Skip to main content
Log in

The Maximum Degree & Diameter-Bounded Subgraph and its Applications

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

We introduce the problem of finding the largest subgraph of a given weighted undirected graph (host graph), subject to constraints on the maximum degree and the diameter. We discuss some applications in security, network design and parallel processing, and in connection with the latter we derive some bounds for the order of the largest subgraph in host graphs of practical interest: the mesh and the hypercube. We also present a heuristic strategy to solve the problem, and we prove an approximation ratio for the algorithm. Finally, we provide some experimental results with a variety of host networks, which show that the algorithm performs better in practice than the prediction provided by our theoretical approximation ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amini, O., Peleg, D., Perennes, S., Sau, I., Saurabh, S.: Degree-constrained subgraph problems: hardness and approximation results. In: Procs. ALGO-WAOA, 2008. LNCS, vol. 5426, pp. 29–42 (2008)

  2. Asahiro, Y., Miyano, E., Samizo, K.: Approximating maximum diameter-bounded subgraphs. In: Procs. LATIN, 2010. LNCS, vol. 6034, pp. 615–626 (2010)

  3. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  4. Barabási, A.-L.: Linked: The New Science of Networks. Perseus Publishing (2002)

  5. Cohen, G., Honkala, I., Litsyn, S., Lobstein, A.: Covering Codes. Elsevier, Amsterdam (1997)

    MATH  Google Scholar 

  6. Dekker, A., Colbert, B.: Network robustness and graph topology. In: Procs. 27th Australasian Comp. Science Conf., CRPIT, vol. 26, pp. 359–368 (2004)

  7. Dekker, A.: Simulating network robustness for critical infrastructure networks. In: Procs. 28th Australasian Comp. Science Conf., CRPIT, vol. 38, pp. 59–67 (2005)

  8. Dekker, A., Colbert, B.: The symmetry ratio of a network. In: Procs. 11th Computing: The Australasian Theory Symposium, CRPIT, vol. 41, pp. 13–20 (2005)

  9. Duch, J., Arenas, A.: Community identification using extremal optimization. Phys. Rev. E. 72, 027104 (2005)

    Article  Google Scholar 

  10. Elspas, B.: Topological constraints on interconnection-limited logic. In: Proceedings of the Fifth IEEE Annual Symposium on Switching Circuit Theory and Logical Design, pp. 133–137 (1964)

  11. Exoo, G.: A family of graphs and the degree-diameter problem. J. Graph Theory 37, 118–124 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garey, M., Johnson, D.: Computers and Intractability. A Guide to the Theory of NP-completeness. Freeman and Co. (1979)

  13. Johnson, D.: The NP-completeness column: an ongoing guide. J. Algorithms 6, 145–159 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds). Complexity of Computer Computations, pp. 85–103 (1972)

  15. Könemann, J., Levin, A., Sinha, A.: Approximating the degree-bounded minimum diameter spanning tree problem. Algorithmica 41, 117–129 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kumar, N.: Bounding the volume of Hamming balls. http://cstheory.wordpress.com/2010/08/13/bounding-the-volume-of-hamming-balls. Accessed Feb 2011

  17. Loz, E., Pérez-Rosés, H., Pineda-Villavicencio, G.: Combinatorics wiki – the degree diameter problem for general graphs. http://combinatoricswiki.org/wiki/The_Degree_Diameter_Problem_for_General_Graphs. Accessed 14 Jan 2012

  18. Loz, E., Pérez-Rosés, H., Pineda-Villavicencio, G.: Combinatorics wiki - MaxDDBS in the mesh. http://combinatoricswiki.org/wiki/MaxDDBS_in_the_mesh. Accessed on 14 Jan 2012

  19. Miller, M., Siran, J.: Moore graphs and beyond: a survey of the degree-diameter problem. Electron. J. Combin., Dynamic Survey 14, 1–61 (2005)

    Google Scholar 

  20. Ravi, R., Marathe, M., Ravi, S., Rosenkrantz, D., Hunt III, H.B.: Approximation algorithms for degree-constrained minimum-cost network-design problems. Algorithmica 1, 58–78 (2001)

    Article  MathSciNet  Google Scholar 

  21. Skriganov, M., Sobolev, A.: Variation of the number of lattice points in large balls. Acta Arith. 120, 245–267 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sohaee, N., Forst, C.: Bounded diameter clustering scheme for protein interaction networks. In: Procs. World Congress on Engineering and Computer Science, vol. I (2009)

  23. Watts, D.: Six Degrees: The Science of a Connected Age. William Heinemann (2003)

  24. Widmer, M.: Lipschitz Class, Narrow Class, and Counting Lattice Points. Report 2010–13, Graz University of Technology (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hebert Pérez-Rosés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dekker, A., Pérez-Rosés, H., Pineda-Villavicencio, G. et al. The Maximum Degree & Diameter-Bounded Subgraph and its Applications. J Math Model Algor 11, 249–268 (2012). https://doi.org/10.1007/s10852-012-9182-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-012-9182-8

Keywords

Navigation