
Journal of Mathematical Imaging and Vision (2022) 64:493–505
https://doi.org/10.1007/s10851-022-01085-z

A Tighter Relaxation for the Relative Pose Problem Between Cameras

Mercedes Garcia-Salguero1 · Jesus Briales1 · Javier Gonzalez-Jimenez1

Received: 15 October 2021 / Accepted: 8 March 2022 / Published online: 6 April 2022
© The Author(s) 2022

Abstract
This paper tackles the resolution of the Relative Pose problem with optimality guarantees by stating it as an optimization
problem over the set of essential matrices that minimizes the squared epipolar error. We relax this non-convex problem with
its Shor’s relaxation, a convex program that can be solved by off-the-shelf tools. We follow the empirical observation that
redundant but independent constraints tighten the relaxation. For that, we leverage equivalent definitions of the set of essential
matrices based on the translation vectors between the cameras. Overconstrained characterizations of the set of essential
matrices are derived by the combination of these definitions. Through extensive experiments on synthetic and real data, our
proposal is empirically proved to remain tight and to require only 7 milliseconds to be solved even for the overconstrained
formulations, finding the optimal solution under a wide variety of configurations, including highly noisy data and outliers. The
solver cannot certify the solution only in very extreme cases, e.g. noise 100 pix and number of pair-wise correspondences
under 15. The proposal is thus faster than other overconstrained formulations while being faster than the minimal ones,
making it suitable for real-world applications that require optimality certification.
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1 Introduction

This work tackles the central, calibrated Relative Pose prob-
lem (RPp), in which given a set of N pair-wise feature
correspondences between two images coming from two (cen-
tral and calibrated) cameras, we seek the relative rotation
R and baseline b (line joining the two camera centers [1])
between these two cameras, as it is shown in Fig. 1.
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Solving the RPp is the cornerstone of visual odome-
try applications [2–4] and other more complex computer
vision tasks, such as Simultaneous Localization and Map-
ping [5,6] or Structure from Motion [7–9]. Although the
gold standard for RPp poses it as a 2-view Bundle Adjust-
ment (that minimizes the re-projection error [1,10]), it is
also a hard, non-convex problem which suffers from local
minima. Therefore, it is a common and recommended prac-
tice to initialize it with the estimate obtained from a simpler
formulation, typically based on the squared epipolar error.
This algebraic error is related to the epipolar constraint [1]
that associates a pair-wise feature correspondence ( f i , f ′

i )

with the unknown relative baseline b (as a 3D vector) and
the rotation R (as a 3 × 3 matrix), and it is defined by
the expression f Ti ([b]xR) f ′

i = 0, where [b]x denotes the
cross-product with b (see Eq. (1)). In the noiseless case the
equality holds exactly; however, in the presence of noise
f Ti ([b]xR) f ′

i = εi �= 0, which is defined as the epipolar
error.

One common approach to the resolution of this simplified
RPp based on the epipolar error relies on the introduction
of the so-called essential matrix E = [b]xR [1,11], that
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Fig. 1 Given a set of N pair-wise correspondences ( f i , f ′
i ) between

two central and calibrated cameras 1−2, in this workwe aim to estimate
the relative rotation R and baseline (position) b between these two
frames

allows us to write the epipolar error for each observation
εi , which is quadratic in the entries of the unknowns (rota-
tion and baseline), as a linear constraint in the entries of the
essential matrix, i.e. εi = f Ti E f ′

i [1]. Due to the scale ambi-
guity, this problem has only five degrees of freedom. Hence,
five correspondences in general position suffice to obtain a
solution to the problem (the so-called five-points algorithm).
Although thisminimal approach can be embedded into robust
frameworks, e.g. RANSAC, it is not guaranteed that the com-
puted solution is optimal in the presence of noise. Introducing
more correspondences has been shown to improve the accu-
racy of the solution [12–15]. In particular, the direct linear
transformation (DLT) method requires eight or more pair
of observations to estimate a solution. This solution, how-
ever, is not necessarily an essential matrix, since this method
obviates its internal constraints [1,16]. A (potential subop-
timal) solution can be achieved by projecting the estimate
onto the set of essential matrices [1]. Other methods [13,17–
20] propose to refine an initial estimate, e.g. from the five
points algorithm, directly on the manifold of essential matri-
ces. However, given the non-convexity of the problem, these
approaches cannot guarantee the optimality of the solution.

A common approach to the global resolution of a non-
convex problem consists of the description of a relaxation for
the given problem, whose global optimum is easier to reach
in general. The solution to this relaxation usually provides
with all the information required to estimate an approxima-
tion of the actual global solution to the original problem. The
quality of this approximation, however, depends on the own
relaxation. If the relaxation happens to be tight, meaning it
approximates well the original problem, then it provides also
with a certificate of optimality for the solution to the orig-
inal non-convex problem. This was the approach followed
by Briales et al. in [14] and Zhao in [15], where two dif-
ferent convex semidefinite relaxations were derived for the
RPp. This was also the underlying process followed in [21],
where we proposed an algorithm to certify if a solution to the

RPp is optimal. That work, however, builds upon a specific
relaxation of the original problem that may happen to not
be tight for some problem instances. In those cases, the pro-
posal is unable to certify the optimality of the solution, even
if it is the optimum. To overcome this limitation, previous
works [14,22,23] have shown that the introduction of addi-
tional, independent constraints leads to tighter relaxations.
Overconstrained formulations for the RPp, such as the one
in [14], empirically remain tight under challenging scenes,
even with high noise and low number of correspondences.
However, the computational time required by the off-the-
shelf tools to solve the problem depends on the number of
constraints and variables. Therefore, special care must be
paid when selecting redundant formulations since they may
become too slow to be employed in real applications. Fur-
ther, these redundant constraints are highly dependent on the
problemvariables and the intrinsic nature of the search space.
If the domain can be defined in different forms potentially
with different variables, as the set of essential matrices does,
then the combination of those definitions can be leveraged to
obtain a redundant set of constraints.

