Skip to main content
Log in

Fast Quaternion Log-Polar Radial Harmonic Fourier Moments for Color Image Zero-Watermarking

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

As a copyright protection technology, zero-watermarking has received widespread attention in recent years. The zero-watermarking algorithm based on moments has been extensively studied due to its better comprehensive performance and has made great progress. However, three issues of the moments-based zero-watermarking methods should be addressed: first, most of them ignore the analysis and experiment on discriminability, which leads to the high false positive ratio; second, direct computation of the moments from their definition is inefficient, numerically unstable and inaccurate, which severely affects the performances of these moments-based methods; third, most of the algorithms are only suitable for grayscale images, which leads to the limitation of the algorithms in practical applications. In this paper, we present a new color image zero-watermarking using fast quaternion log-polar radial harmonic Fourier moments. This algorithm firstly introduces log-polar coordinates to make traditional RHFMs scale-invariant, secondly improves their speed and accuracy, then introduces the concept of quaternion to make it suitable for color images, and finally applies it to the zero-watermark technology. Theoretical analysis and experimental results show that compared to the existing algorithms, the BER value of the proposed algorithm is 0 under some attacks, which can prove its effectiveness and achieved a good trade-off between discriminability and robustness, and has certain superiority in terms of security, capacity and speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Hurrah, N.N., Parah, S.A., Loan, N.A., Sheikh, J.A., Elhoseny, M., Muhammad, K.: Dual watermarking framework for privacy protection and content authentication of multimedia. Future Gener. Comput. Syst. 94, 654–673 (2019)

    Article  Google Scholar 

  2. Wen, Q., Sun, T.F., Wang, S.X.: Concept and application of zero-watermark. Acta Electron. Sin. 31(2), 214–216 (2003)

    Google Scholar 

  3. Yu, X., Wang, C., Zhou, X.: A hybrid transforms-based robust video zero-watermarking algorithm for resisting high efficiency video coding compression. IEEE Access 7, 115708–115724 (2019)

    Article  Google Scholar 

  4. Sun, L., Xu, J.C., Zhang, X.X.: A novel generalized Arnold transform-based zero-watermarking scheme. Appl. Math. Inf. Sci. 4, 2023–2035 (2015)

    Google Scholar 

  5. Liu, X., Wang, Y., Sun, Z., Wang, L., Zhao, R., Zhu, Y., Zou, B.: Robust and discriminative zero-watermark scheme based on invariant features and similarity-based retrieval to protect large-scale DIBR 3D videos. Inf. Sci. 542, 263–285 (2021)

    Article  MathSciNet  Google Scholar 

  6. Chen, B.J., Shu, H.Z., Zhang, H., Chen, G., Toumoulin, C., Dillenseger, J.L.: Quaternion zernike moments and their invariants for color image analysis and object recognition. Signal Process. 92(2), 308–318 (2012)

    Article  Google Scholar 

  7. Thanh, T.M., Tanaka, K.: An image zero-watermarking algorithm based on the encryption of visual map feature with watermark information. Multimed. Tools Appl. 76(11), 13455–13471 (2017)

    Article  Google Scholar 

  8. Fan, T.Y., Chao, H.C., Chieu, C.C.: Lossless medical image watermarking method based on significant difference of cellular automata transform coefficient. Signal Process. Image Commun. 70, 174–183 (2019)

    Article  Google Scholar 

  9. Ali, M., Ahn, C.W., Pant, M.: An efficient lossless robust watermarking scheme by integrating redistributed invariant wavelet and fractional Fourier transforms. Multimed. Tools Appl. 77(10), 11751–11773 (2018)

    Article  Google Scholar 

  10. Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  11. Xin, Y., Pawlak, M., Liao, S.: Accurate computation of Zernike moments in polar coordinates. IEEE Trans. Image Process. 16, 581 (2007)

    Article  MathSciNet  Google Scholar 

  12. Chen, B., Shu, H., Zhang, H., Coatrieux, G., Luo, L., Coatrieux, J.L.: Combined invariants to similarity transformation and to blur using orthogonal Zernike moments. IEEE Trans. Image Process. 20(2), 345–360 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Singh, C., Mittal, N., Walia, E.: Complementary feature sets for optimal face recognition. EURASIP J. Image Video Process. 1, 1–18 (2014)

    Google Scholar 

  14. Guo, Y., Liu, C.P., Gong, S.R.: Improved algorithm for Zernike moments. In: International Conference on Control, Automation and Information Sciences (ICCAIS), pp. 307–312 (2015)

  15. Bera, A., Klęsk, P., Sychel, D.: Constant-time calculation of Zernike moments for detection with rotational invariance. IEEE Trans. Pattern Anal. Mach. Intell. 41(3), 537–551 (2018)

