Skip to main content
Log in

On Inversion-Free Mapping and Distortion Minimization

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This paper addresses a general problem of computing inversion-free maps between continuous and discrete domains that induce minimal geometric distortions. We will refer to this problem as optimal mapping problem. Finding a good solution to the optimal mapping problem is a key part in many applications in geometry processing and computer vision, including: parameterization of surfaces and volumetric domains, shape matching and shape analysis. The first goal of this paper is to provide a self-contained exposition of the optimal mapping problem and to highlight the interrelationship of various aspects of the problem. This includes a formal definition of the problem and of the related unitarily invariant geometric measures, which we call distortions. The second goal is to identify novel properties of distortion measures and to explain how these properties can be used in practice. Our major contributions are: (i) formalization and juxtaposition of key concepts of the optimal mapping problem, which so far have not been formalized in a unified manner; (ii) providing a detailed survey of existing methods for optimal mapping, including exposition of recent optimization algorithms and methods for finding injective mappings between meshes; (iii) providing novel theoretical findings on practical aspects of geometric distortions, including the multi-resolution invariance of geometric energies and the characterization of convex distortion measures. In particular, we introduce a new family of convex distortion measures, and prove that, on meshes, most of the existing distortion energies are non-convex functions of vertex coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. See Sect. 8 for the explanation of what we mean by a “highly non-convex” domain.

  2. We always assume Euclidean metric.

  3. We explain the notion of degenerate and inverted simplices in Sect. 3.

  4. By distortions with barrier terms we refer to measures \({{\,\mathrm{\mathcal {D}}\,}}(f,{{\,\mathrm{\varvec{r}}\,}}) + \mathcal {B}(f,{{\,\mathrm{\varvec{r}}\,}})\), where \({{\,\mathrm{\mathcal {D}}\,}}\) is a first-order distortion and \(\mathcal {B}\) is defined by (34). As explained in Sect. 8, measures \({{\,\mathrm{\mathcal {D}}\,}}+ \mathcal {B}\) extend the essential properties of Definition 2.11 to the domain \(\mathbb {R}\cup \{\infty \}\).

  5. If \(f\) is differentiable qi-mapping in neighborhood N of \({{\,\mathrm{\varvec{r}}\,}}\), then \({{\,\mathrm{\mathcal {D}}\,}}_{\text {iso}}(f,{{\,\mathrm{\varvec{r}}\,}})\) is the infimum over numbers C that satisfy (7) in N.

  6. For example, \(\dim ({{\,\mathrm{\varvec{M}}\,}})=2\) if \({{\,\mathrm{\mathcal {S}}\,}}\) are triangles and \(\dim ({{\,\mathrm{\varvec{M}}\,}})=3\) if \({{\,\mathrm{\mathcal {S}}\,}}\) are tetrahedra.

  7. We identify vertices with the indices, \(1,\dots , |{{\,\mathrm{\mathcal {V}}\,}}|\), and use square brackets in (40) to indicate that simplicial map f is a function of \(\varvec{x}\), while round brackets denote the evaluation of simplicial map \(f=f[\varvec{x}]\) at a given point in \(\mathbb {R}^m\).

  8. Here we use the shorthand notation \(\mathbb {R}^{n|{{\,\mathrm{\mathcal {V}}\,}}|}= \mathbb {R}^{n|{{\,\mathrm{\mathcal {V}}\,}}|\times 1}\).

  9. See [33] for additional constraints on the mesh connectivity.

  10. It is often clear, from the context, at what iteration vertex coordinates and descent fields are computed. Thereby, to make our presentation more simple, we often drop the superscript indices, used in (62).

  11. A n-dimensional simplex is degenerate if its n-volume is zero.

  12. Here we consider the generalized notation according to which lines are circles with infinite radius.

References

  1. Aharon, I., Chen, R., Zorin, D., Weber, O.: Bounded distortion tetrahedral metric interpolation. ACM Trans. Graph. 38(6), 182 (2019)

    Article  Google Scholar 

  2. Aigerman, N., Kovalsky, S.Z., Lipman, Y.: Spherical orbifold tu e embeddings. ACM Trans. Graph. 36(4), 90 (2017)

    Article  Google Scholar 

  3. Aigerman, N., Lipman, Y.: Injective and bounded distortion mappings in 3D. ACM Trans. Graph. 32(4), 1061–10614 (2013)

    Article  MATH  Google Scholar 

  4. Aigerman, N., Lipman, Y.: Orbifold tutte embeddings. ACM Trans. Graph. 34(6), 190–1 (2015)

    Article  Google Scholar 

  5. Aigerman, N., Lipman, Y.: Hyperbolic orbifold tutte embeddings. ACM Trans. Graph. 35(6), 217–1 (2016)

    Article  Google Scholar 

  6. Aigerman, N., Poranne, R., Lipman, Y.: Lifted bijections for low distortion surface mappings. ACM Trans. Graph. 33(4), 69 (2014)