1.1 Contributions

In this work we leverage and combine different character-
izations of the set of normalized essential matrices as the
feasible set of the RPp based on the minimization of the
squared normalized epipolar error. The final problem has
15 variables and 28 (redundant) constraints and presents a
convex SDP relaxation that is proved empirically to remain
tight in almost all the problem instances tested and can be
solved in less than 7 milliseconds on a standard computer,
hence being faster than other overconstrained formulations
[14]. We first employ separately two different minimal set
of constraints (LEFT and RIGHT) in Sect. 4 that fully define
the essential matrix set. Although they tend to remain tight,
each of them fails to estimate the optimal solution in some
common scenarios. The combination of these independent
sets of constraints leads to a redundant formulation (named
BOTH) in Sect. 5.1 which empirically proves to be tighter
than any of the two previous ones. We incorporate another
characterization of the set of essential matrices, obtaining the
last redundant problem (ADJ) with only 15 variables and 28
constraints in Sect. 5.2.

Last, we carry out extensive experiments on both syn-
thetic and real data in Sect. 6, covering a broad set of problem
regimes, including problem instances with corrupted random
correspondences (high noise or 100% outliers). These exper-
iments support the claims of this work regarding the tightness
and show that our last redundant characterization (ADJ) is
able to maintain the tightness in almost all the cases, failing
only (in less than 10% of the cases) in very unrealistic cases,
when the number of correspondences is very low (under 15)
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and very high noise (more than 50 pix). All the proposed
solvers are able to estimate and certify the solution to the
RPp in less than 7 milliseconds.

Although Sect. 6 shows empirically that strong duality
holds in most of the cases for all the proposed formulations, a
formal demonstration of this behavior is not provided. Please,
notice that while we approach the Relative Pose problem
through the essentialmatrix, the relative rotation and baseline
can be easily recovered from it by any classic computer vision
algorithm [1].

2 RelatedWork

Local optimization methods, as the one presented in Sect.
1, are not the only option when tackling the non-minimal
N-point problem. There exist other approaches for this non-
convex optimization that are able to obtain and/or certify the
optimality of the solution. Some of the most relevant are
commented next.

Hartley and Kahl [10] decouple the rotation from the
translation while estimating the essential matrix with a cost
function that minimizes the L∞ norm and solve the problem
by a globally optimal Branch-and-Bound. Kneip and Lynen
[24] enforce the coplanarity of the epipolar plane (an alge-
braic error), which serves to determine the relative rotation
independently of the translation. The proposed eigenvalue
formulation was solved by an efficient Levenberg-Marquardt
andBranch-and-Bound scheme. In [19], Yang et al., based on
[10], incorporate outliers and solve an inlier-set maximiza-
tion problem via Branch-and-Bound. Nevertheless, due to its
exploratory nature, Branch-and-Bound presents slow perfor-
mance and an exponential computational time in worst-case
scenarios.

Other approaches rely on the re-formulation of the original
problem as a Quadratically Constrained Quadratic Problem
(QCQP). Although these problems are still NP-hard to solve
in most of the cases, we can find relaxations that can be actu-
ally solved and that may provide some useful information
about the global optimal solution to the original problem. Of
interest are those relaxations that are tight, which means we
can recover from them the exact optimal solution to the orig-
inal non-convex QCQP with an optimality certificate. One
of these relaxations is the so-called Shor’s relaxation [25],
in which we relax the QCQP onto a Semidefinite Positive
problem (SDP), which can be actually solved up to arbitrary
accuracy in polynomial time by off-the-shelf tools. These
relaxations have been exploited for different problems in the
literature, e.g. Rotation Synchronization [26–28] and Pose
Synchronization [29,30]. This was also the approach fol-
lowed recently by Zhao in [15], in which a minimal QCQP
formulation (12 variables and 7 constraints) leads to a small
SDP relaxation that can be solved in 4ms. Another relax-

ation that has been exploited previously in the literature for
other problems is the dual problem [31]. Recently, Garcia-
Salguero et al. [21] leverage this relaxation (a convex SDP
problem) and propose an algorithm that is able to certify the
solution to the non-minimal N-point Relative Pose problem
(RPp). This certifier is based on a specific formulation of the
original problem, with a minimally constrained definition of
the set of essential matrices. Although these minimal for-
mulations enjoy the advantages of small convex relaxations,
they turn out to be not always tight in practice. Nevertheless,
these relaxations and their behavior depend on the specific
parameterization of the search space, in this case the set of
essential matrices; changing the explicit expressions, i.e. the
constraints, that define this set lead to different relaxations,
that could potentially work when others do not.

It has been shown in previous works, see e.g. [32–34], that
the introduction of independent but redundant constraints
[35, Ch.3] strengthens the SDP relaxations (both Shor’s and
the dual problem). This was the approach followed by Bri-
ales et al. in [14]. The authors formulate the non-minimal
Relative Pose problem based on the epipolar error through
the rotation and translation components. The introduction
of redundant constraints leads to an empirically always tight
Shor’s relaxation. However, the high number of variables and
constraints yields a quite large SDP problem which requires
1–2 seconds to be solved under a matlab implementation.
Recently, Zhao et al. in [23] also introduce redundant con-
straints for the generalized essential matrix problem.

However, finding a good relaxation that remains tight in
most of the problem instances while still being able to be
efficiently solved (reduced number of variables and con-
straints) is not trivial. A limited number of variables hinder
the applications of some “tricks”, e.g. constraints that relate
the variables of the problem but do not define the search
space, as the ones cleverly exploited in [14], [34] and [23].
Still, multiple definitions of the same search space under
the same set of variables are usually not available. A noto-
rious exception, widely reported in the literature, see e.g.
[14,33,36], is that of exploiting the orthogonality of both
rows and columns of orthogonal, square matrices, i.e. ele-
ments of O(d).

