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Abstract

Silhouettes or 2D planar shapes are extremely important in human communication,
which involves many logos, graphics symbols and fonts in vector form. Many more shapes
can be extracted from image by binarization or segmentation, thus in raster form that
requires a vectorization. There is a need for disposing of a mathematically well defined and
justified shape vectorization process, which in addition provides a minimal set of control
points with geometric meaning. In this paper we propose a silhouette vectorization method
which extracts the outline of a 2D shape from a raster binary image, and converts it to
a combination of cubic Bézier polygons and perfect circles. Starting from the boundary
curvature extrema computed at sub-pixel level, we identify a set of control points based
on the affine scale-space induced by the outline. These control points capture similarity
invariant geometric features of the given silhouette and give precise locations of the shape’s
corners.of the given silhouette. Then, piecewise Bézier cubics are computed by least-square
fitting combined with an adaptive splitting to guarantee a predefined accuracy. When there
are no curvature extrema identified, either the outline is recognized as a circle using the
isoperimetric inequality, or a pair of the most distant outline points are chosen to initiate
the fitting.

Given their construction, most of our control points are geometrically stable under affine
transformations. By comparing with other feature detectors, we show that our method can
be used as a reliable feature point detector for silhouettes. Compared to state-of-the-art
image vectorization software, our algorithm demonstrates superior reduction on the number
of control points, while maintaining high accuracy.

1 Introduction

A silhouette is a subset of the plane that was traditionally obtained by copying on paper the
shadow projected on a wall by a person placed in front of a point light source1. In digital
images, silhouettes of objects can be obtained by a mere luminance threshold (e.g. Otsu’s
algorithm [11]) as soon as the object is darker or brighter than its surroundings. Then the
silhouette appears as one of the connected components of an upper or lower set of the image.
More generally, the study of shape promoted by Mathematical Morphology [24] calls 2D shapes
any such connected component. We will call our object of study here 2D shape or silhouette.
Silhouettes are essential for the human perception of shapes, and the distribution of corners
along its outlines are closely linked to the neurological models of the visual system [9]. The
geometric features captured by the vectorization are important in feature identification [30],
remote sensing [21], and others [41, 43, 44]. As proved in [7], if a closed subset of the plane has
finite perimeter, then it can be described by its essential boundary, which is a countable set of
Jordan curves with finite length. In image processing upper level sets can be extracted by a
mere thresholding, in which case they are a finite union of pixels, bounded by a finite number
of Jordan curves made of vertical and horizontal segments. Using a parametric interpolation
such as the bilinear, one can also extract the boundary of a level set as a union of pieces of
hyperbolae [14]. Following [26] an image can therefore be decomposed in a tree of connected
shapes ordered by inclusion, and each of these shapes (or silhouettes) can be described by its

1https://en.wikipedia.org/wiki/Silhouette
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raster or by its boundary, which is a finite number of Jordan curves described as polygons or
concatenations of pieces of hyperbolae.

Thus, there is a standard way to lead back image analysis to the analysis of 2D shapes, and
eventually to the analysis of its outline, described by a finite set of nested Jordan curves that
also are level lines of the image. This is not the only way to extract shapes from images. Any
segmentation algorithm divides an image into connected regions. For example, many software
vectorization software2 proceed by a mere color quantization which reduces the image to a
piecewise constant image and therefore to a union of disjoint 2D shapes. The boundaries of
these shapes can then be encoded in Scalable Vector Graphics (SVG) format3.

A crucial point of such vector representation is that it is scalable, and therefore used for all
2D shapes that, like logos or fonts, require printing at many sizes.

Common silhouette vectorization methods from its outline consist of two steps: identification
of control points and approximation of curves connecting the control points. In a founding
work, Montanari [27] introduced a polygonal approximation of outlines of rasterized silhouettes.
After the discrete boundary is traced, the sub-pixel locations of the polygonal vertices are
determined by minimizing a global length energy with an L∞ loss to the initial outline. In more
recent literature, Bézier curves have become widely adopted to replace polygonal lines [29].
Most developments on silhouette outline vectorization use piecewise Bézier curves, or Bézier
polygons [18, 28, 31, 35, 43]. Ramer [35] proposed an iterative splitting scheme for identifying
a set of control points on a polygonal line C such that the Bézier polygon Ĉ defined by these
vertices approximates C. The Hausdorff distance between Ĉ and C is constrained to stay below a
predefined threshold, and the number of control points is suboptimal. More recently, Safraz [38]
proposed an outline vectorization algorithm that splits the outline at corners which are identified
without computing curvatures [17], then new control points are introduced to improve curve
fitting. The control points produced by some of these works may correspond to curvature
extrema of the outline, but this happens by algorithmic convergence rather than by design. It
is well-known that the direct computation of curvature is not reliable [6]. The above mentioned
methods reflect the challenges of estimating the outline’s curvature on shapes extracted from
raster images.

In this paper, we propose a mathematically founded outline vectorization algorithm. It
identifies (i) curvature extrema of the outline computed at sub-pixel level by (ii) backpropagating
control points detected as curvature extrema at coarser scale in the affine scale-space, then (iii)
computing piecewise least-square cubic Bézier joining these control points while fitting the initial
outline with a predefined accuracy.

The main contribution of this paper is to propose a new approach using the sub-pixel
curvature extrema and affine scale-space for silhouette vectorization. We shall illustrate by
comparisons how the proposed method can give an accurate vectorization with a generally
smaller number of more meaningful control points.

We organize the paper as follows. In section 2, an overview of proposed algorithm is pre-
sented. In Section 3, we review the level line extraction and sub-pixel curvature computa-
tion [19]. In Section 4, we introduce the affine scale-space induced by the smooth bilinear
outline and define the candidate control points. In Section 5, we describe an adaptive piecewise
least-square Bézier polygon fitting, where the set of candidate points is modified to achieve
a compact representation and to guarantee a predefined accuracy. The overall algorithm is
summarized in Section 6. We include various numerical results and comparison with other
vectorization methods in Section 7, and conclude the paper in Section 8.

2See (e.g.) https://en.wikipedia.org/wiki/Adobe_Illustrator or Vector Magic
3https://fr.wikipedia.org/wiki/Scalable_Vector_Graphics
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Figure 1: Flowchart of the proposed method. (a) A raster image of a cat’s silhouette. (b) Zoom-
in of (a). (c) Extracted bilinear outline of (a). (d) Inversely tracing the curvature extrema along
the affine shortening flow. (e) Zoom-in of (d). (f) The vectorized outline of (a) with control
points marked as red dots. (g) Zoom-in of (f). (h) Vectorized silhouette of (a) by the proposed
method. (i) Zoom-in of (h). Notice the difference between the given image (a) and our result
(h), as well as the zoom of (b) and (i).