    Article  MATH  Google Scholar 

  7. Aigerman, N., Poranne, R., Lipman, Y.: Seamless surface mappings. ACM Trans. Graph. 34(4), 1–13 (2015)

    Article  MATH  Google Scholar 

  8. Ben-Chen, M., Gotsman. C.: Characterizing shape using conformal factors. In: 3DOR, pp. 1–8 (2008)

  9. Bright, A., Chien, E., Weber, O.: Harmonic global parametrization with rational holonomy. ACM Trans. Graph. 36(4), 1–15 (2017)

    Article  Google Scholar 

  10. Bouaziz, S., Deuss, M., Schwartzburg, Y., Weise, T., Pauly, M.: Shape-up: Shaping discrete geometry with projections. Comput. Graph. Forum 31, 1657–1667 (2012)

    Article  Google Scholar 

  11. Beck, A.: First-order methods in optimization. SIAM, Philadelphia (2017)

    Book  MATH  Google Scholar 

  12. Boyer, D.M., Lipman, Y., Clair, E.S., Puente, J., Patel, B.A., Funkhouser, T., Jernvall, J., Daubechies, I.: Algorithms to automatically quantify the geometric similarity of anatomical surfaces. Proc. Natl. Acad. Sci. 108(45), 18221–18226 (2011)

    Article  Google Scholar 

  13. Bouaziz, S., Martin, S., Liu, T., Kavan, L., Pauly, M.: Projective dynamics: fusing constraint projections for fast simulation. ACM Trans. Graph. 33(4), 1–11 (2014)

    Article  MATH  Google Scholar 

  14. Bommes, D., Zimmer, H., Kobbelt, L.: Mixed-integer quadrangulation. ACM Trans. Graph. 28(3), 1–10 (2009)

    Article  Google Scholar 

  15. Caraman, P.: n-dimensional quasiconformal (QCF) mappings. Revised, enlarged and translated from the Roumanian by the author. (1974)

  16. Campen, M., Bommes, D., Kobbelt, L.: Quantized global parametrization. ACM Trans. Graph (TOG) 34(6), 1–12 (2015)

    Article  Google Scholar 

  17. Claici, S., Bessmeltsev, M., Schaefer, S., Solomon, J.: Isometry-aware preconditioning for mesh parameterization. In: Computer Graphics Forum, vol. 36, Wiley Online Library, pp. 37–47 (2017)

  18. Chen, R., Gotsman, C.: Generalized as-similar-as-possible warping with applications in digital photography. Comput. Graph. Forum 35, 81–92 (2016)

    Article  Google Scholar 

  19. Choi, P.T., Lam, K.C., Lui, L.M.: Flash: Fast landmark aligned spherical harmonic parameterization for genus-0 closed brain surfaces. SIAM J. Imag. Sci. 8(1), 67–94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Choi, G.P., Leung-Liu, Y., Gu, X., Lui, L.M.: Parallelizable global conformal parameterization of simply-connected surfaces via partial welding. SIAM J. Imag. Sci. 13(3), 1049–1083 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chien, E., Levi, Z., Weber, O.: Bounded distortion parametrization in the space of metrics. ACM Trans. Graph. 35(6), 215 (2016)

    Article  Google Scholar 

  22. Crane, K., Pinkall, U., Schröder, P.: Spin transformations of discrete surfaces. In: ACM SIGGRAPH 2011 papers, pp. 1–10 (2011)

  23. Crane, K., Pinkall, U., Schröder, P.: Robust fairing via conformal curvature flow. ACM Trans. Graph. 32(4), 1–10 (2013)

    Article  MATH  Google Scholar 

  24. Choi, G.P., Rycroft, C.H.: Density-equalizing maps for simply connected open surfaces. SIAM J. Imag. Sci. 11(2), 1134–1178 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Campen, M., Shen, H., Zhou, J., Zorin, D.: Seamless parametrization with arbitrary cones for arbitrary genus. ACM Trans. Graph. 39(1), 1–19 (2019)

    Article  Google Scholar 

  26. Chen, R., Weber, O.: GPU-accelerated locally injective shape deformation. ACM Trans. Graph. 36(6), 214 (2017)

    Article  Google Scholar 

  27. Du, X., Aigerman, N., Zhou, Q., Kovalsky, S.Z., Yan, Y., Kaufman, D.M., Ju, T.: Lifting simplices to find injectivity. ACM Trans. Graph