    Article  Google Scholar 

  16. Ping, Z., Ren, H., Zou, J., Sheng, Y., Bo, W.: Generic orthogonal moments: Jacobi-Fourier moments for invariant image description. Pattern Recognit. 40(4), 1245–1254 (2007)

    Article  MATH  Google Scholar 

  17. Hoang, T.V., Tabbone, S.: Errata and comments on “Generic orthogonal moments: Jacobi-Fourier moments for invariant image description.” Pattern Recognit. 46(11), 3148–3155 (2013)

    Article  MATH  Google Scholar 

  18. Camacho-Bello, C., Toxqui-Quitl, C., Padilla-Vivanco, A., Báez-Rojas, J.J.: High-precision and fast computation of Jacobi-Fourier moments for image description. JOSA A 31(1), 124–134 (2014)

    Article  Google Scholar 

  19. Upneja, R., Singh, C.: Fast computation of Jacobi-Fourier moments for invariant image recognition. Pattern Recognit. 48(5), 1836–1843 (2015)

    Article  MATH  Google Scholar 

  20. Yap, P.T., Paramesran, R., Ong, S.H.: Image analysis using Hahn moments. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 2057–2062 (2007)

    Article  Google Scholar 

  21. Xiao, B., Ma, J., Wang, X.: Image analysis by Bessel-Fourier moments. Pattern Recognit. 43(8), 2620–2629 (2010)

    Article  MATH  Google Scholar 

  22. Yap, P.T., Jiang, X., Kot, A.C.: Two-dimensional polar harmonic transforms for invariant image representation. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1259–1270 (2009)

    Google Scholar 

  23. Singh, C., Upneja, R.: Accuracy and numerical stability of high-order polar harmonic transforms. IET Image Proc. 6(6), 617–626 (2012)

    Article  MathSciNet  Google Scholar 

  24. Hosny, K.M., Darwish, M.M.: A Kernel-Based method for fast and accurate computation of PHT in polar coordinates. J. Real-Time Image Proc. 16(4), 1235–1247 (2019)

    Article  Google Scholar 

  25. Qi, M., Li, B.Z., Sun, H.: Image representation by harmonic transforms with parameters in SL (2, R). J. Vis. Commun. Image Represent. 35, 184–192 (2016)

    Article  Google Scholar 

  26. Upneja, R., Pawlak, M., Sahan, A.M.: An accurate approach for the computation of polar harmonic transforms. Optik 158, 623–633 (2018)

    Article  Google Scholar 

  27. Liu, X., Wu, Y., Shao, Z., Wu, J.: The modified generic polar harmonic transforms for image representation. Pattern Anal. Appl. 23(2), 785–795 (2020)

    Article  MathSciNet  Google Scholar 

  28. Kang, X., Zhao, F., Chen, Y., Lin, G., Jing, C.: Combining polar harmonic transforms and 2D compound chaotic map for distinguishable and robust color image zero-watermarking algorithm. J. Vis. Commun. Image Represent. 70, 102804 (2020)

    Article  Google Scholar 

  29. Gao, G., Jiang, G.: Bessel-Fourier moment-based robust image zero-watermarking. Multimed. Tools Appl. 74(3), 841–858 (2015)

    Article  Google Scholar 

  30. Shao, Z., Shang, Y., Zeng, R., Shu, H., Coatrieux, G.: Robust watermarking scheme for color image based on quaternion-type moment invariants and visual cryptography. Signal Process. Image Commun. 48, 12–21 (2016)

    Article  Google Scholar 

  31. Wang, C.P., Wang, X.Y., Xia, Z.Q., Zhang, C.: Geometrically resilient color image zero-watermarking algorithm based on quaternion Exponents. J. Vis. Commun. Image Represent. 41, 247–259 (2016)

    Article  Google Scholar 

  32. Wang, C., Wang, X., Xia, Z., Zhang, C.: Ternary radial harmonic Fourier moments based robust stereo image zero-watermarking algorithm. Inf. Sci. 470, 109–120 (2019)

    Article  Google Scholar 

  33. Xia, Z.Q., Wang, X.Y., Zhou, W.J.: Color medical image lossless watermarking using chaotic system and accurate quaternion polar harmonic transforms. Signal Process. 157, 108–118 (2019)

    Article  Google Scholar 

  34. Xia, Z., Wang, X., Wang, M., Unar, S., Wang, C., Liu, Y., Li, X.: Geometrically invariant color medical image null-watermarking based on precise quaternion polar harmonic Fourier moments. IEEE Access 7, 122544–122560 (2019)

    Article  Google Scholar 

  35. H. Y. Yang, S. R. Qi, P. P. Niu, X. Y. Wang. Color image zero-watermarking based on fast quaternion generic polar complex exponential transform. Signal Processing: Image Communication, 2020, 82:115747.