2 Overview of the Proposed Method

On a rectangular domain Ω = [0, H] × [0,W ] ⊂ R2 with H > 0 and W > 0, a silhouette is
a compact subset S ⊂ Ω whose topological boundary ∂S, the outline, is a piecewise smooth
curve. Suppose S is represented by a raster binary image I : Ω∩N2 → {0, 255}, that is, the set
of black pixels

S = {(i, j) ∈ Ω ∩ N2 | I(i, j) = 0} (1)

approximates S. We assume that S ∩ ∂Ω = ∅. Our objective is to find a cubic Bézier polygon
close to ∂S in the Hausdorff distance. The proposed silhouette vectorization method has three
main steps:

1. Estimate the curvature extrema of ∂S across different scales in sub-pixel level.

2. Based on the affine scale-space induced by ∂S, identify salient curvature extrema which
are robust against pixelization and noise as the candidate control points.

3. Fit the outline using a Bézier polygon from the candidate control points which are adap-
tively modified to achieve a compact representation while guaranteeing a desired accuracy.

In the following sections, we give the details of the proposed method.
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(a) (b)

Figure 2: Illustration of the geometric scheme for affine shortening. (a) A convex component
of a discrete curve and a σ-chord (dashed line). (b) The result of discrete σ-affine erosion is a
polygonal line (blue lines) whose vertices are middle points (red dots) of the σ-chords.

3 Sub-pixel Curvature Extrema Localization

Following the work of [19], we consider the bilinear interpolation u : Ω→ [0, 255] for the raster
image I whose continuous function form is

u(x, y) = axy + bx+ cy + d , (x, y) ∈ Ω , (2)

where a, b, c, d are scalar functions depending on (bxc, byc), and

u(i+ 1/2, j + 1/2) = I(i, j) , (i, j) ∈ Ω ∩ N2 . (3)

Here brc is the floor function giving the greatest integer smaller than the real number r. For any
λ ∈ (0, 255), the level line of u corresponding to λ is defined as Cλ = {(x, y) ∈ Ω | u(x, y) = λ}.
Since I is binary, the Hausdorff distance between any Cλ and the raster silhouette S (1) is
bounded above by

√
2. Hence Cλ for an arbitrary level λ ∈ (0, 255) approximates the discrete

outline as a piecewise C2 Jordan curve except for at finitely many points, e.g., saddle points [15].
In the following, we focus on a single level line Cλ∗ for some λ∗ ∈ (0, 255) extracted by the level
line extraction algorithm detailed in [16].

Specifically, Cλ∗ is either piecewise linear line (horizontal or vertical) or a part of a hyperbola
whose asymptotes are adjacent edges of a single pixel. See Figure 1 (c). Due to pixelization,
Cλ∗ shows strong staircase effects [13], and such oscillatory behavior is effectively reduced by
the affine shortening flow [13,37]. For any planar curve C, we smooth it via solving the PDE

∂C(s, t)
∂t

= κ1/3(s, t)N(s, t) , C(s, 0) = C(s) , s ∈ [0,Length(C(·, t))] (4)

to some short time T > 0. Here each curve C(·, t) is arc-length parametrized for any t, κ denotes
the curvature, and N is the inward normal at C(s, t). The flow (4) is affine intrinsic, that is, its
solution is invariant under affine transformations; hence it preserves the geometric properties
of the original curve during the evolution.

To solve (4), we apply the fully consistent geometric scheme [25] which is independent of
grid discretization. The idea is that by iterating the discrete affine erosion with a sufficiently
small parameter, the convergent morphological operator becomes equivalent to the differential
operator in (4). Given a discrete curve partitioned by its inflection points, the σ-affine erosion
of each covex component is a polygonal line whose vertices are the middle points of σ-chords.
See Figure 2. A σ-chord is a segment joining two points on the curve such that the area enclosed
by the segment and the curve is σ. After the erosion, we glue the evolved components at the
inflection points, resample the resulted curve by arc-length, and iterate the procedure above to
reach the desired scale T . For a sufficiently smooth convex curve, applying the σ-affine erosion
is equivalent to solving (4) till time ωσ2/3 for some absolute constant ω > 0 [25].
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Denoting the smooth bilinear outline obtained above by Σλ∗ , the curvature at any of its
vertices can be computed without dependence on the grid discretization. The following discus-
sion applies for each connected component. Suppose Σλ∗ = {Pi(xi, yi)}Ni=0 with P0 = PN and
is oriented same as Cλ∗ . Following [19], the discrete curvature at point Pi is computed by

κ(Pi) =
−2 det(PiPi−1 PiPi+1)

||Pi−1Pi|| ||PiPi+1|| ||Pi−1Pi+1||
, i = 0, 1, 2, . . . , N − 1 (5)

where

det(PiPi−1 PiPi+1) := det

[
xi−1 − xi xi+1 − xi
yi−1 − yi yi+1 − yi

]
, (6)

P−1 = PN−1, and || · || denotes the Euclidean 2-norm. It computes the discrete curvature of Σλ∗

at Pi as the curvature of the circumcircle that passes through three consecutive points Pi−1, Pi,
and Pi+1. The discrete curvature values can be obtained at arbitrary resolution based on the
sampling frequency applied to the bilinear outline Cλ∗ , hence it is called “curvature microscope”.

To identify the curvature extrema, we process the data {κ(Pi)}N−1
i=0 by repeatedly applying

the filter (1/18, 4/18, 8/18, 4/18, 1/18) with periodic boundary condition for 20 times to suppress
the noise. Based on the filtered data {κ̃(Pi)}N−1

i=0 , Pi is a curvature extramum if

|κ̃(Pi)| > |κ̃(Pj)| , for j = i± 1, i± 2 . (7)

In practice, to further stabilize the identification, we also require that a curvature extremum
should have |κ̃(Pi)| > δ for some small value δ > 0. In this paper, we take δ = 0.001.

Remark 3.1. Our method is also applicable when the input is a raster gray-scale image where
the intensity variation concentrates around the topological boundary of the underlying silhou-
ette. The higher the image gradient across the silhouette’s boundary, the more stable the
position of the extracted outline with respect to the choice of levels.

4 Affine Scale-space Control Points Identification

The curvature extrema form a good set of control points, since they capture the geometrical
changes in the outline. We propose to refine the control points via affine scale-space approach,
which is detailed in this section.

4.1 Backward Tracing via Inverse Affine Shortening Flow

The concept of scale-space, first introduced by Witkin [42], provides a formalism for multiscale
analysis of signals. Later developments [5, 10, 22, 32] established the axiomatic properties for
defining a scale-space. In [37], Sapiro et al. proved that the solution of the affine shortening
flow (4) defines an affine scale-space, where the scale is given by the time parameter, and the
solution at any scale is affine invariant, i.e., it commutes with planar special affine transforms.
A critical property satisfied by the affine scale-space is causality: no new information is created
when passing from fine to coarse scales. In particular, the following is proved in [37]:

Proposition 4.1. In the affine invariant scale-space of a planar curve, the number of vertices,
that is, the extrema of Euclidean curvature, is a nonincreasing function of time.