  28. Dorling, D., Barford, A., Newman, M.: Worldmapper: the world as you’ve never seen it before. IEEE Trans. Visualiz. Comput. Graphics 12(5), 757–764 (2006)

    Article  Google Scholar 

  29. Degener, P., Meseth, J., Klein, R.: An adaptable surface parameterization method. IMR 3, 201–213 (2003)

    Google Scholar 

  30. Ezuz, D., Ben-Chen, M.: Deblurring and denoising of maps between shapes. In: Computer Graphics Forum, vol. 36, Wiley Online Library, pp. 165–174 (2017)

  31. Ezuz, D., Solomon, J., Ben-Chen, M.: Reversible harmonic maps between discrete surfaces. ACM Trans. Graph. 38(2), 1–12 (2019)

    Article  Google Scholar 

  32. Ebke, H.-C., Schmidt, P., Campen, M., Kobbelt, L.: Interactively controlled quad remeshing of high resolution 3d models. ACM Trans. Graph. 35(6), 218 (2016)

    Article  Google Scholar 

  33. Floater, M.S., et al.: Parametrization and smooth approximation of surface triangulations. Comput. Aided Geomet. Des. 14(3), 231–250 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Floater, M., Hormann, K.: Surface parameterization: a tutorial and survey (2005)

  35. Freitag, L.A., Knupp, P.M.: Tetrahedral mesh improvement via optimization of the element condition number. Int. J. Numer. Methods Eng. 53(6), 1377–1391 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fu, X.-M., Liu, Y.: Computing inversion-free mappings by simplex assembly. ACM Trans. Graph. 35(6), 216 (2016)

    Article  Google Scholar 

  37. Fu, X.-M., Liu, Y., Guo, B.: Computing locally injective mappings by advanced mips. ACM Trans. Graph. 34(4), 71 (2015)

    Article  MATH  Google Scholar 

  38. Floater, M.: One-to-one piecewise linear mappings over triangulations. Math. Comput. 72(242), 685–696 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Feng, Y., Wu, F., Shao, X., Wang, Y., Zhou, X.: Joint 3d face reconstruction and dense alignment with position map regression network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 534–551 (2018)

  40. Giles, M.: An extended collection of matrix derivative results for forward and reverse mode automatic differentiation

  41. Gastner, M.T., Newman, M.E.: Diffusion-based method for producing density-equalizing maps. Proc. Natl. Acad. Sci. 101(20), 7499–7504 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Golla, B., Seidel, H.-P., Chen, R.: Piecewise linear mapping optimization based on the complex view. In: Computer Graphics Forum, vol. 37, Wiley Online Library, pp. 233–243 (2018)

  43. Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.-T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imag. 23(8), 949–958 (2004)

    Article  Google Scholar 

  44. Hefetz, E.F., Chien, E., Weber, O.: A subspace method for fast locally injective harmonic mapping. In: Computer Graphics Forum, vol. 38, Wiley Online Library, pp. 105–119 (2019)

  45. Hormann, K., Greiner, G.: MIPS: An efficient global parametrization method. Tech. rep, DTIC Document (2000)

  46. Herrmann, M., Herzog, R., Schmidt, S., Vidal-Núñez, J., Wachsmuth, G.: Discrete total variation with finite elements and applications to imaging. J. Math. Imag. Vis. 61(4), 411–431 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Horn, R.A., Johnson, C.R.: Matrix analysis. corrected reprint of the 1985 original (1990)

  48. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  49. Hormann, K., Lévy, B., Sheffer, A.: Mesh parameterization: Theory and practice

  50. Hu, Y., Schneider, T., Wang, B., Zorin, D., Panozzo, D.: Fast tetrahedral meshing in the wild. ACM Trans. Graph. 39(4), 117 (2020)

    Article  Google Scholar 

  51. Hamidian, H., Zhong, Z., Fotouhi, F., Hua, J.: Surface registration with eigenvalues and eigenvectors. IEEE Trans. Visualiz. Comput. Graph. (2019)

  52. Hu, Y., Zhou, Q., Gao, X., Jacobson, A., Zorin, D., Panozzo, D.: Tetrahedral meshing in the wild. ACM Trans. Graph. 37(4), 60–1 (2018)

    Article  Google Scholar 

  53. Jiang, Z., Schaefer, S., Panozzo, D.: Simplicial complex augmentation framework for bijective maps. ACM Trans. Graph. 36(6), 186 (2017)

    Article  Google Scholar 

  54. Jin, M., Zeng, W., Luo, F., Gu, X.: Computing Tëichmuller shape space. IEEE Trans. Visualiz. Comput. Graph. 15(3), 504–517 (2009)