  36. Ren, H., Ping, Z., Bo, W., Wu, W.: Multidistortion-invariant image recognition with radial harmonic Fourier moments. J. Opt. Soc. Am. A 20(4), 631–637 (2003)

    Article  MathSciNet  Google Scholar 

  37. Averbuch, A., Coifman, R.R., Donoho, D.L.: Fast and accurate polar Fourier transform. Appl. Comput. Harmon. Anal. 21(2), 145–167 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, C., Wang, X., Li, Y., Xia, Z., Zhang, C.: Quaternion polar harmonic Fourier moments for color images. Inf. Sci. 450, 141–156 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, Y.N.: Quaternion polar harmonic transforms for color images. IEEE Signal Process. Lett. 20(8), 803–806 (2013)

    Article  Google Scholar 

  40. Hamilton, W.R.: Elements of Quaternions. Longmans Green, London (1866)

    Google Scholar 

  41. Wang, C.P., Wang, X.Y., Xia, Z.Q.: Geometrically invariant image watermarking based on fast radial harmonic Fourier moments. Signal Process. Image Commun. 45, 10–23 (2016)

    Article  Google Scholar 

  42. Hosny, K.M., Darwish, M.M.: Resilient color image watermarking using accurate quaternion radial substituted chebyshev moments. ACM Trans. Multimed. Comput. Commun. 15, 24727–24750 (2019)

    Google Scholar 

  43. Yang, H.Y., Wang, X.Y., Wang, P.: Geometrically resilient digital watermarking scheme based on radial harmonic Fourier moments magnitude. AEU Int. J. Electron. Commun. 69(1), 389–399 (2015)

    Article  Google Scholar 

  44. Teh, C.H., Chin, R.T.: On image analysis by the methods of moments. IEEE Trans. Pattern Anal. Mach. Intelli. 10(4), 496–513 (1988)

    Article  MATH  Google Scholar 

  45. Yap, P.T., Jiang, X., Kot, A.C.: Two-dimensional polar harmonic transforms for invariant image representation. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1259–1270 (2010)

    Article  Google Scholar 

  46. Zhu, H., Yang, Y., Gui, Z., Zhu, Y., Chen, Z.: Image analysis by generalized Chebyshev-Fourier and generalized pseudo-Jacobi-Fourier moments. Pattern Recognit. 51, 1–11 (2016)

    Article  MATH  Google Scholar 

  47. Xiao, B., Wang, G., Li, W.: Radial shifted Legendre moments for image analysis and invariant image recognition. Image Vis. Comput. 32, 994–1006 (2014)

    Article  Google Scholar 

  48. Guo, F., Ye, S., Yang, T., Wang, X.: Robust circularly orthogonal moment based on Chebyshev rational function. Digital. Signal Process. 62, 249–258 (2017)

    Article  Google Scholar 

  49. Wang, X.Y., Li, W.Y., Yang, H.Y., Niu, P.P., Li, Y.W.: Invariant quaternion radial harmonic Fourier moments for color image retrieval. Opt. Laser Technol. 66, 78–88 (2015)

    Article  Google Scholar 

  50. Hu, H., Zhang, Y., Shao, C.: Orthogonal moments based on exponent functions: exponent-Fourier moments. Pattern Recognit. 47(8), 2596–2606 (2014)

    Article  MATH  Google Scholar 

  51. J. C. Lagarias, H. A. Porta, K. B. Stolarsky. Asymmetric tent map expansions. I. Eventually periodic points, J. Lond. Math. Soc.-Second Ser, 1993, 2(3): 542–556.

  52. Johnson, K.A., Becker, J.A.: The Whole Brain Atlas. http://www.med.harvard.edu/AANLIB/home.html

  53. Parah, S.A., Sheikh, J.A., Ahad, F.: Information hiding in medical images: a robust medical image watermarking system for E-healthcare. Multimed. Tools Appl. 76(8), 10599–10633 (2017)

    Article  Google Scholar 

  54. Kalker, T., Haitsma, J., Oostveen, J.C.: Issues with digital watermarking and perceptual hashing. In: Proceedings of SPIE 4518, Multimedia Systems and Applications, Denver, Co, USA, pp 189–197 (2001)