For the essential matrices, there exist just a few global
definitions. Faugeras et al. [11] proposed a cubic characteri-
zation of the set of essential matrices that does not require the
introduction of new variables, i.e. the definition only depends
on the entries of E. A similar derivation, also cubic and
in terms of the own essential matrix, was shown by Zhao
[15]. The constraints associated with these definitions must
be quadratic in order to be able to formulate the problem as a
QCQP. A common approach for this is to introduce auxiliary
variables, as in [11].
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3 Notation

In order to make clearer the mathematical formulation in the
paper, we first introduce the notation used hereafter. Bold,
upper-case letters denote matrices e.g. E, Q, while bold,
lower-case denotes (column) vector e.g., t, x and normal font
letters e.g., a, b denote scalar. Additionally, we will denote
with N the set of natural numbers (including the zero), with
R
n×m the set of n × m real-valued matrices, Sn ⊂ R

n×n

the set of symmetric matrices of dimension n × n and S
n+

the cone of positive semidefinite (PSD) matrices of dimen-
sion n × n. A PSD matrix will be also denoted by � , i.e.,
Q � 0 ⇔ Q ∈ S

n+. We denote by ⊕ the direct sum such
that A1 ⊕ A2 ⊕ . . . ⊕ Ar is a block-diagonal matrix with
(block) diagonal terms given by Ai ∈ R

ni×mi , ni ,mi ∈
N, i = 1, . . . , r . The 3 × 3 skew-symmetric matrix [t]× is
the equivalent matrix form for the cross-product with a 3D
vector t = [t1, t2, t3]T , i.e., t × (•) = [t]×(•) with

[t]× =
⎡
⎣

0 −t3 t2
t3 0 −t1

−t2 t1 0

⎤
⎦ (1)

The columns of a matrix A ∈ R
m×n are denoted by a

j ∈
R
m, j = 1, . . . , n1, and its rows as ai ∈ R

n, i = 1, . . . ,m.
The operator vec(E) vectorizes the given matrix E ∈ R

m×n

column-wise, i.e. vec(E) = [ e 1T , . . . , e nT ]T , e

j ∈ R
m and

j = 1, . . . , n. That is,

E =
⎛
⎝
e1 e2 e3
e4 e5 e6
e7 e8 e9

⎞
⎠ (2)

and so e

1 = [e1, e4, e7]T and e1 = [e1, e2, e3]T .
The Kronecker product is denoted as ⊗. We will denote

the trace of a matrix as tr(A) = ∑n
i=1 aii , A = [ai j ] ∈

R
n×n . Further, for simplicity we will employ tr(AB) =

A • B,∀A, B ∈ S
n . In this work we identify rotations with

points in the rotation group SO(3)
.= {R ∈ R

3×3|RT R =
I3, det(R) = 1 } and define the 2-sphere as S2 .= {t ∈
R
3|tT t = 1}. We will denote by A \ B the classic dif-

ference or relative complement of the sets A and B, i.e.
A \ B .= {x | x ∈ A and x /∈ B} and by A ∪ B the union of
the sets A and B defined as A ∪ B .= {x | x ∈ A or x ∈ B}.
We will denote the cardinality of the set A (the number of
elements in the set) by |A|. Last, and always trying to keep
the notation and ideas as clear as possible, we will use the
same letter (e.g. L) to denote a set (L, font: mathcal), the set
of indices associated with this set (L , font: mathscr (rsfso))
and the specific elements of the original set (L j , font:mathbf )
but with different fonts, that is: L ≡ {L j , j ∈ L }.
1 a is a rotated 90 degrees clockwise.

(a) (b)

Fig. 2 Maximum error in rotation (Fig. 2a) and translation (Fig. 2b) in
90% of the problem instances between the solution obtained by mini-
mizing the epipolar and the reprojection error for different level of noise
(see legend) and number of correspondences (X-axis)

4 Minimal Relative Pose problem
Formulation Based on Nullspaces

We follow previous works in the literature that introduce
the essential matrix E into the problem and minimize the
sum of normalized squared epipolar errors ε2i [13,15,17,21].
This error is algebraic and represents only an approxima-
tion of the (geometric) reprojection error. Nevertheless, as
we show in Fig. 2, the solution obtained by this approxi-
mation tends to the one estimated with the reprojection error
when the number of correspondences is large, even for highly
noisy observations. This figure shows the maximum error
in rotation and translation (in degrees) obtained in 90% of
the problem instances between both solutions for different
level of noise and number of correspondences. To obtain the
solution with the geometric error, we iteratively minimize
(implemented with Ceres [37]) the reprojection error initial-
izing the algorithm with the ground truth and the solution
from our solver, and keeping the result with the lowest cost.

The cost function f (E) = ∑N
i=1 ε2i can be written as a

quadratic form on the elements in E by defining the positive
semi-definite (PSD)matrixS9+ � Q = ∑N

i=1 Qi , with Qi =
( f ′

i ⊗ f i )( f
′
i ⊗ f i )

T ∈ S
9+. Formally, the RPp reads:

f � = min
E∈E

N∑
i=1

( f ′T
i E f i )

2 = min
E∈E vec(E)T Q vec(E), (O)

that, for non-minimal problemswith N ≥ 8 correspondences
and except in degenerate cases [1] has an unique global min-
imizer up to sign. In problem O, E stands for the set formed
by the normalized essential matrices:

E
.= {E ∈ R

3×3 | E = [t]×R, R ∈ SO(3), t ∈ S2}. (3)

This set admits different parameterizations (see Sect. 2).
In the context of building problem relaxations, the chosen
definition of the set has a drastic effect on the performance
of the method. In practice, we always seek a minimal param-
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Fig. 3 Nullspaces t, q
.= RT t of the essential matrix E. For any pair of

correspondences ( f i , f ′
i ), the “calibrated“ epipolar lines E f i , E

T f ′
i

vanish at the homogeneous coordinates of t, q, respectively

eterization of the search space that still assures the robustness
of the algorithm.

4.1 Minimal Definition of the Essential Matrix Set

From the definition in (3) we see that the left nullspace of
any essential matrix is one-dimensional (non-null) and it is
identified with the translation vector t (see Fig. 3). Further,
we can define also the essential matrix as E = R[RT t]x
and so its right nullspace is also one-dimensional and it is
identified with the translation (unit) vector q

.= RT t . These
elements are the calibrated epipoles [1], and hence, they are
endowed with geometric meaning, as it is shown in Fig. 3.
The next two minimal characterizations arise naturally from
these two equivalent definitions and the nullspaces t, q.

Definition 1 (Description R of the Essential Matrix Set)
We can exploit the unitary condition of the rotation matrix
R to obtain the characterization:

Eright
.= {E ∈ R

3×3|ET E = [q]×[q]T×, qT q = 1}, (4)

where q is the right nullspace of E.