    Article  Google Scholar 

  55. Kovalsky, S.Z., Aigerman, N., Basri, R., Lipman, Y.: Controlling singular values with semidefinite programming. ACM Trans. Graph. 33(4), 68 (2014)

    Article  MATH  Google Scholar 

  56. Kovalsky, S.Z., Aigerman, N., Basri, R., Lipman, Y.: Large-scale bounded distortion mappings. ACM Trans. Graph 34(6), 191 (2015)

    Article  Google Scholar 

  57. Kovalsky, S.Z., Galun, M., Lipman, Y.: Accelerated quadratic proxy for geometric optimization. ACM Trans. Graph 35(4), 134 (2016)

    Article  Google Scholar 

  58. Kim, V.G., Lipman, Y., Chen, X., Funkhouser, T.: Möbius transformations for global intrinsic symmetry analysis. In: Computer Graphics Forum, vol. 29, Wiley Online Library, pp. 1689–1700 (2010)

  59. Kühnel, W., Rademacher, H.-B.: Liouville’s theorem in conformal geometry. J. Mathématiques pures et appliquées 88(3), 251–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  60. Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3d models. ACM Trans. Graph. 23(3), 861–869 (2004)

    Article  Google Scholar 

  61. Kraevoy, V., Sheffer, A., Gotsman, C.: Matchmaker: constructing constrained texture maps. ACM Trans. Graph. 22(3), 326–333 (2003)

    Article  Google Scholar 

  62. Kharevych, L., Springborn, B., Schröder, P.: Discrete conformal mappings via circle patterns. ACM Trans. Graph. 25(2), 412–438 (2006)

    Article  Google Scholar 

  63. Liu, T., Bouaziz, S., Kavan, L.: Towards real-time simulation of hyperelastic materials. arXiv preprint arXiv:1604.07378 (2016)

  64. Lewis, A.S.: The convex analysis of unitarily invariant matrix functions. J. Convex Anal. 2(1), 173–183 (1995)

    MathSciNet  MATH  Google Scholar 

  65. Li, X., Guo, X., Wang, H., He, Y., Gu, X., Qin, H.: Harmonic volumetric mapping for solid modeling applications. In: Proceedings of the ACM, pp. 109–120 (2007)

  66. Lipman, Y.: Bounded distortion mapping spaces for triangular meshes. ACM Trans. Graph. 31(4), 1081–10813 (2012)

    Article  Google Scholar 

  67. Lipman, Y.: Bijective mappings of meshes with boundary and the degree in mesh processing. SIAM J. Imag. Sci. 7(2), 1263–1283 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  68. Lipman, Y., Kim, V.G., Funkhouser, T.A.: Simple formulas for quasiconformal plane deformations. ACM Trans. Graph. 31(5), 1241–12413 (2012)

    Article  Google Scholar 

  69. Li, M., Kaufman, D.M., Kim, V.G., Solomon, J., Sheffer, A.: Optcuts: joint optimization of surface cuts and parameterization. In: SIGGRAPH Asia 2018 Technical Papers, ACM, p. 247 (2018)

  70. Loop, C.: Smooth subdivision surfaces based on triangles

  71. Lipman, Y., Puente, J., Daubechies, I.: Conformal wasserstein distance: Ii. computational aspects and extensions. Math. Comput., pp. 331–381 (2013)

  72. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. In: Acm Transactions on Graphics (tog)

  73. Liu, L., Xu, Y., Gotsman, C., Gortler, S.J.: A local/global approach to mesh parameterization. Comput. Graph. Forum 27(5), 1495–1504 (2008)

    Article  Google Scholar 

  74. Liu, L., Ye, C., Ni, R., Fu, X.-M.: Progressive parameterizations. ACM Trans. Graph. 37(4), 41 (2018)

    Article  Google Scholar 

  75. Mandad, M., Cohen-Steiner, D., Kobbelt, L., Alliez, P., Desbrun, M.: Variance-minimizing transport plans for inter-surface mapping. ACM Trans. Graph. 36(4), 39 (2017)

    Article  Google Scholar 

  76. Myles, A., Pietroni, N., Zorin, D.: Robust field-aligned global parametrization. ACM Trans. Graph. 33(4), 1–14 (2014)

    Article  MATH  Google Scholar 

  77. Myles, A., Zorin, D.: Controlled-distortion constrained global parametrization. ACM Trans. Graph. 32(4), 1–14 (2013)

    Article  MATH  Google Scholar 

  78. Naitsat, A., Cheng, S., Qu, X., Fan, X., Saucan, E., Zeevi, Y.Y.: Geometric approach to detecting volumetric changes in medical images. J. Comput. Appl. Math. 329, 37–50 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  79. Naitsat, A., Saucan, E., Zeevi, Y.Y.: Volumetric quasi-conformal mappings - quasi-conformal mappings for volume deformation with applications to geometric modeling. Proc. VISIGRAPP 2015, 46–57 (2015)