More precisely, every curvature extremum on the curve at a coarser scale is the continuation
of at least one of the extrema at a finer scale. The lack of one-to-one correspondence is due to
the possibility of multiple extrema (e.g. two maxima and one minimum) merging to a single
one during the evolution.
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In this paper, we propose a new approach for defining the control points as the curvature
extrema on Σλ∗ which persist across different scales in its affine scale-space. By inversely tracing
curvature extrema from the coarser scales to the finer scales, the proposed control points are
more robust to noise and help to capture prominent corners of the silhouette.

Given a sequence of discrete times t0 = 0 < t1 < · · · < tK for some positive integer K, we
obtain the curve C(·, tn) at scale tn by the affine shortening flow (4) for n = 0, 1, . . . ,K. For any
1 ≤ n ≤ K, by a first order Taylor expansion, the affine shortening flow (4) is approximated as

C(s, tn)− C(s, tn−1)

tn − tn−1
= (κn(s))1/3Nn(s) + r(s) , (8)

where κn and Nn denote the curvature and normal at the scale tn, and r is a remainder such
that ||r(s)|| = O(tn − tn−1). Rearranging (8) gives

C(s, tn−1) = C(s, tn)− (tn − tn−1)(κn(s))1/3Nn(s) + (tn − tn−1)r(s) . (9)

This expression shows that, if tn− tn−1 is sufficiently small, by following the opposite direction
of the affine shortening flow at C(s, tn), that is,

−sign(κn(s))Nn(s) , (10)

we can find C(s, tn−1) nearby. Here sign(r) denotes the sign function which gives +1 if r > 0,
−1 if r < 0 and 0 if r = 0. This gives a well-defined map from the curve at a coarser scale tn
to a finer scale tn−1 via the inverse affine shortening flow.

Starting from K, for any curvature extremum XK on CK = C(·, tK), we set up the following
constrained optimization problem to find a curvature extremum XK−1 on CK−1 at scale tK−1:

max
X∈CK−1

〈X −XK ,−sign(κK)NK〉
||X −XK ||

, s.t.


〈X −XK ,−sign(κn)Nn〉

||X −XK ||
> α

||X −XK || < D

X is a curvature extremum on CK−1

, (11)

where D > 0 is a positive parameter that controls the closeness between X and XK , and α
enforces that the direction of X−XK is similar to that of the inverse affine shortening flow. The
problem (11) looks for the curvature extremum on CK−1 in the D-neighborhood of XK that is
the nearest to the line passing XK in the direction of the inverse affine shortening flow. When
D and α are properly chosen, if (11) has one solution, we define it to be XK−1. If (11) has
multiple solutions, we choose the one that has the shortest distance from XK to be XK−1. In
case there are multiple solutions having the same shortest distance from XK , we can arbitrarily
select one to be XK−1. However, in practice, if (11) has a solution, it is almost always unique.

We repeat the optimization (11) for K − 1, K − 2, etc. Either the solutions always exist
until the scale t0, or there exists some m ≥ 1, such that (11) at tm does not have any solution.
In the first case, we call XK a complete point, and in the second case, we call it incomplete. For
each curvature extremum XK on CK , we construct a sequence of points L(XK) that contains
the solutions of (11) for K,K − 1,K − 2, etc., starting at XK in a scale-decreasing order. If
XK is complete, then L(XK) has exactly K + 1 elements, and we call the sequence complete;
otherwise, the size of L(XK) is strictly smaller than K+1, and we call the sequence incomplete.

We define the last elements of the complete sequences as the candidate control points,

and denote them as {Oi(tK)}M(tK)
i=1 . This set of points is ordered following the orientation of

Σλ∗ . Here the parameter tK in the parenthesis indicates that the candidate control points are
associated with the curvature extrema identified at the scale tK . When the scale tK is fixed,
we simply write {Oi}Mi=1.
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4.2 Degenerate Case

In the discussion above, if M(tK) = 0, i.e., if there are no candidate control points identified on
Σλ∗ associated with the curvature extrema at scale tK , then we call it a degenerate case. This
situation occurs when the underlying silhouette is a disk, or has a smoothly varying boundary,
provided that the image has sufficiently high resolution. This paper is not considering open
curves. If we did, the absence of curvature extrema only means that the curve has a monotone
curvature, hence is a spiral.

If S is indeed a disk, the vectorization only requires information about its center and radius.
We use the isoperimetric inequality to determine if Σλ∗ represents a circle: for any closed plane
curve with area A and perimeter L, we have

4πA ≤ L2 , (12)

and the equality holds if and only if the curve is a circle. In practice, we decide that Σλ∗ is a
circle only if the corresponding ratio 1− 4πA/L2 < 0.005. By this criterion, if Σλ∗ is classified
as a circle, then its center and radius are easily computed by arbitrarily three distinct points on
Σλ∗ . For numerical stability, we take three outline points that are equidistant from each other.

When 1 − 4πA/L2 ≥ 0.005 for a degenerate case, we insert a pair of most distant points
on Σλ∗ to be the candidate control points. An efficient approach for finding these points is to
combine a convex hull algorithm, e.g., the monotone chain method [8], which takes O(N logN)
time, with the rotating calipers [34], which takes O(N) time. Here N is the number of vertices
of the polygonal line Σλ∗ .

5 Adaptive Cubic Bézier Polygon Approximation

Starting from the control points identified by the affine scale-space, H := {Oi}Mi , we adjust
H by deleting non-salient sub-pixel curvature extrema and inserting new control points for
guaranteeing a predefined accuracy. This adaptive approach yields a cubic Bézier polygon
B(H) whose vertices are points in the updated H and edges are cubic Bézier curves computed
by least-square fittings.

5.1 Bézier Fitting with Chord-length Parametrization

A cubic Bézier curve is specified by four points B0, B1, B2, and B3. Its parametric form is

B(s) = (1− s)3B0 + 3(1− s)2sB1 + 3(1− s)s2B2 + s3B3 , s ∈ [0, 1] . (13)

Specifically, it has the following properties: (i) B0 and B3 are the two endpoints for B(s); and
(ii) B1 − B0 is the right tangent of B(s) at B0, and B2 − B3 is the left tangent at B3. To
approximate a polygonal line segment Σ = {P0, P1, . . . , PN}, we find a cubic Bézier curve that
is determined by B0 = P0, B1, B2, and B3 = PN such that the squared fitting error

S̃ =

N∑
i=0

(
Pi − ((1− s̃i)3B0 + 3(1− s̃i)2s̃iB1 + 3(1− s̃i)s̃i2B2 + s̃i

3B3)
)2

(14)

is minimized. Here s̃i = (
∑i

k=1 ||Pk−Pk−1||)/(
∑N

k=1 ||Pk−Pk−1||) is the chord-length parameter
for Pi, i = 0, 1, . . . , N . We note that (14) is used to initialize an iterative algorithm in [33] for a
more accurate Bézier fitting. The benefit of this approximating setup is that we have closed-form
formulae for the minimizing B1 and B2 as follows:

B1 = (A2C1 −A12C2)/(A1A2 −A2
12) , B2 = (A1C2 −A12C1)/(A1A2 −A2

12) , (15)
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where

A1 = 9

N∑
i=1

t̃i
2
(1− t̃i)4 , A2 = 9

N∑
i=1

t̃i
4
(1− t̃i)2 , A12 = 9

N∑
i=1

t̃i
3
(1− t̃i)3 ,

and

C1 =

N∑
i=1

3s̃i(1− s̃i)2[Pi− (1− s̃i)3P0− s̃i3P3] , C2 =

N∑
i=1

3s̃i
2(1− s̃i)[Pi− (1− s̃i)3P0− s̃i3P3] .