Download references

Acknowledgements

This work was supported partially by the National Natural Science Foundation of China (Nos. 61472171 and 61701212), Scientific Research Project of Liaoning Provincial Education Department (No. LJKZ0985), and Natural Science Foundation of Liaoning Province (2019-ZD-0468).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Ying Yang or Xiang-Yang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned} \varphi_{n,m}^{{lp^{\prime}}} & = \int\limits_{0}^{2\pi } {\int\limits_{ - \infty }^{0} {g^{\prime}(\rho^{\prime},\theta^{\prime})e^{ - jn\pi \rho } e^{ - jm\theta } {\text{d}}\rho {\text{d}}\theta } } \\ & \quad + \int\limits_{0}^{2\pi } {\int\limits_{ - \infty }^{0} {g^{\prime}(\rho^{\prime},\theta^{\prime})e^{jn\pi \rho } e^{ - jm\theta } {\text{d}}\rho {\text{d}}\theta } } \\ & = \int\limits_{0}^{2\pi } {\int\limits_{ - \infty }^{0} {g(\rho + \log_{\lambda } (s),\theta + \phi )e^{ - jn\pi \rho } e^{ - jm\theta } {\text{d}}\rho {\text{d}}\theta } } \\ & \quad + \int\limits_{0}^{2\pi } {\int\limits_{ - \infty }^{0} {g(\rho + \log_{\lambda } (s),\theta + \phi )e^{jn\pi \rho } e^{ - jm\theta } {\text{d}}\rho {\text{d}}\theta } } \\ & = \int\limits_{0}^{2\pi } {\int\limits_{ - \infty }^{0} {g(\rho ,\theta )e^{{ - jn\pi (\rho - \log_{\lambda } (s))}} e^{ - jm(\theta - \phi )} {\text{d}}\rho {\text{d}}\theta } } \\ & \quad + \int\limits_{0}^{2\pi } {\int\limits_{ - \infty }^{0} {g(\rho ,\theta )e^{{jn\pi (\rho - \log_{\lambda } (s))}} e^{ - jm(\theta - \phi )} {\text{d}}\rho {\text{d}}\theta } } \\ & = e^{{jn\pi \cdot \log_{\lambda } (s) + jm\phi }} \int\limits_{0}^{2\pi } {\int\limits_{ - \infty }^{0} {g(\rho ,\theta )} } e^{ - jn\pi \rho } e^{ - jm\theta } {\text{d}}\rho {\text{d}}\theta \\ & \quad + e^{{ - jn\pi \cdot \log_{\lambda } (s) + jm\phi }} \int\limits_{0}^{2\pi } {\int\limits_{ - \infty }^{0} {g(\rho ,\theta )e^{jn\pi \rho } } } e^{ - jm\theta } {\text{d}}\rho {\text{d}}\theta \\ \end{aligned}$$
(A-1)

Take the absolute value of both sides of this equation, we have

$$\begin{aligned} \left| {\phi_{n,m}^{{lp^{\prime}}} } \right| &= \left| {e^{{jn\pi \cdot \log_{\lambda } (s) + jm\phi }} \int\limits_{0}^{2\pi } {\int\limits_{ - \infty }^{0} {g(\rho ,\theta )e^{ - jn\pi \rho } e^{ - jm\theta } {\text{d}}\rho {\text{d}}\theta }}}\right. \\ &\quad \left.{ {{+ e^{{ - jn\pi \cdot \log_{\lambda } (s) + jm\phi }} \int\limits_{0}^{2\pi } {\int\limits_{ - \infty }^{0} {g(\rho ,\theta )e^{jn\pi \rho } e^{ - jm\theta } {\text{d}}\rho {\text{d}}\theta } } } } } \right| \end{aligned}$$
(A-2)

And, consequently

$$\begin{aligned}\left| {\phi_{n,m}^{{lp^{\prime}}} } \right| &= \left| {\int\limits_{0}^{2\pi } {\int\limits_{ - \infty }^{0} {g(\rho ,\theta )e^{ - jn\pi \rho } e^{ - jm\theta } d\rho d\theta } } } \right| \\ &\quad + \left| {\int\limits_{0}^{2\pi } {\int\limits_{ - \infty }^{0} {g(\rho ,\theta )e^{jn\pi \rho } e^{ - jm\theta } d\rho d\theta } } } \right| = \left| {\phi_{n,m}^{lp} } \right| \end{aligned}$$
(A-3)

Appendix B

Take N as an example when N is even

$$\begin{aligned}\phi_{2k,m}& = \int\limits_{0}^{2\pi } {\int\limits_{ - \infty }^{0} {g(r,\theta )} } e^{ - j2k\pi r} e^{ - jm\theta } {\text{d}}r{\text{d}}\theta \\ &\quad + \int\limits_{0}^{2\pi } {\int\limits_{ - \infty }^{0} {g(r,\theta )} } e^{j2k\pi r} e^{ - jm\theta } \end{aligned}$$
(B-1)

To achieve discretization, the radius \(r\) and angle \(\theta\) are divided into \(M\) parts, and then

$$r_{u} = \frac{u}{M}\quad \theta_{v} = \frac{2\pi v}{M}$$
(B-2)

The discrete form of RHFM is

$$\begin{aligned} \phi_{2k,m} & = \frac{1}{{M^{2} }}\sum\limits_{u = 0}^{M - 1} {\sum\limits_{v = 0}^{M - 1} {g(r_{u} ,\theta_{v} )} }\\&\quad\times \exp \left( { - j\frac{2\pi }{M}( - k)u} \right)\exp \left( { - jm\frac{2\pi }{M}v} \right) \\ & \quad + \frac{1}{{M^{2} }}\sum\limits_{u = 0}^{M - 1} {\sum\limits_{v = 0}^{M - 1} {g(r_{u} ,\theta_{v} )}}\\&\quad\times \exp \left( { - j\frac{2\pi }{M}ku} \right)\exp \left( { - jm\frac{2\pi }{M}v} \right). \\ \end{aligned}$$
(B-3)