    Google Scholar 

  80. Naitsat, A., Saucan, E., Zeevi, Y.Y.: Geometric approach to estimation of volumetric distortions. In: Proceedings of VISIGRAPP, (2016)

  81. Naitsat, A., Saucan, E., Zeevi, Y.Y.: Geometry-based distortion measures for space deformation. Graph. Models 100, 12–25 (2018)

    Article  MathSciNet  Google Scholar 

  82. Naitsat, A., Zeevi, Y.Y.: Multi-resolution approach to computing locally injective maps on meshes. In: ACM SIGGRAPH 2019 Posters, pp. 1–2 (2019)

  83. Naitsat, A., Zhu, Y., Zeevi, Y.Y.: Adaptive block coordinate descent for distortion minimization. In: Computer Graphics Forum, Wiley Online Library (2020)

  84. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31(4), 1–11 (2012)

    Article  Google Scholar 

  85. Ouyang, W., Peng, Y., Yao, Y., Zhang, J., Deng, B.: Anderson acceleration for nonconvex admm based on douglas-rachford splitting. Comput. Graphics Forum 39, 221–239 (2020)

    Article  Google Scholar 

  86. Peng, Y., Deng, B., Zhang, J., Geng, F., Qin, W., Liu, L.: Anderson acceleration for geometry optimization and physics simulation. ACM Trans. Graph. 37(4), 1–14 (2018)

    Google Scholar 

  87. Poranne, R., Tarini, M., Huber, S., Panozzo, D., Sorkine-Hornung, O.: Autocuts: simultaneous distortion and cut optimization for uv mapping. ACM Trans. Graph. 36(6), 215 (2017)

    Article  Google Scholar 

  88. Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs Combin. 17(4), 717–728 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  89. Rabinovich, M., Poranne, R., Panozzo, D., Sorkine-Hornung, O.: Scalable locally injective mappings. ACM Trans. Graph. 36(2), 16 (2017)

    Article  Google Scholar 

  90. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Symposium on Geometry processing, vol. 4 (2007)

  91. Saucan, E., Appleboim, E., Barak-Shimron, E., Lev, R., Zeevi, Y.Y.: Local versus global in quasi-conformal mapping for medical imaging. J. Math. Imag. Vis. 32(3), 293–311 (2008)

    Article  MathSciNet  Google Scholar 

  92. Schreiner, J., Asirvatham, A., Praun, E., Hoppe, H.: Inter-surface mapping. In: ACM SIGGRAPH 2004 Papers, pp. 870–877 (2004)

  93. Schmidt, P., Born, J., Campen, M., Kobbelt, L.: Distortion-minimizing injective maps between surfaces. ACM Trans. Graph. 38(6), 1–15 (2019)

    Article  Google Scholar 

  94. Sawhney, R., Crane, K.: Boundary first flattening. ACM Trans. Graph. 37(1), 5 (2018)

    Article  Google Scholar 

  95. Sorkine, O., Cohen-Or, D., Goldenthal, R., Lischinski, D.: Bounded-distortion piecewise mesh parameterization. In: IEEE Visualization, 2002. VIS 2002., IEEE, pp. 355–362 (2002)

  96. Su, K., Cui, L., Qian, K., Lei, N., Zhang, J., Zhang, M., Gu, X.D.: Area-preserving mesh parameterization for poly-annulus surfaces based on optimal mass transportation. Comput. Aided Geom. Des. 46, 76–91 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  97. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  98. Su, J.-P., Fu, X.-M., Liu, L.: Practical foldover-free volumetric mapping construction. In: Computer Graphics Forum, vol. 38, Wiley Online Library, pp. 287–297 (2019)

  99. Shen, H., Jiang, Z., Zorin, D., Panozzo, D.: Progressive embedding. ACM Trans. Graph. 38(4), 32–1 (2019)

    Article  Google Scholar 

  100. Sheffer, A., Lévy, B., Mogilnitsky, M., Bogomyakov, A.: Abf++: fast and robust angle based flattening. ACM Trans. Graph. 24(2), 311–330 (2005)

    Article  Google Scholar 

  101. Solomon, J.: Optimal transport on discrete domains. AMS Short Course on Discrete Differential Geometry. (2018)

  102. Shtengel, A., Poranne, R., Sorkine-Hornung, O., Kovalsky, S.Z., Lipman, Y.: Geometric optimization via composite majorization. ACM Trans. Graph. 36(4), 38 (2017)