Hence we gain a better computational efficiency. A similar strategy is also taken in [28] to find
a Bézier cubic to smooth discrete outlines.

5.2 Control Point Update: Deletion of Sub-pixel Extrema

Recall that the candidate control points H = {Oi}Mi=1 in Section 4 are curvature extrema at sub-
pixel level. Hence it is possible that some of them do not reflect salient corners of the silhouette.
To remove spurious sub-pixel extrema from H, we propose to compare the left tangent and right
tangent at each candidate control point, which are obtained via the least-square cubic Bézier
fitting discussed above.

We take advantage of the second property of cubic Bézier curves mentioned in Section 5.1.
For i = 1, . . . ,M , we fit a cubic Bézier to the polygonal line segment whose set of vertices is

{Oi = Pj(i), Pj(i)+1, . . . , Pj(i+1) = Oi+1} , (16)

where we take OM+1 = O1, and obtain the estimated defining points Bi,1 and Bi,2 for the Bézier
curve. The left and right tangent at Oi are computed as

T−i = Bi−1,2 −Oi , T+
i = Bi,1 −Oi , (17)

respectively, where B−1,2 = BM,2. These tangent vectors are associated with all the points
between neighboring candidate control points. Therefore, the angle formed by T−i and T+

i

measures the sharpness of Σλ∗ at Oi from a more global perspective. We delete Oi from the set
of candidate control points H if

〈T+
i , T

+
i 〉

||T+
i || ||T

−
i ||

+ 1 < ε , (18)

for some small parameter ε > 0, which is equivalent to the condition that the angle between
T+
i and T−i is close to π. The set H is updated with the remaining control points.

It is possible that all the candidate control points {Oi}Mi=1 are removed after this procedure,
thus we encounter a degenerate case. If the underlying outline is a circle, we compute the center
and radius; if it is not, we take the most distant pair of outline points to update H.

5.3 Control Point Update: Insertion for Accuracy

The candidate control points in H split the outline Σλ∗ into polygonal line segments, each of
which is approximated by a cubic Bézier using least square fitting as described in Section 5.1.
We obtain a Bézier polygon that approximates Σλ∗ , denoted by B(H). A natural measure for
the error of approximating Σλ∗ using the Bézier polygon B(H) is

e = max
Pi∈Σλ∗

dist(Pi,B(H)) , (19)

8



where dist(Pi,B(H)) = infP∈B(H) ||Pi − P || is the distance from Pi to the curve B(H). It is
desirable that the user can specify the threshold for the error, τe > 0. To guarantee that e ≤ τe,
we apply the splitting strategy [35] which inserts Pnew ∈ Σλ∗ to H as a new control point if

dist(Pnew,B(H)) > τe , (20)

and among those points on Σλ∗ satisfying (20), dist(Pnew,B(H)) is the largest. After the
insertion, we fit Σλ∗ using a Bézier polygon based on the new set of control points in H. If the
error of the newly fitted Bézier polygon is still greater than τe, we insert another point based
on the same criterion. This series of insertions terminates once the condition e ≤ τe is met.

Finally, B(H) with the updated set of control points H gives a Bézier polygon that approxi-
mates the outline ∂S, and with its interior filled with black, we obtain the vectorized silhouette
for S from the raster image I.

Remark 5.1. For a further reduction on the size of H, we may consider an optional step to
merge neighboring Bézier cubics if the union of the underlying polygonal line segments can be
approximated by a single Bézier cubic via (14) with an error below τe. We can regard the
insertion in Section 5.3 as controlling the data fidelity, and the simplification described here as
minimizing the complexity of an estimator. Alternatively iterating these procedures provides a
numerical scheme for a constrained optimizing problem

min
H⊆Σλ∗

|H| , s.t. max
Pi∈Σλ∗

dist(Pi,B(H)) ≤ τe ,

where |H| denotes the number of elements in H. For any τe ≥ 0, this problem always has a
solution, yet the uniqueness largely depends on the geometric structure of Σλ∗ .

6 Pseudo-code for the Proposed Method

In this section, assuming that the outline of the given silhouette has only one connected com-
ponent, we summarize the proposed algorithm for silhouette vectorization in three steps:

1. Extraction of the smooth sub-pixel outline Σλ∗ Extract the level line corresponding to λ∗

from the bilinear interpolation of the image, then discretize it as a polygon with uni-
form sub-pixel sampling. To reduce the staircase effects, smooth the polygon via affine
shortening at a scale specified by the smoothness parameter σ0. In this paper, we take
λ∗ = 127.5.

2. Identification of candidate control points. Fix an increment ∆σ > 0 and a positive integer
K > 0. Evolve Σλ∗ via the affine shortening using the scales σ∗ = k∆σ, k = 1, 2, . . . ,K.
Starting from each curvature extremum at scale K∆σ, trace the curvature extrema at
smaller scales along the inverse affine shortening flow as described by (11). By doing so,
each curvature extremum at scale K∆σ induces a sequence of traced curvature extrema
across different scales, which are arranged in a scale-decreasing order. The final elements
of the complete sequences are defined as the candidate control points, denoted by H =
{Oi}Mi=1. In this paper, we fix ∆σ = 0.5 and K = 4, so that σ∗ = 2.

In case M = 0, process the degenerate case as described in Section 4.2.

3. Refinement of the control points. Remove any candidate control point Oi from H whose
left tangent and right tangent (17) form an angle close to π (20). If all the candidate
control points are removed, follow the instruction in Section 4.2 to address the degenerate
case. Then, insert new control points into H by the splitting strategy [35] until the
approximation error e (19) is bounded by a user-specified threshold τe > 0.

9



4. (Optional) Merging neighboring Bézier cubics For i = 1, 2, . . . ,M , delete Oi from H if the
polygonal line segment bounded by the left and right neighboring control points of Oi in
H can be fitted by a single Bézier cubic with error smaller than τe.

As for the output, if Σλ∗ is not a circle, we write the points in H together with the estimated
defining points (15) for each segment into a SVG format with the specification of drawing cubic
Bézier curves. For the visualization purpose, if a fitted Bézier curve has a maximal absolute
curvature smaller than 0.001, we assign a straight line. Note that this value 0.001 is consistent
with the value for δ in Section 3. If Σλ∗ is a circle, we write its estimated center and radius
into the SVG with the specification of drawing a circle. The pseudo-codes are presented in
Algorithm 1 (with sub-procedures described in Algorithm 2 and Algorithm 3), which can be
parallelized to apply to outlines with multiple connected components.