According to the 2D-DFT

$$\hat{f}(\xi_{x} ,\xi_{y} ) = \sum\limits_{{i_{1} = 0}}^{N - 1} {\sum\limits_{{i_{2} = 0}}^{N - 1} {f[i_{1} ,i_{2} ]} } \exp ( - j(i_{1} \xi_{x} + i_{2} \xi_{y} ))$$
(B-4)

where

$$\left\{ {\xi_{x} = \frac{{2\pi k_{1} }}{N},\xi_{y} = \frac{{2\pi k_{2} }}{N}} \right\}$$
(B5)

From this we can obtain

$$\phi_{2k,m} = \hat{f}( - \xi_{x} ,\xi_{y} ) + \hat{f}(\xi_{x} ,\xi_{y} ).$$
(B-6)

When N is 0 and when N is odd, the proof is similar to the above.

Appendix C

The sampling point PP is substituted into the formula of 2D discrete RHFMs, we can obtain,

$$\begin{aligned} \phi_{2k,m} &= \frac{1}{2\pi }\sum\limits_{0}^{2\pi } \sum\limits_{0}^{1} g[i_{1} ,i_{2} ]e^{{j\left( {i_{1} \frac{2\pi pq}{{N^{2} }} - i_{2} \frac{\pi q}{N}} \right)}} \\ &\quad+ \frac{1}{2\pi }\sum\limits_{0}^{2\pi } \sum\limits_{0}^{1} g[i_{1} ,i_{2} ]e^{{ - j\left( {i_{1} \frac{2\pi pq}{{N^{2} }} + i_{2} \frac{\pi q}{N}} \right)}} \end{aligned}$$
(C-1)

I'm going to deform the above equation

$$\begin{aligned} \phi_{2k,m}& = \frac{1}{2\pi }\sum\limits_{{i_{1} = 0}}^{N - 1} e^{{ji_{1} \frac{2\pi pq}{{N^{2}}} }} \sum\limits_{{i_{2} = 0}}^{N - 1} g[i_{1} ,i_{2} ]e^{{ - ji_{2} \frac{\pi q}{N} } } \\ &\quad + \frac{1}{2\pi }\sum\limits_{{i_{1} = 0}}^{N - 1} e^{{ - ji_{1} \frac{2\pi pq}{{N^{2} }} }} \sum\limits_{{i_{2} = 0}}^{N - 1} g[i_{1} ,i_{2} ]e^{{ - ji_{2} \frac{\pi q}{N}}} . \end{aligned}$$
(C-2)

According to the above formula, when N is even, the RHFMs are obtained by adding the Fourier transform of two very similar forms, so let

$$\phi_{1}^{BV} = \frac{1}{2\pi }\sum\limits_{{i_{1} = 0}}^{N - 1} {e^{{ - ji_{1} \frac{2\pi pq}{{N^{2} }}}} } \sum\limits_{{i_{2} = 0}}^{N - 1} {g[i_{1} ,i_{2} ]e^{{ - ji_{2} \frac{\pi q}{N}}} }$$
(C-3)

So let's think about the sum inside

$$\phi_{1}^{BV} [i_{1} ,q] = \frac{1}{2\pi }\sum\limits_{{i_{2} = 0}}^{N - 1} {g[i_{1} ,i_{2} ]e^{{ - ji_{2} \frac{\pi q}{N}}} }$$
(C-4)

It can be seen that \(\phi_{1}^{BV}\) is the one-dimensional Fourier transform of \(f\) in the direction of \(i_{2}\). In order to adjust the range of variable \(q\), we carry out zero filling of \(f\) in the direction of \(i_{2}\)

$$g_{{Zi_{2} }} [i_{1} ,i_{2} ] = \left\{ {\begin{array}{*{20}l} {g[i_{1} ,i_{2} ]} \hfill & {0 \le i_{1} < N} \hfill \\ 0 \hfill & {N \le i_{2} < 2N} \hfill \\ \end{array} } \right.$$
(C-5)

Here

$$\begin{aligned} \phi_{1}^{BV} [i_{1} ,q] &= \frac{1}{2\pi }\sum\limits_{{i_{2} = 0}}^{N - 1} {g[i_{1} ,i_{2} ]e^{{ - ji_{2} \frac{\pi q}{N}}} }\\ &= \frac{1}{2\pi }\sum\limits_{{i_{2} = 0}}^{{{2}N - 1}} {g_{{Zi_{2} }} [i_{1} ,i_{2} ]e^{{ - ji_{2} \frac{{{2}\pi q}}{{{2}N}}}} } \end{aligned}$$
(C-6)