    Article  Google Scholar 

  103. Smith, J., Schaefer, S.: Bijective parameterization with free boundaries. ACM Trans. Graph. 34(4), 70 (2015)

    Article  MATH  Google Scholar 

  104. Soliman, Y., Slepčev, D., Crane, K.: Optimal cone singularities for conformal flattening. ACM Trans. Graph. 37(4), 1–17 (2018)

    Article  Google Scholar 

  105. Springborn, B., Schröder, P., Pinkall, U.: Conformal equivalence of triangle meshes. In: ACM SIGGRAPH 2008 papers, pp. 1–11 (2008)

  106. Stam, J.: Exact evaluation of catmull-clark subdivision surfaces at arbitrary parameter values. In: Siggraph, vol. 98, Citeseer, pp. 395–404 (1998)

  107. Su, J.-P., Ye, C., Liu, L., Fu, X.-M.: Efficient bijective parameterizations. ACM Trans. Graph. 39(4), 111–1 (2020)

    Article  Google Scholar 

  108. Teran, J., Sifakis, E., Irving, G., Fedkiw, R.: Robust quasistatic finite elements and flesh simulation. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, pp. 181–190 (2005)

  109. Tutte, W.T.: How to draw a graph. Proc. Lond. Math. Soc. 3(1), 743–767 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  110. Väisälä, J.: Lectures on n-Dimensional Quasiconformal Mappings. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  111. Vaxman, A., Müller, C., Weber, O.: Conformal mesh deformations with möbius transformations. ACM Trans. Graph. 34(4), 1–11 (2015)

    Article  MATH  Google Scholar 

  112. Vaxman, A., Müller, C., Weber, O.: Regular meshes from polygonal patterns. ACM Trans. Graph. 36(4), 1–15 (2017)

    Article  Google Scholar 

  113. Weber, O., Gotsman, C.: Controllable conformal maps for shape deformation and interpolation. In: ACM SIGGRAPH 2010 papers, pp. 1–11 (2010)

  114. Wang, Y., Gu, X., Yau, S.-T., et al.: Volumetric harmonic map. Commun. Inf. Syst. 3, 191–202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  115. Weber, O., Myles, A., Zorin, D.: Computing extremal quasiconformal maps. Comput. Graph. Forum 31(5), 1679–1689 (2012)

    Article  Google Scholar 

  116. Windheuser, T., Schlickewei, U., Schmidt, F.R., Cremers, D.: Geometrically consistent elastic matching of 3d shapes: A linear programming solution. In: 2011 International Conference on Computer Vision, IEEE, pp. 2134–2141 (2011)

  117. Wang, H., Yang, Y.: Descent methods for elastic body simulation on the GPU. ACM Trans. Graph. 35(6), 212 (2016)

    Article  Google Scholar 

  118. Weber, O., Zorin, D.: Locally injective parametrization with arbitrary fixed boundaries. ACM Trans. Graph. 33(4), 1–12 (2014)

    Article  MATH  Google Scholar 

  119. Xu, Y., Chen, R., Gotsman, C., Liu, L.: Embedding a triangular graph within a given boundary. Comput. Aided Geomet. Des. 28(6), 349–356 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  120. Yan, G., Li, W., Yang, R., Wang, H.: Inexact descent methods for elastic parameter optimization. In: SIGGRAPH Asia 2018 Technical Papers, ACM, p. 253 (2018)

  121. Zhu, Y., Bridson, R., Kaufman, D.M.: Blended cured quasi-newton for distortion optimization. ACM Trans. Graph. 37(4), 40 (2018)

    Article  Google Scholar 

  122. Zeng, W., Luo, F., Yau, S.-T., Gu, X. D.: Surface quasi-conformal mapping by solving beltrami equations. In: IMA International Conference on Mathematics of Surfaces, Springer, pp. 391–408 (2009)

  123. Zhang, J., Peng, Y., Ouyang, W., Deng, B.: Accelerating admm for efficient simulation and optimization. ACM Trans. Graph. 38(6), 1–21 (2019)

    Google Scholar 

  124. Zhao, X., Su, Z., Gu, X.D., Kaufman, A., Sun, J., Gao, J., Luo, F.: Area-preservation mapping using optimal mass transport. IEEE Trans. Visualiz. Comput. Graph. 19(12), 2838–2847 (2013)

    Article  Google Scholar 

  125. Zhao, H., Su, K., Li, C., Zhang, B., Yang, L., Lei, N., Wang, X., Gortler, S.J., Gu, X.: Mesh parametrization driven by unit normal flow. In: Computer Graphics Forum, vol. 39, Wiley Online Library, pp. 34–49 (2020)

  126. Zhou, J., Tu, C., Zorin, D., Campen, M.: Combinatorial construction of seamless parameter domains. Comput. Graphics Forum 39, 179–190 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Ollendorff Minerva Center and by the Office of the Chief Scientist, Israeli Ministry of Economy. AN was supported at various stages of the research by Ollendorff and Jacobs-Qualcomm Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Naitsat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 228 KB)

Appendix A Computational Aspects

Appendix A Computational Aspects

We are now in the position to deliver some detail on the implementation. We explicitly write down in full matrix form the main expressions that arise in Sect.  4.