7 Numerical Results

In this section, we present some numerical experiments to demonstrate the performance of our
proposed algorithm. After obtaining the SVGs from [3], we rasterize them as PNG images, which
are used as inputs in the following experiments. The inputs are either binary or gray-scale. We
choose the level line corresponding to λ∗ = 127.5 to approximate the outlines throughout the
experiments. By default, we set the error threshold τe = 1, so that the vectorized outline is
guaranteed to have sub-pixel level of accuracy; and the smoothness parameter σ0 = 1. For
the parameters in (11), we fix D = 10 and α = 0.9. The silhouettes used in the following
experiments are collectively displayed in Table 3. If without any specifications, we apply the
proposed method without the optional merging step.

General Performance

We present some results of the our proposed algorithm in Figure 3. In (a), we have a silhouette
of a cat. It has a single outline curve which contains multiple sharp corners on the tail, near the
neck and around the paws, etc. These features provide informative visual cues for silhouette
recognition, and our algorithm identifies them as control points for the silhouette vectorization
shown as the red dots in (b). The outline of a butterfly in (c) has multiple connected components.
In addition to the control points corresponding to corners, we observe in (d) some others on
smooth segments of the outline. They are inserted during the refinement step of our algorithm,
where a single Bézier cubic is inadequate to guarantee the accuracy specified by the error
threshold τe = 1. In (e), we show a tessellation of words and (f) presents the vectorized result.
The input is a PNG image of dimension 1934×1332 and takes 346 KB in the storage. In contrast,
its silhouette vectorization, saved as a SVG file, has in total 2683 control points and takes 68 KB
if the coordinates are stored in float, 36 Kb if stored in integers. In this example, our algorithm
provides a compresion ratio of about 80.35% for float type, and a 89.60% compression ratio for
the integer type. Moreover, the total computational time for this case only takes 0.83 seconds.
Similar statistics for the other two examples are summarized in Table 1. Our algorithm is both
effective and efficient.

Degenerate Cases

An important feature of our algorithm is that it offers flexibility in face of degenerate cases,
where the silhouette does not have identifiable curvature extrema on its outline. A disk, as
shown in Figure 4 (a), is the most common example. Once our algorithm classifies the outline
as a circle, instead of fitting Bézier cubics, it directly approximates the center and radius of the
circle and orders the SVG output to draw a perfect circle. See Figure 4 (b).
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Algorithm 1: Shape Vectorization by Affine Scale-space

Input: Σ0
λ∗ : a polygonal Jordan curve sampled from the level line of the bilinear

interpolated image u corresponding to the level λ∗. τe: approximation error
threshold. σ0: smoothness parameter. Fixed parameters: ∆σ = 0.5 , K = 4.

Output: Cubic Bézier polygon B(H) specified by the vertex set H, or a perfect circle.
1 Apply the affine shortening to smooth Σ0

λ∗ up to scale σ0, which yields the sub-pixel
smooth outline Σλ∗ = {Pi}Ni=0.

2 for k = 1, 2, . . . ,K do

3 Evolve Σλ∗ up to scale k∆σ via the affine shortening, denoted by Σk
λ∗ = {P ki }N

k

i=0.

4 Compute curvature κki of Σk
λ∗ at P ki according to (5).

5 Denoise the data {κki }N
k

i=1 by moving average, based on which curvature extrema

{Xk
i }S

k

i=1 are located by (7).

6 Initialize H = ∅.
7 if SK ≥ 1 then
8 for i = 1, . . . , SK do

9 Set X
(K)
i = XK

i .
10 for k = K,K − 1, . . . , 1 do

11 Solve the problem (11) associated with X
(k)
i

12 if (11) has a solution then

13 Denote the solution by X
(k−1)
i . if k=1 then

14 Insert X
(0)
i into H.

15 else
16 break

17 else
18 Run Algorithm 2.

19 for i = 1, . . . ,M do
20 Fit the line segment {Oi = Pj(i), Pj(i)+1, . . . , Pj(i+1) = Oi+1} ⊂ Σλ∗ using least square

cubic Bézier (14).
21 Obtain the right tangent T+

i at Oi and left tangent T−i+1 at Oi+1 according to (17).

22 for i = 1, . . . ,M do
23 if Condition (18) holds then
24 Remove Oi from H.

25 if H = ∅ then
26 Run Algorithm 2.

27 Compute approximation error e of the Bézier polygon B(H) via (19).
28 while e > τe do
29 Insert into H a point Pnew ∈ Σλ∗ furthest from B(H) that satisfies (20).
30 Recompute the error e of B(H).

31 (Optional) Run Algorithm 3 to further shrink the size of H.
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Algorithm 2: Sub-procedure for the Degenerate Case

1 if Σλ∗ is a circle then
2 Take three equidistant points on Σλ∗ to compute the center O and radius r.
3 return O, r.

4 else
5 Find the most distant pair of points on Σλ∗ : O1, O2. Set H = {O1, O2}.

Algorithm 3: Simple Bézier Cubic Merging

1 Suppose H = {Oi}Mi=1.
2 Define M ′ = M , P− = OM ′ , P

0 = O1, and P+ = O2.
3 for i = 1, . . . ,M do
4 Fit the the polygonal line segment bounded by P− and P+ using least square cubic

Bézier (14), and denote the fitting error by e.
5 if e < τe then
6 P− ← Oi, P

0 ← Omod(i+1,M ′), P
+ ← Omod(i+2,M ′).

7 else
8 M ′ ←M ′ − 1
9 P− ← Omod(i−1,M ′), P

0 ← Omod(i+1,M ′), P
+ ← Omod(i+2,M ′).

Shape Image Dim. Size Result Size (float) Result Size (int) Proc. Time

Cat (a) 700× 537 5 KB 2 KB (60%) 1 KB (80%) 0.10 Sec.
Butterfly (c) 732× 596 178 KB 5 KB (97.19%) 3 KB (98.31%) 0.15 Sec.

Text (e) 1934× 1332 346 KB 68 KB (80.35%) 36 KB (89.60%) 0.83 Sec.

Table 1: Performance statistics of the proposed algorithm applied to examples in Figure 3. The
float type result stores the control point coordinates as float type, and the int type result stores
them as integer type.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Examples of results of the proposed algorithm for silhouette vectorization. (a) Cat
and (b) its vectorized outline (42 control points). (c) Butterfly and (d) its vectorized outline
(158 control points). (e) Text design and its vectorized outline (2683 control points). Each red
dot signifies the location of a control point. (g) Two letters exerted from (e) scaled up with the
same magnitude. (h) Zoom-in of the vectorization (f) on the two letters corresponding to (g).
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Figure 4 (c) shows another degenerate case. It consists of a rectangle in the middle and two
half disks attached on its opposite sides, whose diameters are equal to the height of the rectangle.
This particular silhouette has no strict curvature extrema on its outline. By computation, its
area is 172644 and perimeter is 1742.07; since 4πArea/Perimeter2 = 4×π×172644/(1742.07)2 =
0.7149 < 1, the outline is not a circle. Hence the algorithm inserts a pair of most distant points
on the outline, the left-most and the right-most points in this case, and conducts the Bézier
fitting routine as in the non-degenerate cases.