Set \(q^{\prime} = q + N\), we're going to get

$$\begin{aligned} \phi_{1}^{BV} [i_{1} ,q^{\prime}] &= \frac{1}{2\pi }\sum\limits_{{i_{2} = 0}}^{{{2}N - 1}} {g_{{Zi_{2} }} [i_{1} ,i_{2} ]e^{{ - ji_{2} \frac{{{2}\pi (q^{\prime} - N)}}{{{2}N}}}} }\\& = \frac{1}{2\pi }\sum\limits_{{i_{2} = 0}}^{{{2}N - 1}} {g_{{Zi_{2} }} [i_{1} ,i_{2} ] \cdot ( - 1)^{{i_{2} }} \cdot e^{{ - ji_{2} \frac{{{2}\pi q^{\prime}}}{{{2}N}}}} } \end{aligned}$$
(C-7)

Now let's think about the sum on the outside

$$\phi_{1}^{BV} [p,q] = \sum\limits_{{i_{1} = 0}}^{N - 1} {\phi_{1}^{BV} [i_{1} ,q]e^{{ - ji_{1} \frac{2\pi pq}{{N^{2} }}}} } = \sum\limits_{{i_{1} = 0}}^{N - 1} {\phi_{1}^{BV} [i_{1} ,q]e^{{ - ji_{1} \frac{2\pi q}{N} \cdot \frac{p}{N}}} }$$
(C-8)

Set \(\alpha = \frac{p}{N}\), we can obtain

$$\phi_{1}^{BV} [p,q] = \sum\limits_{{i_{1} = 0}}^{N - 1} {\phi_{1}^{BV} [i_{1} ,q]e^{{ - j\frac{{2\pi qi_{1} }}{N} \cdot \alpha }} }$$
(C-9)

From the identity relation \({2}i_{1} q = q^{2} + i_{1}^{2} - (q - i_{1} )^{2}\), we can get by deforming the above equation

$$\phi_{1}^{BV} [p,q] = \sum\limits_{{i_{1} = 0}}^{N - 1} {\phi_{1}^{BV} [i_{1} ,q]e^{{ - \frac{j\pi \alpha }{N}(q^{2} + i_{1}^{2} - (q - i_{1} )^{2} )}} } = e^{{ - \frac{j\pi \alpha }{N}q^{2} }} \sum\limits_{{i_{1} = 0}}^{N - 1} {\phi_{1}^{BV} [i_{1} ,q]e^{{ - \frac{j\pi \alpha }{N}i_{1}^{2} }} } e^{{\frac{j\pi \alpha }{N}(q - i_{1} )^{2} }}$$
(C-10)

So if \(s[i_{1} ] = e^{{ - \frac{j\pi \alpha }{N}i_{1}^{2} }}\), \(\phi_{1}^{BV} [p,q]\) can be represented as

$$\phi_{1}^{BV} [p,q] = s[q]\sum\limits_{{i_{1} = 0}}^{N - 1} {\phi_{1}^{BV} [i_{1} ,q]s[i_{1} ]} s^{ * } [q - i_{1} ]$$
(C-11)

Thus, the complete formula of RHFMs when N is even can be obtained as follows:

$$\begin{aligned} \varphi_{2k,m} = s[q]\sum\limits_{{i_{1} = 0}}^{N - 1} {F_{{}}^{BV} [i_{1} ,q] \cdot s_{1} [i_{1} ] \cdot s^{*} [q - i_{1} ] }\\ \quad+ s[q]\sum\limits_{{i_{1} = 0}}^{N - 1} {F_{{}}^{BV} [i_{1} ,q] \cdot s_{2} [i_{1} ] \cdot s^{*} [q - i_{1} ]} \end{aligned}$$
(C-12)

Here, \(s_{1} [i_{1} ] = \exp \left( { - \frac{j\pi \alpha }{N} \cdot i_{1}^{2} } \right)\), \(s_{2} [i_{1} ] = \exp \left( {\frac{j\pi \alpha }{N} \cdot i_{1}^{2} } \right)\).

Appendix D

Take \(n\) as an example when \(n\) is even:

$$\begin{aligned} \hat{\phi }_{2k,m}^{L} & = \frac{1}{2}\int\limits_{0}^{1} {\int\limits_{0}^{2\pi } {T_{2k}^{*} } } (\rho )\exp ( - \mu m(\theta - \varphi )){\text{d}}\rho {\text{d}}\theta \\ & = \int\limits_{0}^{1} {\int\limits_{0}^{2\pi } {g(\rho ,\theta ,z)} } \exp ( - \mu 2k\pi \rho )\exp ( - \mu m\theta ){\text{d}}\rho {\text{d}}\theta \\ & \quad + \int\limits_{0}^{1} {\int\limits_{0}^{2\pi } {g(\rho ,\theta ,z)} } \exp (\mu 2k\pi \rho )\exp ( - \mu m\theta ){\text{d}}\rho {\text{d}}\theta \\ & = \int\limits_{0}^{1} {\int\limits_{0}^{2\pi } {g(\rho + \log_{\lambda } (s),\theta + \varphi ,z)} } \exp ( - \mu 2k\pi \rho )\exp ( - \mu m\theta ){\text{d}}\rho {\text{d}}\theta \\ & \quad + \int\limits_{0}^{1} {\int\limits_{0}^{2\pi } {g(\rho + \log_{\lambda } (s),\theta + \phi ,z)} } \exp (\mu 2k\pi \rho )\exp ( - \mu m\theta ){\text{d}}\rho {\text{d}}\theta . \\ & = \int\limits_{0}^{1} {\int\limits_{0}^{2\pi } {g(\rho ,\theta ,z)} } \exp ( - \mu 2k\pi (\rho - \log_{\lambda } (s)))\exp ( - \mu m(\theta - \varphi ))d\rho d\theta \\ & \quad + \int\limits_{0}^{1} {\int\limits_{0}^{2\pi } {g(\rho ,\theta ,z)} } \exp (\mu 2k\pi (\rho - \log_{\lambda } (s)))\exp ( - \mu m(\theta - \varphi )){\text{d}}\rho {\text{d}}\theta \\ & = \exp (\mu 2k\pi \cdot \log_{\lambda } (s) + \mu m\varphi )\\ &\quad \int\limits_{0}^{1} {\int\limits_{0}^{2\pi } {g(\rho ,\theta ,z)\exp ( - \mu 2k\pi \rho )\exp ( - \mu m\theta ){\text{d}}\rho {\text{d}}\theta } } \\ & \quad + \exp ( - \mu 2k\pi \cdot \log_{\lambda } (s) + \mu m\varphi )\\ &\quad \times\int\limits_{0}^{1} {\int\limits_{0}^{2\pi } {g(\rho ,\theta ,z)} } \exp (\mu 2k\pi \rho )\exp ( - \mu m\theta ){\text{d}}\rho {\text{d}}\theta . \\ \end{aligned}$$

Thus, we can obtain

$$\begin{aligned} \left| {\hat{\phi }_{n,m}^{L} } \right| & = \left| {\exp (\mu 2k\pi \cdot \log_{\lambda } (s) + \mu m\varphi )}\right.\\& \quad \left.{\int\limits_{0}^{1} {\int\limits_{0}^{2\pi } {g(\rho ,\theta ,z)} } \exp ( - \mu 2k\pi \rho )\exp ( - \mu m\theta ){\text{d}}\rho {\text{d}}\theta } \right| \\ & \quad + \left| {\exp ( - \mu 2k\pi \cdot \log_{\lambda } (s) + \mu m\varphi )}\right. \\&\quad \left.{\int\limits_{0}^{1} {\int\limits_{0}^{2\pi } {g(\rho ,\theta ,z)} } \exp (\mu 2k\pi \rho )\exp ( - \mu m\theta ){\text{d}}\rho {\text{d}}\theta .} \right| \\ & = \left| {\phi_{n,m}^{L} } \right|. \\ \end{aligned}$$
(D-1)

Therefore, we can say that the quaternion log-polar RHFMs have rotation and scaling invariance.

In the same way, we can obtain the \(\left| {\phi_{n,m}^{R} } \right| = \left| {\phi_{n,m}^{R} } \right|.\)

Appendix E

To calculate the quaternion RHFMs in log-polar domain, it’s necessary to determine the relationship between the log-polar RHFMs and quaternion log-polar RHFMs. After determining the relationship, it’s easy to obtain FQLPRHFMs according to the FLPRHFMs. The proof process is as follows