1.1 Appendix A.1 Jacobian of Simplicial Map

First, assume a general scenario (45) in which dimensions m and d of the embedding spaces may differ from the simplex dimension.

Let \((v_1, \ldots , v_{n+1})\) be a oriented n-simplex \(s \in {{\,\mathrm{\mathcal {S}}\,}}\). To simplify our notations, we denote by \(v_i\) an element of the vertex set (vertex index) and by \(\varvec{v_i}\) we denote the source coordinates of that vertex. That is, if \(\varvec{y}\) is the source coordinate vector, then \(\varvec{v_i}\triangleq \varvec{y}_{v_i} \in \mathbb {R}^m\). In particular, by \({\varvec{v_i}}_j\) we denote the j-th coordinate of the point \(\varvec{y}_{v_i}\). We employ similar notations for the target coordinates \(\varvec{x}\), i.e., \(f_s(\varvec{v}_i) = f_s(v_i)=\varvec{x}_{v_i}\), and \(f(v_i)_j\) denotes the j-th coordinate of the point \(\varvec{x}_{v_i}\in \mathbb {R}^d\).

Assuming that vertex coordinates are column vector, one can then represent simplex s as a matrix \(M_s \in \mathbb {R}^{m \times (n+1)}\)

$$\begin{aligned} M_s \triangleq \begin{pmatrix} {\varvec{v_1}}_1 &{} {\varvec{v_2}}_1 &{} \cdots &{} {\varvec{v_{\varvec{(n+1)}}}}_1\\ {\varvec{v_1}}_2 &{} {\varvec{v_2}}_2 &{} \cdots &{} {\varvec{v_{\varvec{(n+1)}}}}_2\\ \vdots &{} \vdots &{} \cdots &{} \vdots \\ {\varvec{v_1}}_m &{} {\varvec{v_2}}_m &{} \vdots &{} {\varvec{v_{\varvec{(n+1)}}}}_m\\ \end{pmatrix}, \end{aligned}$$

where the order of vertices (columns) reflects simplex orientation. Then, the image of s under \(f_s\) is represented by

$$\begin{aligned} M_{s'} \triangleq \begin{pmatrix} {f_s(v_1)}_1 &{} {f_s(v_2)}_1 &{} \cdots &{} {f_s(v_{n+1})}_1\\ {f_s(v_1)}_2 &{} {f_s(v_2)}_2 &{} \cdots &{} {f_s(v_{n+1})}_2\\ \vdots &{} \vdots &{} \cdots &{} \vdots \\ {f_s(v_1)}_d &{} {f_s(v_2)}_d &{} \cdots &{} {f_s(v_{n+1})}_d\\ \end{pmatrix}. \end{aligned}$$
(92)

Using hat functions (48), the expression for the map becomes

$$\begin{aligned} f_s({{\,\mathrm{\varvec{r}}\,}}) = M_{s'} \varvec{h}_s({{\,\mathrm{\varvec{r}}\,}}),\,\, {{\,\mathrm{\varvec{r}}\,}}\in {{\,\mathrm{conv}\,}}(s),\,\, \end{aligned}$$

where

$$\begin{aligned} \varvec{h}_s({{\,\mathrm{\varvec{r}}\,}})\triangleq ~\begin{bmatrix}h_{v_1}({{\,\mathrm{\varvec{r}}\,}})&h_{v_2}({{\,\mathrm{\varvec{r}}\,}})&\cdots&h_{v_{n+1}}({{\,\mathrm{\varvec{r}}\,}})\end{bmatrix}^{\top }~\in ~\mathbb {R}^{(n+1)\times 1}\,. \end{aligned}$$
(93)