The design of this special procedure for degenerate cases is important for two reasons.
First, it makes the algorithm adaptive to image resolutions. If we reduce the resolution of (c)
from 774 × 320 to 144 × 58, whose magnified version is shown in (e), due to strong effects
of pixellization, all the control points are identified as local curvature extrema. (f) shows the
magnified vectorization of the low resolution image. Second, it improves the compression ratio.
To fit a circle using Bézier polygon requires at least two pieces of cubics, hence we need to store
the coordinates of at least 6 points. With our algorithm, only the coordinate of the center and
the value of the radius are required, which saves the space for 9 float or int type data. Figure 4
(g) shows mixture of degenerate and non-degenerate outline curves. The vectorization in (h)
shows that the circles are represented as perfect circles, and the others are represented as Bézier
polygons.

Importance of the Control Point Update

Figure 5 compares the vectorization using control points before and after the control point
update, which are described in Section 5.2 and 5.3. The outline of the knot silhouette in (a)
shows curvature variations of multiple scales. If no refinement is applied, as shown in (b), the
corners of larger scale are captured, while some inflection points are missed on the top-left
component. Moreover, many unnecessary control points appear on several arcs. In contrast,
with the refinement, the result in (c) has fewer control points, but with a better approximation
accuracy. Notice that on the top-left component of the knot, the newly inserted control points
are close to the inflection points, and on the arcs, only 1 or 2 control points are generally needed.

By refinement, we remove extrema that do not represent salient corners and inset new control
points to meet the accuracy requirement. Although the total number of control points may or
may not decrease after refinement, the distribution of the refined control points shows more
correlation with the geometric features of the outline, and the vectorized result is improved.

Effect of the Error Threshold τe

The error threshold τe controls the accuracy of the Bézier polygon approximating the outline.
When the value of τe is reduced, the user requires higher accuracy of the Bézier fitting. Since
any Bézier cubic contains at most one inflection point, a single cubic only allows a limited
amount of variations. Hence, by adding more control points to split the outline into shorter
segments, the specified accuracy is achieved.

To better illustrate the effect of varying the threshold τe, we computed in percentage the
reduction of the number of control points when the threshold is τe > 0.5 compared to that when
the threshold is 0.5:

ρ(τe) =
#C(τe)−#C(0.5)

#C(0.5)
× 100% , τe > 0.5 . (21)

Here #C(τe) denotes the number of control points when the threshold is τe. Figure 6 (a) shows
the average values and the standard deviations of (21) when we apply the proposed method to
the 20 silhouettes in our data set. We observe that when τe < 1, the effect of increasing τe is
the strongest: the number of control points reduces exponentially. On average, the percentage
curves show inflection points around τe = 1, that is, when the fitted Bézier polygon has distance
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Degenerate cases. In (a) and (c), no candidate control points were identified. Our
algorithm handles such situations by checking if the outline is a circle. If it is, e.g. (a), the
center and radius are computed and a circle is drawn without Bézier fitting; hence, there is no
control point (red dots) on the vectorized outline (b). The blue dot indicates the center of the
circle. If it is not a circle, e.g., (c), a pair of most distant points are inserted to initiate the
Bézier fitting, such as in (d). (e) shows the low resolution version of (c) and (f) displays its
vectorization. When the resolution is reduced, all the control points are identified curvature
extrema. In (g), three of the outline curves are identified as circles and the others are fitted by
Bézier polygons. (h) shows the vectorized result.
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(a) (b) (c)

Figure 5: Importance of refinement. (a) A silhouette of a knot. (b) Result without refinement
(106 control points). (c) Result with refinement (86 control points). Compared to (b), (c) has
fewer control points distributed on the smooth curve segments, and some new control points
are introduced to enhance accuracy.

(a) (b)

Figure 6: (a) For the 20 silhouettes in our data set (Table 3), the solid curve shows the average
relative reduction of the number of control points ρ(τe) (21), and the dashed curves indicate
the standard deviations. (b) The positive relation between the number of control points when
τe = 10.0 is large and the number of corners of a silhouette. Each dot represents a sample in our
data set. The red curve is computed by linear regression with a goodness of fit R2 = 0.75592.

to the sub-pixel outline less than 1 pixel. After passing τe = 1, increasing τe has less impact on
the variation of the number of control points. For even larger values of τe, there is almost no
need of inserting new control points, and the corresponding control points are closely related
to the corners of the outline. This is justified by the regression in Figure 6 (b), where each
point represents a silhouette in our data set. It shows that there is a positive relation between
the number of corners computed by the Harris-Stephens corner detector [20] and the number
of control points when τe = 10.0, which is relatively large.

With large values of τe � 1, the silhouette representation is more compact yet less accurate.
With small values of τe < 1, we have a more accurate representation yet less efficient. From
this point of view, we would recommend τe = 1.

Effect of the Smoothness Parameter σ0

The smoothness parameter σ0 adjusts the regularity of the smooth bilinear outline which ap-
proximates ∂S. With larger values of σ0, oscillatory features of the given outline are suppressed,
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(a) (b) (c) (d)

Figure 7: Effect of the smoothing parameter σ0. (a) A silhouette of a tree where the boxed
region is examined in detail. Vectorization using (b) σ0 = 2.0 (362 control points) (c) σ0 = 1.0
(448 control points), and (d) σ0 = 0.5 (500 control points). With smaller values of σ0, the
vectorized outline is sharper, and the number of control points increases.

while with smaller values of σ0, the vectorized silhouette preserves sharp corners.
Figure 7 demonstrates this effect of σ0. We apply the proposed method using σ0 = 2.0, 1.0

and 0.5 on the silhouette of a tree (a), and the zoom-ins of vectorization results within the boxed
region of (a) are presented in (b), (c), and (d), respectively. Observe that the zig-zag feature
around the tree’s silhouette is better preserved by reducing σ0. As a trade-off, this introduces
more control points to recover the sharpness of the outline.

Stability Under Affine Transformations

We qualitatively explore the geometric stability of the proposed control points under affine
transformations. Figure 8 (a) shows a silhouette of a cat. (b) is a rotation of (a), and (c) is
a sheared (a). The vectorized results of these silhouettes are presented in (d), (e), and (f),
respectively. To better compare the distributions of the control points on these vectorized
outlines, we applied the corresponding inverse affine transformations to (d)–(f) and show the
results in (g)–(i). The numbers of control points are similar: (g) has 52 control points (38 before
refinement), (h) has 53 control points (37 before refinement), and (i) has 56 control points (41
before refinement). The distributions of control points between (g) and (h) are almost identical,
while locations of the control points in (i) are slightly shifted, especially those on the tail. This
is because Bézier fitting is not affine invariant, and these shifted points are inserted to guarantee
the accuracy of approximating the transformed outline using a Bézier polygon.