Definition 2 (Description L of the Essential Matrix Set)
[11, Prop. 2] The following description of the essentialmatrix
set exploits also the unitary condition of the rotation matrix
R for its derivation:

Eleft
.= {E ∈ R

3×3|EET = [t]×[t]T×, tT t = 1, t ∈ R
3} (5)

where t is defined as the left nullspace of E. Note the sym-
metry between this parameterization and the one proposed
in Def. 1.

The derivation of this definition is found in Theorem 1 in
[15] and/or by noting that ET is essential iff E is.

Each definition provides with different sets of seven inde-
pendent and distinct constraints. The setR is formed by the

definition in Def. 1 as:

R ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1): q21 + q22 + q23 = 1

(2): e 1T

e

1 − q22 − q23 = 0

(3): e 2T

e

2 − q21 − q23 = 0

(4): e 3T

e

3 − q21 − q22 = 0

(5): e 1T

e

2 + q1q2 = 0

(6): e 1T

e

3 + q1q3 = 0

(7): e 2T

e

3 + q2q3 = 0

, (6)

where e i ∈ R
3 is the i-th column of the essential matrix E.

For simplicity, we will denote by Rnorm
.= {1}, Rdiag

.=
{2, 3, 4}, Rodiag

.= {5, 6, 7} the set of indices for the unitary
norm, diagonal and off-diagonal constraints, respectively,
and its union as R

.= {Rnorm ∪ Rdiag ∪ Rodiag}.
On the other hand, the description given in Def. 2 provides

with the set L as:

L ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1): t21 + t22 + t23 = 1

(2): e1T e1 − t22 − t23 = 0

(3): e2T e2 − t21 − t23 = 0

(4): e3T e3 − t21 − t22 = 0

(5): e1T e2 + t1t2 = 0

(6): e1T e3 + t1t3 = 0

(7): e2T e3 + t2t3 = 0

, (7)

where ei ∈ R
3 denotes the i-th row of the essential matrix E.

Let us denote by Lnorm
.= {1},Ldiag

.= {2, 3, 4},Lodiag
.=

{5, 6, 7} the sets of indices for the unitary norm, the diagonal
and off-diagonal constraints, respectively, and its union as
the set of indices L

.= {Lnorm ∪ Ldiag ∪ Lodiag}. These
equations were first given in [15].

4.2 Block SDP Relaxations for the Nullspace-Based
Minimal Parameterizations

We obtain then two equivalent problems to original prob-
lem O by writing explicitly the set E with the two set of
constraints Eleft and Eright, respectively. However problems
like Prob. O are instances of QCQP, which in general are
non-convex due to the number of quadratic constraints and
NP-hard to solve in most cases [31]. Nevertheless, under cer-
tain conditions it is possible to derive tractable relaxations
that allow us to obtain and certify the optimal solution to
the original, non-convex problem. These relaxations have
been proposed previously for other problems (see Sect. 2),
showcasing a good performance and proving its usability.
Empirically we show in Sect. 6 that this relaxation, which
we introduce next, is also able to solve this non-convex prob-
lem for most problem instances, hence making it solvable
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(a) (b) (c) (d)

Fig. 4 Pattern of the constraint matrices employed in a problem (SDP-R); b problem (SDP-L); c problem (SDP-B); d problem (SDP-ALL). In d,
we mark in a lighter shade the anti-block-diagonal constraints Ak ,∀k ∈ (Aleft ∪ Aright)

in practice. For that, we first re-formulate our problems as
the standard QCQP by introducing the vector with all the
unknowns: the essential matrix and the corresponding trans-
lation vector (depending on the chosen definition of the set of
essential matrices). Since both are similar, let us call this vec-
tor by x = [eT , uT ]T ∈ R

12, where e ∈ R
9 is the essential

matrix E vectorized by columns and u is the corresponding
translation vector. Problem O is written as

f � = min
x∈R12

xTCx, subject to xT Ai x = ci , i = 1, . . . , 7

(QCQP)

where the 12 × 12 matrix C is the data matrix Q padded
with zeros and the forms xT Ai x = ci , i = 1, . . . , 7 define
the different constraints. By introducing the PSDmatrix X ∈
R
12×12 we obtain the so-called Shor’s relaxation of problem

QCQP:

g� = min
X∈R12×12

C • X, subject to Ai • X = ci , i = 1, . . . , 7.

(SDP)

As we show in Fig. 4 and explain in the Supplementary mate-
rial A, for the definitions considered in this work, all the
relaxations of the form inproblemSDPhave ablock-diagonal
pattern that is leveraged to simplify the optimization without
losing information.

Remark 1 The sparsity of the problem and its effect on the
optimal solution to theSDPs is related to the notion of chordal
sparsity, as it was pointed out previously in [15].We refer the
reader to this work and references therein for more details,
and to the recent work [38] for a similar application to poly-
nomial problems through moment relaxations.2

Right-Nullspace-based formulation: We can define the
vector variable for the standard QCQP as xRight = [eT , qT ]T

2 We thank an anonymous reviewer for the latter reference.

∈ R
12. With respect to this vector, the problem with the

constraint set in Eq. (6) is block-diagonal with two blocks
of size 9 × 9 and 3 × 3, see Fig. 4a. Let us define the lifted
matrices as: Xe

.= eeT ∈ S
9+ and Xq

.= qqT ∈ S
3+. The

block SDP that is actually solved is

g�
R = min

Xe∈R9×9,Xq∈R3×3
Q • Xe (SDP-R)

subject to

Ri
q • Xq = 1, i ∈ Rnorm

Ri
e • Xe + Ri

q • Xq = 0, i ∈ R \ Rnorm

Xe � 0

Xq � 0

,

where we have defined the quadratic forms associated with
the set R given in (6) as {S12 � Ri

e ⊕ Ri
q}i∈R , such that

each constraint is of the general form: eTRi
ee+ qTRi

qq =
ri , i ∈ R, where ri ∈ R.