$$\begin{aligned} \phi_{n,m}^{R} & = \frac{1}{2\pi }\int_{0}^{2\pi } {\int_{0}^{1} {g\left( {\rho ,\theta } \right)T_{n}^{{}} \left( \rho \right)\exp \left( { - \mu m\theta } \right)} } {\text{d}}\rho {\text{d}}\theta \\ & = \frac{1}{2\pi }\int_{0}^{2\pi } \int_{0}^{1} \left[ {g_{R} \left( {\rho ,\theta } \right)i + g_{G} \left( {\rho ,\theta } \right)j + g_{B} \left( {\rho ,\theta } \right)k} \right]\\ &\quad T_{n}^{{}} \left( \rho \right)\exp \left( { - \mu m\theta } \right) {\text{d}}\rho {\text{d}}\theta \\ & = i\frac{1}{2\pi }\int_{0}^{2\pi } {\int_{0}^{1} {g_{R} \left( {\rho ,\theta } \right)} T_{n} \left( \rho \right)\exp \left( { - \mu m\theta } \right)} {\text{d}}\rho {\text{d}}\theta \\ & \quad + j\frac{1}{2\pi }\int_{0}^{2\pi } {\int_{0}^{1} {g_{G} \left( {\rho ,\theta } \right)} T_{n}^{{}} \left( \rho \right)\exp \left( { - \mu m\theta } \right)} {\text{d}}\rho {\text{d}}\theta \\ & \quad + k\frac{1}{2\pi }\int_{0}^{2\pi } {\int_{0}^{1} {g_{B} \left( {\rho ,\theta } \right)} T_{n} \left( \rho \right)\exp \left( { - \mu m\theta } \right)} {\text{d}}\rho {\text{d}}\theta \\ & = i\frac{1}{2\pi }\int_{0}^{2\pi } {\int_{0}^{1} {g_{R} \left( {\rho ,\theta } \right)} T_{n} \left( \rho \right)} \left( {\cos m\theta - \mu \sin m\theta } \right){\text{d}}\rho {\text{d}}\theta \\ & \quad + j\frac{1}{2\pi }\int_{0}^{2\pi } {\int_{0}^{1} {f_{G} \left( {\rho ,\theta } \right)} T_{n} \left( \rho \right)\left( {\cos m\theta - \mu \sin m\theta } \right)} {\text{d}}\rho {\text{d}}\theta \\ & \quad + k\frac{1}{2\pi }\int_{0}^{2\pi } {\int_{0}^{1} {f_{B} \left( {\rho ,\theta } \right)} T_{n} \left( \rho \right)\left( {\cos m\theta - \mu \sin m\theta } \right)} {\text{d}}\rho {\text{d}}\theta \\ & = i\left[ {\frac{1}{2\pi }\int_{0}^{2\pi } {\int_{0}^{1} {g_{R} \left( {\rho ,\theta } \right)} T_{n}^{{}} \left( \rho \right)} \cos \left( {m\theta } \right){\text{d}}\rho {\text{d}}\theta } \right. \\ & \left. \quad - \mu \frac{1}{2\pi }\int_{0}^{2\pi } {\int_{0}^{1} {g_{R} \left( {\rho ,\theta } \right)} T_{n} \left( \rho \right)} \sin \left( {m\theta } \right){\text{d}}\rho {\text{d}}\theta \right] \\ & \quad + j\left[ {\frac{1}{2\pi }\int_{0}^{2\pi } {\int_{0}^{1} {g_{G} \left( {\rho ,\theta } \right)} T_{n}^{{}} \left( \rho \right)} \cos \left( {m\theta } \right){\text{d}}\rho {\text{d}}\theta } \right. \\ & \left. \quad - \mu \frac{1}{2\pi }\int_{0}^{2\pi } {\int_{0}^{1} {g_{G} \left( {\rho ,\theta } \right)} T_{n} \left( \rho \right)} \sin \left( {m\theta } \right){\text{d}}\rho {\text{d}}\theta \right] \\ & \quad + k\left[ {\frac{1}{2\pi }\int_{0}^{2\pi } {\int_{0}^{1} {g_{B} \left( {\rho ,\theta } \right)} T_{n} \left( \rho \right)\cos \left( {m\theta } \right)} {\text{d}}\rho {\text{d}}\theta } \right. \\ & \quad \left. { - \mu \frac{1}{2\pi }\int_{0}^{2\pi } {\int_{0}^{1} {g_{B} \left( {\rho ,\theta } \right)} T_{n}^{{}} \left( \rho \right)} \sin \left( {m\theta } \right){\text{d}}\rho {\text{d}}\theta } \right] \\ & = i\left[ {{\text{real}}\left( {\phi_{n,m} \left( {g_{R} } \right)} \right) - \frac{1}{\sqrt 3 }(i + j + k) \cdot {\text{imag}}\left( {\phi_{n,m} \left( {g_{R} } \right)} \right)} \right] \\ & \quad + j\left[ {{\text{real}}\left( {\phi_{n,m} \left( {g_{G} } \right)} \right) - \frac{1}{\sqrt 3 }(i + j + k) \cdot {\text{imag}}\left( {\phi_{n,m} \left( {g_{G} } \right)} \right)} \right] \\ & \quad + k\left[ {{\text{real}}\left( {\phi_{n,m} \left( {g_{B} } \right)} \right) - \frac{1}{\sqrt 3 }(i + j + k) \cdot {\text{imag}}\left( {\phi_{n,m} \left( {g_{B} } \right)} \right)} \right] \\ & = A_{n,m}^{R} + iB_{n,m}^{R} + jC_{n,m}^{R} + kD_{n,m}^{R} \\ \end{aligned}$$
(E-1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, PP., Wang, L., Wang, F. et al. Fast Quaternion Log-Polar Radial Harmonic Fourier Moments for Color Image Zero-Watermarking. J Math Imaging Vis 64, 537–568 (2022). https://doi.org/10.1007/s10851-022-01084-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-022-01084-0

Keywords

Navigation