Qualitative Comparison with Feature Point Detectors

Our algorithm produces a set of informative point features of the outline. This includes the
control points which separate the outline curves into segments for cubic Bézier fitting and the
centers of circles. In Figure 9, we compare the distribution of these points with the results of
some extensively applied feature point detectors: the Harris-Stephens corner detector [20], the
features from Accelerated Segment Test (FAST) detector [36], the Speeded Up Robust Features
(SURF) detector [12], and the Scale-Invariant Feature Transform (SIFT) [23].

The Harris-Stephens corner detector is a local auto-correlation based method. It locally
filters the image with spatial difference operators and identifies corners based on the response.
In (a), the Harris-Stephens corner detector identifies all the corners except for the one on the
right side of the label. The set of control points produced by our algorithm contains all the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Stability of control points under affine transformations. (a) Silhouette of a cat. (b)
Rotation of (a). (c) Shear of (a). (d) Vectorized outline of (a). (e) Vectorized outline of (b).
(f) Vectorized outline of (c). (g) is identical as (d) for comparison with (h) the inverse affine
transform of (e), and (i) the inverse affine transform of (f). The control points in (g)–(i) are
similarly distributed along the outline.
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(a) (b) (c) (d)

Figure 9: Comparison between the control points (red dots) plus the centers of circles (blue
dots) produced by the proposed algorithm and other point feature detectors (green crosses).
(a) Compared with the Harris corner detector [20]. (b) Compared with the FAST feature
detector [36]. (c) Compared with the SURF detector [12]. (d) Compared with the SIFT
detector [23]

corners found by the Harris-Stephens detector plus the missed one.
The FAST detector only considers the local configurations of pixel intensities, hence it is

widely applied in real-time applications. From (b), we see that FAST identifies all the prominent
corners same as our method does. Similarly to (a), there are no FAST points identified around
the balloon. On the circular outline at the center instead, FAST detects multiple false corners;
this illustrates how our algorithm is more robust against pixellization

The SURF detector combines a fast Hessian measure computed via integral images and
the distribution of local Haar-wavelet responses to identify feature points that are scale- and
rotation-invariant. There is a similarity that it utilizes the Gaussian scale-space and scale-space
interpolation to localize the points of interest. The SURF points are marked over scales, hence
we see most of the green crosses in (c) form sequences converging toward the outline. These limit
points correspond exactly to our control points (red dots) distributed over the outline, including
those around the balloon. Moreover, there is a SURF point at the center of the circular hole
in the label, which overlaps with our identified center of circle (blue dot). Rather than showing
feature points over scales, our method locates them directly on the original outline. In (c),
notice that our identified points are much simpler compared to SURF points.

The SIFT detects scale-invariant features of a given image. As shown in (d), SIFT success-
fully indicates the presence of corners and marks the centers of the balloon as well as the label,
which are visually robust features of the silhouette Our method focuses on the outline instead
of the interior points and provides interesting boundary points’ locations exactly. Around the
balloon, the symmetric distribution is compatible with the SIFT point at the center.

The set of control points plus the center of circles produced by our algorithm is comparable
to some of the frequently used feature point detectors in the literature. Hence,in addition to
being an effective silhouette vectorization method, the identified control points can be used for
other applications where feature point detectors are needed.
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Quantitative Comparison with Feature Point Detectors

To further justify that our method can be applied as a stable point feature detector for silhou-
ettes, we compare the techniques discussed above with ours by quantitatively evaluating their
performances via the repeatability ratio [39]. It measures the geometric stability of the detected
feature points under various transformation.

In particular, for each method, given any angle α, 0◦ < α < 360◦, we rotate the silhouettes
in the first column of Figure 10 with respect to their centers by α respectively, record the
detected feature points, apply the inverse transform on these points by rotating them by −α,
then compare their positions with the feature points detected on the original silhouette. Let
nrepeat = 0. For any rotated feature point, within its ε-neighborhood, if we find at least one
feature point on the original silhouette, we increase nrepeat by 1. The ε-repeatability ratio is
computed by

nrepeat

min{n0, ntransform}
(22)

where n0 denotes the number of feature points detected on the original silhouette, and ntransform

is the number of feature points detected on the transformed one. During the angle (or scale)
changes, this value staying near 1 indicates that the applied method is invariant under rotation
(or scale). We fix ε = 1.5.

The second column of Figure 10 shows the repeatability ratios under rotations. The set of
feature points produced by our method has superior stability when the silhouette is rotated by
arbitrary angles. In contrast, the other detectors have low repeatability ratios especially when
the silhouette is turned almost upside-down. Moreover, our method performs consistently well
for silhouettes with different geometric features. The house silhouette has straight outlines and
sharp corners; the butterfly silhouette is defined by smooth curves; and the fish silhouette has
prominent curvature extrema which are not perfect corners.

For the third column of Figure 10, we compute the repeatability ratios when the transfor-
mation is replaced by scaling. Observe that our method is comparable with other detectors,
and it is the most consistent one across these different silhouettes.

Comparison with State-of-the-art Software

There are many software available for image vectorization, e.g., Vector Magic [4], Inkspace [2],
and Adobe Illustrator 2020 (AI) [1]. In the following set of experiments, we compare our
method with these software using the number of control points generated for given silhouettes
as a criteria. This quantity is equal to the number of curve segments used for approximating
the outline, and a smaller value indicates a more compact silhouette representation.

To perform this comparison, after acquiring SVG files of various silhouettes, we rasterized
them and used the PNG images as inputs. Table 2 summarizes the results. For Vector Magic,
we test three available settings: high, medium, and low for the vectorization quality. For AI,
we choose the setting“Black and White Logo”, as it is suitable for the style of our inputs. We
also include the results when the automatic simplification is used, which are marked by daggers.
For Inkspace, we use the default parameter settings as recommended. As shown by the values
of the mean relative reduction on the number of control points in the last row, our method
produces the most compact vectorization results.

With such an effective reduction on the number of control points, we justify that our method
does not over-simplify the representation. We show a detailed comparison in Figure 11 between
our proposed method and AI. In particular, we use AI without simplification and our method
with two sets of parameters: σ0 = 1, τe = 1 and σ0 = 0.1, τe = 0.5. We note that σ0 specifies
the smoothness of the recovered outline, and τe controls the accuracy. Notice that under these
settings, our method gives less number of control points, yet our results preserve more details
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Silhouette Under Rotation Under Scaling

Figure 10: Repeatability ratios of the methods in comparison when the silhouettes in the
first column are rotated or scaled. Notice that the blue lines (proposed method) are near 1.
The performance of our method is the most consistent across these silhouettes with different
geometric features.
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of the given silhouettes, for example, the strokes on the scales at the bottom, and the sharp
outlines on the rear fin.