Left-Nullspace-based formulation: Similarly, the vector
variable for the standard QCQP is xLeft = [eT , tT ]T ∈ R

12,
and again, the problem with this variable and the constraint
set in (7) is block-diagonal with two blocks of size 9× 9 and
3× 3, see Fig. 4b. Similarly, we define the lifted matrices as
Xe

.= eeT ∈ S
9+ and Xt

.= t tT ∈ S
3+, and the block SDP

that is actually solved by the solver is

g�
L = min

Xe∈R9×9,Xt∈R3×3
Q • Xe (SDP-L)

subject to

L j
t • Xt = 1, j ∈ Lnorm

L j
e • Xe + L j

t • Xt = 0, j ∈ L \ Lnorm

Xe � 0

Xt � 0

,

where we have defined the quadratic forms associated with
the set L given in (6) as {S12 � L j

e ⊕ L j
t} j∈L , such that

each constraint is of the general form: eTL j
ee + tTL j

t t =
l j , j ∈ L , where l j ∈ R.
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Tight solution: Note that in both problems, each block
has a norm constraint applied implying that the block cannot
be the null matrix, i.e. it cannot have zero rank: the norms
for the blocks Xt , Xq are specified by the constraints in
Lnorm,Rnorm, respectively, while the norm for the block Xe

is inferred by its relation with the other terms for both char-
acterizations. Since original problemO has a unique solution
(up to sign), we know that in order to consider the relaxation
as tight, each block must have rank 1 for both problems (see
Supplementary material A).

Nevertheless, while the formulations in Eq. (7) and (6)
enjoy the benefit of having a minimal number of constraints,
they lose tightness in certain scenarios, even in common sce-
narios, as we will show in Sect. 6.

5 Redundant Set of Constraints and Tighter
Relaxations

With the only goal of finding a tighter SDP relaxation associ-
ated with the relative pose problem, we introduce redundant
constraints in the problem.

5.1 Joining Left and Right-Nullspace-Based
Definitions

Since we already have two different definitions of the essen-
tial matrix set in Def. 1 and Def. 2, we propose here to fuse
them into a joint (redundant) characterization of the same
set. This characterization requires, however, more variables
(15: E, t, q) than those that leverage the minimal parameter-
izations in sets in Def. 1 (13: E, q) and in Def. 2 (13: E, t).
While each set of constraintsR,L provides with seven inde-
pendent expressions, the joint of both feasible sets does have
a linearly dependent constraint in the expressions associated
with the diagonal entries of EET or ET E.We discard one of
these constraints in the setL 3.With a little abuse of notation
and to keep the results clear, let us denote this reduced set
once again as L , whose cardinality is now 6 (c.f . Table 1).
Therefore our joint characterization has only 13 independent
constraints and 15 variables.

Sparse SDP Relaxation: As it was mentioned above, the
set of constraints in Eq. (6) and (7) present a block-diagonal
structure in terms of the vectors xRight and xLeft, respectively.
Their union in terms of xBoth = [eT , tT , qT ]T ∈ R

15 is,
therefore, also block-diagonal, see Fig. 4c. In this case, the
lifted matrices in terms of the vector xBoth are defined as
Xe

.= eeT ∈ S
9+, Xq

.= qqT ∈ S
3+, Xt

.= t tT ∈ S
3+. The

SDP is written in its block-diagonal form in terms of these

3 We remove the expression e1T e1 − t22 − t23 = 0.

lifted blocks as:

g�
B = min

Xe∈R9×9,Xt ,Xq∈R3×3
Q • Xe (SDP-B)

subject to

L j
t • Xt = 1, j ∈ Lnorm

Ri
q • Xq = 1, i ∈ Rnorm

Ri
e • Xe + Ri

q • Xq = 0, i ∈ R \ Rnorm

L j
e • Xe + L j

t • Xt = 0, j ∈ L \ Lnorm

Xe � 0

Xt � 0

Xq � 0.

,

where all the data matrices Q,L j
e,Ri

e, ... are the same than
those in problems SDP-R and SDP-L.

Tight solution: Since each block has a norm applied, i.e.
their rank is strictly positive (see previous problems SDP-R
and SDP-L) and the solution is still unique, we say that the
relaxation in problem SDP-B is tight iff each block has rank
1.

Unfortunately, this extended problem is still not always
tight, as showcased by the experiments in Sect. 6, although
it is tighter than previous problems SDP-R and SDP-L.

5.2 IntroducingMore Constraints: SVD-Based
Approach

The different parameterizations employed so far are defined
in terms of geometric variables such as the baseline b and the
rotation R. The essential matrix, however, admits a second
yet equivalent definition in terms of its singular value decom-
position (SVD) [11,39]. Concretely, any essential matrix can
be decomposed as E = U diag(σ, σ, 0)V T where U, V ∈
SO(3), diag(a) ∈ R

n×n denotes the diagonal matrix whose
diagonal is formed by the entries of a ∈ R

n and σ ∈ R+
(non-negative reals). Given the scale ambiguity of E w.l.o.g
we can fix σ = 1.

Theorem 1 (Polynomial Description of the Essential
Matrix Set) A 3 × 3 real matrix has two non-null singular
values equal to one and one zero singular value, i.e. it is an
element of the set of normalized essential matrices [11,39],
iff it fulfills the following set of polynomial constraints:

Eadj
.=

{
E ∈ R

3×3
∣∣∣∣
tr(EET ) = 2,

det(E) = 0,

tr
(
Adj (EET )

) = 1

}
, (8)

where Adj (E) denotes the adjugate of the matrix E. Proof
in Supplementary material Section B.

The constraints in Th. 1 are equivalent to those proposed
by Faugeras and Maybank [11, Prop. 3]. We provide the
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Table 1 Set of constraints for
each problem, the set of indices
associated with each set of
constraints and the cardinality of
both sets, e.g. |R| = |R| = 7 in
Problems SDP-R, SDP-L and
equal to 6 in Problems SDP-B
and SDP-ALL

Problem Set of constraints Set of indices Cardinality

(SDP-L) L L 7

(SDP-R) R R 7

(SDP-Both) R R 7

L L 6

(SDP-Adj) R R 6

L L 6

A A 16

proof in the Supplementary material Section C and thanks
an anonymous reviewer for pointing out this relation. Before
continue, the reader may notice that only three constraints
are provided in Th. 1 . Since the set of constraints are equiv-
alent to those in [11, Prop. 3], the proof provided in the same
paper in Section 4.2 also applies here, and the constraints in
Th. 1 are restricted to real matrices.

