Skip to main content
Log in

A Note on Observables for Counting Trails and Paths in Graphs

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

We point out that the total number of trails and the total number of paths of given length, between two vertices of a simple undirected graph, are obtained as expectation values of specifically engineered quantum mechanical observables. Such observables are contextual with some background independent theories of gravity and emergent geometry. Thus, we point out yet another situation in which the mathematical formalism of a physical theory has some computational aspects involving intractable problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaronson, S.: NP-complete problems and physical reality. ACM SIGACT News (Guest Column) 36(1), 30–52 (2005). arXiv:quant-ph/0502072v2

    Article  Google Scholar 

  2. Brightwell, G.R., Winkler, P.: Note on Counting Eulerian Circuits. CDAM research report LSE-CDAM-2004-12. arXiv:cs/0405067v1 [cs.CC]

  3. Crescenzi, P., Goldman, D., Papadimitriou, C., Piccoboni, A., Yannakakis, M.: On the complexity of protein folding. J. Comput. Biol. 5, 423–466 (1998)

    Article  Google Scholar 

  4. Diestel, R.: Graph theory, (2nd edn.) In: Graduate Texts in Mathematics. Published electronically at ftp://math.uni-hamburg.de/pub/unihh/math/books/diestel. Springer, New York (2000)

    Google Scholar 

  5. Ettinger, M., Hoyer, P.: A Quantum Observable for the Graph Isomorphism Problem. LA-UR-99-179. arXiv:quant-ph/9901029v1

  6. Konopka, T., Markopoulou, F., Severini, S.: Quantum Graphity: a model of emergent locality. Phys. Rev. D 77, 104029 (2008). arXiv:0801.0861v1 [hep-th]

    Article  MathSciNet  Google Scholar 

  7. Konopka, T., Markopoulou, F., Smolin, L.: Quantum Graphity. arXiv:hep-th/0611197v1

  8. Lloyd, S.: Programming the Universe: A Quantum Computer Scientist Takes On the Cosmos. Knopf, New York (2006)

    Google Scholar 

  9. Nielsen, M.A.: Computable functions, quantum measurements, and quantum dynamics. Phys. Rev. Lett. 79, 2915–2918 (1997). arXiv:quant-ph/9706006v1

    Article  Google Scholar 

  10. Semenoff, G.W., Szabo, J.R.: Fermionic matrix models. Int. J. Mod. Phys. A 12(12), 2135–2291 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Troyansky, L., Tishby, N.: Permanent uncertainty: on the quantum computation of the determinant and permanent of a matrix. In: Proceedings of PhysComp96, Boston, 22–24 November 1996

  12. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8, 410–421 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  13. Valiant, L.G.: Quantum computers that can be simulated classically in polynomial time. In: Proceedings of the thirty-third annual ACM symposium on theory of computing, pp. 114–123. ACM, New York (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Severini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markopoulou, F., Severini, S. A Note on Observables for Counting Trails and Paths in Graphs. J Math Model Algor 8, 335–342 (2009). https://doi.org/10.1007/s10852-009-9111-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-009-9111-7

Keywords

Navigation