We quantify the performance of AI and our method by comparing the given image I and the
image I ′ rasterized from the vectorization result. Denote S0 = {(x, y) ∈ Ω∩N2 | I(x, y) < 127.5}
and Sr = {(x, y) ∈ Ω ∩ N2 | I ′(x, y) < 127.5} as the interior pixels of the given silhouette and
the reconstructed one. We evaluate the similarity between S0 and Sr by

Dice similarity coefficient (DSC) [40] DSC =
2|S0 ∩ Sr|
|S0|+ |Sr|

. (23)

Higher values of DSC (0 ≤ DSC ≤ 1) imply a better matching between two silhouettes. We
evaluate the performance with wide ranges of parameters for both AI and the proposed method.
For AI, we test various combinations of the curve simplification parameter µ (0%–100%) and the
corner point angle threshold γ (0◦–180◦). For our method, we use different combinations of τe
and σ0. Roughly speaking, µ in AI corresponds to τe in ours, which controls the approximating
accuracy, and γ in AI corresponds to σ0 in ours, which adjusts the smoothness of the vectorized
outline. Figure 12 plots the number of control points against the corresponding DSC values
for various parameter settings in both methods. In (a), we fix the sharpness requirement, i.e.,
fixed γ = 150◦ (default value for the automatic simplification used in AI) and fixed σ0 = 1, and
vary µ for AI (the blue curve) and τe for ours (the red curve). On the blue curve, larger dots
correspond to smaller values of µ; on the red curve, larger dots correspond to larger values of
τe. Moving from left to right along both curves indicates more accurate outline approximations.
Since the red curve stays below the blue one, compared to AI, our method produces less control
points while achieving the same level of DSC values. In (b), we present the results of AI
using simplification specified by a set of combinations of parameters (γ = 0◦, 10◦, . . . , 180◦,
µ = 0%, 10%, . . . , 100%). They are organized such that each blue curve corresponds to a fixed
value of γ; higher curves (lighter shades of blue) correspond to larger values of γ, while moving
from left to right (smaller sizes of dots) along each of the curves corresponds to decreasing µ.
The red curve shows our results using different values of τe when the merging is applied and σ0

is fixed at 0.5. From left to right, the value of τe decreases. Observe that the red curve gives a
close lower bound for the blue curves when DSC< 0.93. For higher requirement on the accuracy
(DSC> 0.93), our method shows superior efficiency: it takes comparatively small number of
control points to reach greater values of DSC. In contrast, for AI, the best DSC value it can
achieve is around 0.95, and adding more control points does not offer any improvement.

8 Conclusion

In this paper, we proposed an efficient and effective algorithm for silhouette vectorization. The
outline of the silhouette is interpolated bilinearly and uniformly sampled at sub-pixel level.
To reduce the oscillation due to pixelization, we applied the affine shortening to the bilinear
outline. By tracing the curvature extrema across different scales along the well-defined inverse
affine shortening flow, we identified a set of candidate control points. This set is then refined by
deleting sub-pixel extrema that do not reflect salient corners, and inserting new points to guar-
antee any user-specified accuracy. We also designed special procedures to address the degenerate
cases, such as disks, so that our algorithm adapts to arbitrary resolutions and offers better com-
pression of information. Our method provides a superior compression ratio by vectorizing the
outlines. When the given silhouette undergoes affine transformations, the distribution of control
points generated by our method remains relatively stable. These properties are quantitatively
justified by the repeatability ratio when compared with popular feature point detectors. Our
method is competitive compared to some well-established image vectorization software in terms
of producing results that have less number of control points while achieving high accuracy.
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Number of Control Points (#C)

Test Image Original VM IS AI Proposed

405 248/256/245 330 280 (193†) 168

611 359/343/325 383 340 (293†) 222

682 296/294/263 272 211 (128†) 120

1434 915/828/715 932 698 (462†) 379

4434 2789/2582/2370 3292 2120 (1431†) 1407

6664 5470/5218/4955 6493 4870 (3441†) 2810

MRR — 37..97%/40.55%/45.01% 29.88% 45.79% (61.58%†) 67.38%

Table 2: Comparison with image vectorization software in terms of the number of control points.
We compared with Vector Magic (VM), Inkspace (IS), and Adobe Illustrator 2020 (AI). For VM,
we report the number of control points using three optional settings: High/Medium/Low. For
AI, the values with dagger† indicate the numbers of control points produced by the automatic
simplification. The input image dimensions are 581 × 564, 625 × 598, 400 × 390, 903 × 499,
515 × 529, and 1356 × 716 from top to bottom. We also report the mean relative reduction
(MRR) of the number of control points.

Figure 11: Comparison among the given raster image (red boxes), AI (orange boxes), the
proposed with σ0 = 1, τe = 1 (green boxes), and the proposed with σ0 = 0.1, τe = 0.5
(blue boxes). With smaller numbers of control points (#C), our method preserves better the
geometric details of the given silhouette.
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(a) (b)

Figure 12: (a) Comparison between AI (γ = 150◦) and the proposed method (σ0 = 1) when the
complexity parameters (µ for AI, τe for ours) vary. The circled dot corresponds to our default
setting. (b) Comparison between AI with simplification specified by various combinations of µ
and γ, and the proposed method using merging with fixed σ0 = 0.5 and varying τe. In both
figures, smaller dots indicate higher levels of complexity for AI (µ) and the proposed method
(τe), respectively. .

A Silhouette Data Set

In Table 3, we collectively display the 20 silhouettes used in this paper. They are all download-
able from https://svgsilh.com, which are released under Creative Commons CC0.
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sciences. Série 1, Mathématique, 315(2):135–138, 1992.

[6] L. Alvarez and J. M. Morel. Formalization and computational aspects of image analysis.
Acta numerica, 3:1–59, 1994.

[7] L. Ambrosio, V. Caselles, S. Masnou, and J.-M. Morel. Connected components of sets of fi-
nite perimeter and applications to image processing. Journal of the European Mathematical
Society, 3(1):39–92, 2001.

[8] A. Andrew. Another efficient algorithm for convex hulls in two dimensions. Information
Processing Letters, 9(5):216–219, 1979.

[9] F. Attneave. Some informational aspects of visual perception. Psychological review,
61(3):183, 1954.

24

https://svgsilh.com
https://www.adobe.com/products/illustrator.html
https://inkscape.org
https://svgsilh.com
https://vectormagic.com


Silhouette Data Set

Table 3: Silhouette dataset used in the experiments. The last four are used in Figure 6 for
computing the average ρ(τe). These silhouettes are chosen from [3], which are released under
Creative Commons CC0.

[10] J. Babaud, A. P. Witkin, M. Baudin, and R. O. Duda. Uniqueness of the Gaussian kernel
for scale-space filtering. IEEE transactions on pattern analysis and machine intelligence,
(1):26–33, 1986.

[11] J. P. Balarini and S. Nesmachnow. A C++ Implementation of Otsus Image Segmentation
Method. Image Processing On Line, 6:155–164, 2016.

[12] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In European
conference on computer vision, pages 404–417. Springer, 2006.

[13] F. Cao. Geometric curve evolution and image processing. Springer Science & Business
Media, 2003.

[14] F. Cao, J.-L. Lisani, J.-M. Morel, P. Musé, and F. Sur. A theory of shape identification.
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