Whereas Th 1 defines the set of normalized essential
matrices, it can be generalized to the non-normalized set
(the non-null singular values do not need to be equal to
one) by scaling the constraints, that is: tr(EET ) = 2σ 2 and
tr(Adj (EET )) = σ 4, for any matrix E with singular value
σ . The sufficient condition is similar to that in Th. 1.

Still, the constraints in Th. 1 are polynomial and, thus,
cannot be directly incorporated into our primal QCQP prob-
lem in order to derive the associated SDP. We provide next a
set of quadratic constraints equivalent to Th. 1.

Definition 3 (Description A of the Essential Matrix Set)
The following set of quadratic constraints is equivalent to
the set proposed in Th. 1.

tr(EET ) = 2 Eq = 03×1 qT q = 1 (9)

Adj (E) = qtT tT E = 01×3 tT t = 1, (10)

where t, q are the left and right nullspaces of E, respectively,
and Adj (E) is the adjugate matrix of E.

Supplementary material Section D includes the relation
between Def. 3 and the one in Th. 1. Notice that, in general,
Adj (E) = ±qtT , but since q and t are identified with points
in S2, the sign ambiguity is absorbed by any of the vectors
and we can simply the expression to Adj (E) = qtT .

Thus, a 3 × 3 real matrix E is a normalized essential
matrix iff it fulfills the constraints in Definition 3 since these
quadratic constraints are equivalent to the polynomial set in
Th. 1 and the latter defines the set of normalized essential
matrices.

The explicit forms of the constraints in Def. 3 are given
as:

A ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1): e 1T
e

1 + e

2
T e

2 + e

3
T e

3 = 2

(2): e5e9 − e6e8 = t1q1 q21 + q22 + q23 = 1

(3): e3e8 − e2e9 = t2q1 (11): e1T q = 0

(4): e2e6 − e3e5 = t3q1 (12): e2T q = 0

(5): e6e7 − e4e9 = t1q2 (13): e3T q = 0

(6): e1e9 − e3e7 = t2q2 t21 + t22 + t23 = 1

(7): e3e4 − e1e6 = t3q2 (14): e 1T t = 0

(8): e4e8 − e5e7 = t1q3 (15): e 2T t = 0

(9): e2e7 − e1e8 = t2q3 (16): e 3T t = 0

(10): e1e5 − e2e4 = t3q3

,(11)

where ei is the i-th element of the 9D vector e = vec(E). Let
us for simplicity define the set of indicesAnorm

.= {1},Aadj
.=

{2, . . . , 10}, Aright
.= {11, 12, 13}, Aleft

.= {14, 15, 16} cor-
respondingwith the normof the essentialmatrix (tr(EET ) =
2), the adjugate expression (Adj (E) = qtT ) and the right
and left nullspaces (Eq = 03×1, tT E = 01×3), respectively.
We define its union asA

.= {Anorm ∪Aright ∪Aleft ∪Aadj}.
See that this equivalent characterization only depends on

the nullspaces of E. This means we can combine the con-
straints of this parameterization with those from our previous
characterization with both nullspaces in Problem SDP-B
without introducing new variables. We note that two of the
constraints associated with the diagonal terms EET and
ET E in sets Def. 2 and Def. 1 became dependent when
introducing the constraints in Def. 3. Without confusion,
let us denote these sets of linear independent constraints4

by L,R,A, with cardinality 6, 6 and 16, respectively (see
Table 1). Therefore, this characterization has only 28 inde-
pendent constraints and 15 variables.

Remark 2 Here we introduce redundant constraints to the
RPp that define the set of normalized essential matrices.
Note that this procedure is different to the (automatically)
generated constraints by Lassarre’s moment relaxations for

4 We remove the expressions e1T e1−t22 −t23 = 0 and e 1T

e

1−q22−q23 =
0.
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polynomial problems with available tools such as Glop-
tipoly 3 [40]. Our approach follows the idea exploited in
previous works (see Section 2) with rotation matrices.

By writing explicitly the set of constraints in Def. 3 in
terms of the vector variable xAdj

.= [eT , tT , qT ]T ∈ R
15

we can re-formulate the original problem in Eq. (O) as a
standard QCQP. Unlike other problems SDP-R, SDP-L and
SDP-B where the sparsity pattern was easily identified in
terms of the corresponding variable vectors (see Fig. 4a–
c), the definition in A presents six equations associated
with the nullspaces (with indices in Aleft,Aright) that do
not follow the same pattern as the other constraints and the
objective function (whichhave awell-definedblock-diagonal
structure). These constraints have an anti-block-diagonal
structure, as shown in Fig. 4d. In practice, however, the prob-
lem is also block-diagonal for any optimal solution. Notice
that the anti-block-diagonal constraints are trivially satis-
fied by the zero blocks. Further, this block-diagonal solution
will have rank greater than one even when the relaxation
is tight, as the previous formulations. Central-path algo-
rithms, as the one leveraged by off-the-shelf tools such as
SeDuMi and SDPT3, will return this solution [41] instead
of the rank one. Therefore, we can restrict, as in the previ-
ous formulations, the feasible points to be block-diagonal.
Empirically we verify that removing the anti-block diago-
nal constraints (Aleft ∪ Aright) does not affect the tightness
of the relaxation nor affects the computational cost of the
resolution of the problem. Please, notice that in the solvers
are actually dropping the off-diagonal constraints, i.e. the
determinant requirement, without notice. Since these con-
straints are employed with the previous ones, we known that
the returned solution will have null determinant if the relax-
ation is tight. Nevertheless, the constraints alone may yield
solutions with non-null determinant. This is an interesting
behavior which we pretend to study on the future since it
may jeopardize convex relaxations with this structure.

