25 27.53 0.21 30.51 0

House Exact Duplication 31.14 0 31.14 0 31.14 0 31.14 0
Baseline (Unoptimized) 31.29 0.06 32.30 0.21 32.67 0.16 33.22 0

Optimized for 2-Packet Reconstruction 31.06 0.10 32.46 0.29 33.03 0.22 33.97 0
Optimized for 9-Packet Reconstruction 29.21 0.20 31.81 0.41 33.18 0.33 36.13 0

Lena Exact Duplication 31.81 0 31.81 0 31.81 0 31.81 0
Baseline (Unoptimized) 31.88 0.04 32.89 0.19 33.25 0.15 33.82 0

Optimized for 2-Packet Reconstruction 31.66 0.05 33.03 0.23 33.64 0.20 34.59 0
Optimized for 9-Packet Reconstruction 29.71 0.15 32.36 0.32 33.82 0.28 36.90 0

Barbara Exact Duplication 26.12 0 26.12 0 26.12 0 26.12 0
Baseline (Unoptimized) 26.17 0.05 27.24 0.23 27.67 0.19 28.34 0

Optimized for 2-Packet Reconstruction 25.78 0.05 27.42 0.33 28.11 0.27 29.29 0
Optimized for 9-Packet Reconstruction 23.48 0.20 26.41 0.48 28.01 0.44 32.19 0
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