Let \(\nabla h_{v_i}\) be the gradient of \(h_{v_i}\), computed with respect to \({{\,\mathrm{\varvec{r}}\,}}\in {{\,\mathrm{conv}\,}}(s)\), then \(\nabla h_{v_i}\) is constant in \({{\,\mathrm{conv}\,}}(s)\) and according to (51)

$$\begin{aligned} dh_{v_i} = - \dfrac{\varvec{\upeta }_j}{n {{\,\mathrm{Vol}\,}}(s)} \in \mathbb {R}^{m\times 1} \,, \end{aligned}$$

where \(\varvec{\upeta }_i\) is a normal vector defined in (51). Consequently, the Jacobian matrix of \(\varvec{h}_s({{\,\mathrm{\varvec{r}}\,}})\), denoted by \(d\varvec{h}_s\), is given by

$$\begin{aligned} d\varvec{h}_s = \begin{bmatrix}dh_{v_1}(\varvec{v})&dh_{v_2}(\varvec{v})&\cdots&dh_{v_{n+1}}(\varvec{v})\end{bmatrix} ^{\top }\in \mathbb {R}^{(n+1) \times m}\,, \end{aligned}$$
(94)

and the Jacobian of \({f}_s\) is

$$\begin{aligned} d{f}_s = M_{s'}\,d\varvec{h}_s,~~ d{f}_s\in \mathbb {R}^{d \times m}\,. \end{aligned}$$
(95)

Note that \(\text {rank}\big (df_s\big ) \le n\). Therefore, \(df_s\) has at most n non-zero singular values \(\sigma _1(df_s),\dots ,\sigma _n(df_s)\). These singular values can be used for computing n-dimensional distortions of \(df_s\). Equivalently, we can repeat the above computations for the canonical representation \(\widetilde{f}_s\) of the map for obtaining the canonical form of the Jacobian, \(d \widetilde{f}_s\in \mathbb {R}^{n\times n}\). Jacobian \(df_s\) and its canonical form have the same n singular values,

$$\begin{aligned} \sigma _1(d \widetilde{f}_s)=\sigma _1(df_s),\dots , \sigma _n(d \widetilde{f}_s)=\sigma _n(df_s)\,, \end{aligned}$$

so that \({{\,\mathrm{\mathcal {D}}\,}}\big (\widetilde{f}_s\big )={{\,\mathrm{\mathcal {D}}\,}}\big (\sigma _1(df_s),\dots , \sigma _n(df_s)\big )\) for any distortion \({{\,\mathrm{\mathcal {D}}\,}}\).

1.2 Appendix A.2 Distortion Energy Gradient

Assume the scenario (43) of equal dimensions, \(m=n=d\). Denote by \(J\in \mathbb {R}^{n\times n}\) the Jacobian matrix \(df_s\) of a simplicial map f on a simplex s, and denote by \(U \mathrm {diag} (\sigma ) V^{\top }\) the SVD of J. According to [89] and [40] the derivation of a distortion \({{\,\mathrm{\mathcal {D}}\,}}\), computed with respect to J, is given by

$$\begin{aligned} \nabla _J {{\,\mathrm{\mathcal {D}}\,}}(J) = U \mathrm {diag}\big ( \nabla _{\sigma } {{\,\mathrm{\mathcal {D}}\,}}(\sigma )\big ) V^\top \,. \end{aligned}$$
(96)

If \(M_{s'}\in \mathbb {R}^{n\times (n+1)}\) is the matrix (92) of target coordinates of s, then the derivation of \(E_{{{\,\mathrm{\mathcal {D}}\,}}}\) with respect to \(M_{s'}\) can be written as:

$$\begin{aligned} \nabla _{M_{s'}} E_{{{\,\mathrm{\mathcal {D}}\,}}}(M_{s'}) = {{\,\mathrm{Vol}\,}}(s) d\varvec{h} \nabla _{J_s} {{\,\mathrm{\mathcal {D}}\,}}(J_s)\in \mathbb {R}^{(n+1)\times n} \,, \end{aligned}$$
(97)

where \(J_s\) denotes the Jacobian \(df_s[\varvec{x}]\) and \(d\varvec{h}\) is defined according to (94). The gradient \(\nabla {E}_{\varvec{x}}(\varvec{x})\in \mathbb {R}^{n |{{\,\mathrm{\mathcal {V}}\,}}|}\) of E is computed with respect to the column vector \(\varvec{x}\) by laying elements of (97) into their positions in the column vector,

$$\begin{aligned} \nabla _{M_s'} E(M_s') \mapsto \nabla E_{\varvec{x}}(M_s')\in \mathbb {R}^{n|{{\,\mathrm{\mathcal {V}}\,}}|}\,, \end{aligned}$$

and then \(\nabla E_{\varvec{x}}(M_s')\) are summed for every simplex \(s\in {{\,\mathrm{\mathcal {S}}\,}}\).

Note that (96) is also valid for the signed SVD representation of distortion measures, mentioned in Remark 2.1. See the supplemental material for a more general computation of \(\nabla _{\varvec{x}} E\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naitsat, A., Naitzat, G. & Zeevi, Y.Y. On Inversion-Free Mapping and Distortion Minimization. J Math Imaging Vis 63, 974–1009 (2021). https://doi.org/10.1007/s10851-021-01038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-021-01038-y

Keywords

Navigation