In what follows, we drop the anti-block diagonal con-
straints in the set of constraints A for clarity. This allows
to directly write the SDP relaxation with this feasible set as
a block problem. Note that the SDP relaxation with all the
constraints can be derived in a similar manner. As before,
let us define the lifted matrices as Xe

.= eeT ∈ S
9+ and

Xnull
.= [tT , qT ]T [tT , qT ] ∈ S

6+. See that the adjugate con-
straints in Def. 3 relate both nullspaces and hence, only one
block is defined for them, in contrast with the two blocks
in Problem SDP-B. The block SDP relaxation is written in
terms of these matrices as

g�
Adj = min

Xe∈R9×9,Xnull∈R6×6
Q • Xe (SDP-ALL)

subject to

(L j
t ⊕ 03×3) • Xnull = 1, j ∈ Lnorm

(03×3 ⊕ Ri
q) • Xnull = 1, i ∈ Rnorm

Ae
k • Xe = 2, k ∈ Anorm

Ri
e • Xe + (03×3 ⊕ Ri

q) • Xnull = 0, i ∈ R \ Rnorm

Ri
e • Xe + (L j

t ⊕ 03×3) • Xnull = 0, j ∈ L \ Lnorm

Ae
k • Xe + At,q

k • Xnull = 0, k ∈ Aadj

Xe � 0

Xnull � 0
(12)

where we have defined the quadratic forms associated
with the set A as Ae

k ⊕ At,q
k ∈ S

15 for k ∈ Anorm ∪ Aadj

such that each constraint is of the general form eTAe
ke +

[tT , qT ]At,q
k [tT , qT ]T = ak, k ∈ Anorm ∪ Aadj where

ak ∈ R. The remaining matrices have the same form than
in previous problems SDP-R, SDP-L.

Tight solution: Note that both blocks, Xe, Xnull have
norm constraints: in this case, the norm of Xe is given by
the constraint Anorm and the norm for Xnull is given by the
constraintsLnorm,Rnorm. Since the problem still admits only
a unique global minimizer, the tight solution has two blocks
of rank 1 each.

6 Experimental Validation

In this section we prove through extensive experiments on
both synthetic and real data the claims stated in this work.

6.1 Experiments on Synthetic Data

We carried out two types of experiments. In Sect. 6.1.1
we generate random instances of the RPp with “usual“
parameters. In Sect. 6.1.2 we increase the noise and include
outliers in order to show that our final formulation in prob-
lem SDP-ALL remains tight in almost all the cases, while
maintaining an attractive computation time.

Generation ofRandomData:We generate randomprob-
lem instances by following the procedure given in previous
works [14,21], which we summarize it here for complete-
ness. We place the first camera frame at the origin (identity
orientation and zero translation) and generate a set of random
3D points within a frustum with depth ranging from one to
eight meters measured from the first camera frame and inside
its Field of View (FOV). Then, we generate a random pose
for the second camera whose translation magnitude is con-
strained within a spherical shell with minimum radio ||t||min,
maximum radio ||t||max and centered at the origin. We also
enforce that all the 3D points lie within the second camera’s
FOV. Next, we create the correspondences as unit bearing
vectors and add noise by assuming a spherical camera, com-
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puting the tangential plane at each bearing vector (point on
the sphere) and introducing a random error in pix sampled
from the standard uniform distribution, considering a focal
length of 800 pixels for both cameras. Outliers are gener-
ated by assigning a random unit vector to the correspondence
associated with the second frame.

Compared methods: We compare the four different for-
mulations proposed in this work (LEFT coincides with the
proposal in [15]) and includes that by Briales et al. in
[14]. The different formulations will be denoted by: LEFT
(Problem SDP-L); RIGHT (Problem SDP-R); BOTH (Prob-
lem SDP-B); ADJ (Problem SDP-ALL); and [14] as BKG.
Although BKG employs a different formulation for the RPp
based on the rotation and the position components (in this
work, the translation vector denoted by t), the underlying
problem is the same.

Note that other certifiable approaches for the RPp do exist,
as we illustrate in Sect. 2. Here, however, we compare only
the above-mentioned certifiable solvers based on SDP relax-
ations [14,15]. Our reasons behind this are the following.
First, in [15] and [14] the authors independently reported
that their, respectively, SDP solvers consistently attain lower
rotation errors than the minimal methods (five, six and eight
points algorithms, see Sect. 2) and the non-minimal solver
by Kneip and Lynen in [24] w.r.t. the ground truth relative
pose, which can be considered as the state-of-the-art solvers
both for accuracy and efficiency. The different formulations
proposed in this work have the same or more number of con-
straints than the minimal SDP in [15]; hence, we expect to,
at least, observe the same performance in terms of accuracy,
if not better. The computational times are also similar under
a C++ implementation with SDPA [42] as IPM on a stan-
dard PC with CPU i7 − 4702MQ, 2.2GHz and 8 GB RAM:
LEFT takes 5milliseconds,RIGHT goes to 4.7milliseconds,
BOTH to 7.4 milliseconds and ADJ to 7 milliseconds. These
times include the creation of the datamatrix Q, the extraction
of the solution x from X� (the optimal solution of the SDP)
and the projection of x onto the space of essential matrices.

6.1.1 Experiments on Usual Synthetic Data

In this set of experiments, we fix the available parameters
when generating the data (FOV, parallax, noise and num-
ber of correspondences) and vary one of them each time to
show the influence of each individual parameter. By default,
we fix the FOV to 100 degrees, the translation parallax to
||t||2 ∈ [0.5, 2.0] (meters), the noise level to 0.5pix and the
number of correspondences to 100. In the experiments we let
the focal length fixed, since it was shown in [21] that varying
the focal length has the same effect of varying the noise level
and field of view (changes in the signal-to-noise ratio). We
generate problem instances with number of correspondence
in N ∈ {8, 9, 10, 11, 12, 13, 14, 15, 20, 40, 100, 150, 200}

and varying noise σnoise ∈ {0.1, 0.5, 1.0, 2.5} pix, parallax
||t||max ∈ {0.7, 1.0, 2.5, 4.0} andFOV ∈ {70, 90, 120, 160}.
Please, notice that in thisworkwe consider only non-minimal
problem instances with more than N = 8 correspondences.
For each configuration of number of correspondences and
parameters, we generate 200 random problem instances. Due
to space restrictions and the similarity on the conclusions, we
only include in Fig. 5 the results for noise 0.5 pix (results
for noise 2.5 pix can be found in Supplementary material
2 Fig. 6). Figure 5a shows the dual gap between the optimal
dual cost and the essential matrix obtained after projection
on the feasible set [1]. Observe that for ADJ, the dual gap
is constant, while for the smallest formulations it decreases
with the number of correspondences and noise level. A more
intuitive metric of this behavior is the error εrot of the esti-
mated rotation R̂ w.r.t. the ground truth Rgt measured in
terms of geodesic distance, and the translation error εtrans as
the angle (in degrees) between the (normalized) translation
vector t̂ and the ground truth tgt , i.e.

εrot = arccos
( tr(R̂T

Rgt) − 1

2

)180
π

[degrees] (13)

εtrans = arccos
(
t̂
T
tgt

)180
π

[degrees] (14)

Figure 5b shows the rotation error and Fig. 5c the trans-
lation error for the four proposed solvers. Last, we compare
the obtained solution with that from BKG and plot the ratio
between each cost in Fig. 5d. Notice the tendency of the cost
being closer to the one by BKG when the number of con-
straints is non-minimal. From this last figure we notice that
the redundant formulation ADJ performs in most cases sim-
ilarly toBKG, which can be considered as the state-of-the art
given the obtained results, while requires less computational
time for its resolution.

6.1.2 Experiments on Extreme Synthetic Data

In this set of synthetic experiments we show the perfor-
mance of the proposed formulations in the presence of high
noise level (up to 100 pix) and high ratio of outliers (up to
100%). First, we fix the FOV and maximum parallax to their
default values and vary the noise level asσ ∈ {5, 10, 50, 100}
together with the number of correspondences (outliers are
zero). Second, we let the noise be 0.5 pixels, fix the num-
ber of correspondences to 100 and introduce an increasing
percentage of outliers (with step 10%) up to 100%. For each
combination of parameters, we generate 200 random prob-
lems. We want to remark that in these experiments we do not
filter the outlier and simply feed the algorithms with all the
correspondences. Due to space limits, we move the graph-
ics to the Supplementary material 2 Section G Figure 7 and
include here the main conclusions from them. In these cases,
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(a) (b) (c) (d)

Fig. 5 Synthetic data: common parameters: Dual gap for the obtained
solution after projection onto the set of essential matrices (a), error in
rotation in degrees (b), error in translation in degrees (c) and cost nor-
malized by the one obtained by BKG (d) for the set of experiments

with noise 0.5 pix (noise 6e − 04 in normalized coordinates). Similar
graphics for noise 2.5 pix (noise 3e − 03 in normalized coordinates)
can be found in Supplementary material 2 Fig. 6

the dual gap is large for the minimal formulations LEFT
and RIGHT, and the redundant BOTH, even when the num-
ber of correspondences is non-minimal. For ADJ, though,
the dual gap is similar to the “normal“ problem instances in
Fig. 5 except for a few problem instances with N < 15. The
poor performance of the minimal solvers and BOTH is also
reflected in the costs attained by their solution w.r.t. BKG.
A similar conclusion is derived from the problem instances
with outliers, and the smaller solvers fail to return the global
optimum even with only 10% of outliers.

6.2 Experiments on Real Data

To conclude our experimental validation, we evaluate the
performance of the above-mentioned methods on real data.
We sample pairs of images from 18 different sequences of
the ETH3D dataset [43], which covers both indoor and out-
door scenes. They also provided with ground truth data and
intrinsic calibration parameters. To generate the correspon-
dences, we extract and match 100 SURF [44] features. The
corresponding bearing vectors are computed by employing
the pin-hole cameramodelwith the provided intrinsic param-
eters for each image. We conduct two types of experiments
with the same sequences of images and extracted features.
Since the results are similar to those obtained in the synthetic
experiments, we move the graphics to the Supplementary
material 2 Section H Figure 8 and include only the main
conclusions.

6.2.1 Experiments on Real Data with Outliers

The first set pretends to show the performance of the different
methods under real data, including outliers, i.e. we feed the
methods with all the points. Since the data contain outliers,
LEFT,RIGHT andBOTH fail to return the optimal solutions
for some problem instances (large normalized cost).ADJ, on
the other side, shows the same robust performance.

6.2.2 Experiments of Real Data with Pre-filtered Outliers

The goal of this set is to reflect the performance of the
different formulations only under real noise, without out-
liers. To discard outliers, we filter the matches with the
provided ground truth and keep only those correspondences
whose associated squared epipolar error w.r.t. the ground
truth essential matrix is lower than a fixed threshold εerror,
i.e. we consider as inliers all the correspondences ( f i , f ′

i )
such that ( f ′T

i Egt f i )
2 < εerror. We avoid the explicit used

of a filtering stage (e.g. RANSAC) to decouple the perfor-
mance of said stage and the different methods tested in this
work. In this case, the costs are lower but the minimal solvers
still fail to estimate the optimal solution (the percentage of
suboptimal solutions remains above 20%). ADJ and BKG
always return the optimal solution.

7 Conclusions and FutureWork

In this work we have leveraged equivalent quadratic (global)
definitions of the set of essential matrices which rely on the
translation vectors of the relative pose between cameras. The
Relative Pose problem is stated as an optimization problem
over the set of essentialmatrices thatminimizes the (squared)
normalized epipolar error. We have combined these defini-
tions to derive overconstrained problems.Despite the number
of variables and constraints, all our formulations were solved
in less 7 milliseconds on a standard computer, making our
proposal suitable for real-world applications. The final for-
mulation with 28 constraints and 15 variables allowed to
derive a convex relaxation that remained tight under a wide
variety of configurations, evenwith random correspondences
(noise level of 100 pix and 100% of outliers). Thus, our pro-
posal is tighter than smaller formulations while being faster
than overconstrained formulations.

Our results show that these formulations can be leveraged
in other certifiable approaches, such as certifiers,which could
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potentially perform better than those based on minimal rep-
resentations [21]. Since the tightness of the formulations is
maintained even with outliers, our proposal is also suitable
to be included in robust schemes, such as the combination
of Graduated Non-Convexity [45] and the Black-Rangarajan
duality between outlier rejection and line processes [46].

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10851-022-01085-
z.
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