Skip to main content
Log in

A Heuristic Algorithm for the Earliest Arrival Flow with Multiple Sources

  • Published:
Journal of Mathematical Modelling and Algorithms in Operations Research

Abstract

This paper presents a heuristic algorithm for the earliest arrival flow problem. Existing exact algorithms, even polynomial in the output size, contain submodular function optimization as a frequently called subroutine, and thus are not practical in real-life applications. In this paper we propose an algorithm that does not involve the submodular function optimization. Although solving an EAF near-optimal, the algorithm is remarkably simple and efficient as it only involves shortest path computations on a static network. A numerical example illustrates how the algorithm works. As an application, we demonstrate the algorithm’s solution quality and computational performance by solving a real-size network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ford, Jr., L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Oper. Res. 6(3), 419–433 (1958)

    Article  MathSciNet  Google Scholar 

  2. Aronson, J.E.: A survey of dynamic network flows. Ann. Oper. Res. 20, 1–66 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bookbinder, J.H., Sethi, S.P.: The dynamic transportation problem: a survey. Nav. Res. Logist. Q. 27(3), 447–452 (1980)

    Article  MathSciNet  Google Scholar 

  4. Skutella, M.: An introduction to network flows over time. In: Cook, W.J., Lovasz, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482. Springer, Berlin Heidelberg (2008)

    Google Scholar 

  5. Fleischer, L., Tardos, E.: Efficient continuous-time dynamic network flow algorithms. Oper. Res. Lett. 23(3–5), 71–80 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gale, D.: Transient flows in networks. Mich. Math. J. 6(1), 59–63 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  7. Philpott, A.B.: Continuous time flows in networks. Math. Oper. Res. 15(4), 640–661 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fleischer, L.K.: Faster algorithms for the quickest transshipment problem. SIAM J. Optim. 12(1), 18–35 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fleischer, L., Skutella, M.: Quickest flows over time. SIAM J. Comput. 36(5), 1600–1630 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Richardson, D., Tardos, E.: Cited as personal communication in Fleischer, L., Skutella, M. 2007 (2000)

  11. Chalmet, L.G., Francis, R.L., Saunders, P.B.: Network models for building evaucation. Manag. Sci. 28(1), 86–105 (1982)

    Article  Google Scholar 

  12. Jarvis, J.J., Ratliff, H.D.: Some equivalent objectives for dynamic network flow problems. Manag. Sci. 28(1), 106–109 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hamacher, H.W., Tjandra, S.A.: Mathematical modelling of evacuation problems: a state of art. In: Schreckenberg, M., Sharma, S.D. (eds.) Pedestrian and Evacuation Dynamics, pp. 227–266. Springer (2002)

  14. Kohler, E., Skutella, M.: Flows over time with load-dependent transit times. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 174–183. SIAM (2002)

  15. Carey, M., Subrahmanian, E.: An approach to modelling time-varying flows on congested networks. Transp. Res. 34B(3), 157–183 (2000)

    Article  Google Scholar 

  16. Ziliaskopoulos, A.K.: A linear programming model for the single destination system optimum dynamic traffic assignment problem. Transp. Sci. 34(1), 37–49 (2000)

    Article  MATH  Google Scholar 

  17. Daganzo, C.F.: The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp. Res. 28B(4), 269–287 (1994)

    Article  Google Scholar 

  18. Daganzo, C.F.: The cell transmission model part ii: network traffic. Transp. Res. 29B(2), 79–93 (1995)

    Article  Google Scholar 

  19. Chiu, Y.-C., Zheng, H., Villalobos, J., Gautam, B.: Modeling no-notice mass evacuation using a dynamic traffic flow optimization model. IIE Trans. 39(1), 83–94 (2007)

    Article  Google Scholar 

  20. Cova, T.J., Johnson, J.P.: A network flow model for lane-based evacuation routing. Transp. Res. 37A, 579–604 (2003)

    Google Scholar 

  21. Tuydes, H., Ziliaskopoulos, A.: Network re-design to optimize evacuation contraflow. In: Proceeding of the 83rd Annual Meeting of the Transportation Research Board (CD-ROM), Article No. 04-4715(2004)

  22. Shen, W., Nie, Y., Zhang, H.M.: Dynamic network simplex method for designing emergency evacuation plans. Transp. Res. Record 2022, 83–93 (2007)

    Article  Google Scholar 

  23. Chiu, Y.-C., Zheng, H.: Real-time mobilization decisions for multi-priority emergency response resources and evacuation groups: model formulation and solution. Transp. Res. 43E(5), 710–736 (2007)

    Article  Google Scholar 

  24. Zheng, H., Chiu, Y.-C.: A network flow algorithm for the cell based single destination system optimal dynamic traffic assignment problem. Transp. Sci. 45(1), 121–137 (2011)

    Article  Google Scholar 

  25. Zheng, H., Chiu, Y.-C., Mirchandani, P.B.: On the system optimal dynamic traffic assignment and earliest arrival flow problems. Transp. Sci. (2013, in press)

  26. Wilkinson, W.L.: An algorithm for universal maximal dynamic flows in a network. Oper. Res. 19(6), 1602–1612 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  27. Minieka, E.: Maximal, lexicographic, and dynamic network flows. Oper. Res. 21(2), 517–527 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hoppe, B., Tardos, E.: Polynomial time algorithms for some evacuation problems. In: Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 433–441 (1994)

  29. Hajek, B., Ogier, R.G.: Optimal dynamic routing in communication networks with continuous traffic. Networks 14(3), 457–487 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  30. Rauf, I.: Earliest Arrival Flows with Multiple Sources, Master. Saarland University, Saarbrücken, Germany, Thesis (2005)

  31. Fleischer, L., Skutella, M.: The quickest multicommodity flow problem. In: Proceedings of the 9th Conference on Integer Programming and Combinatorial Optimization, pp. 36–53 (2002)

  32. Baumann, N., Skutella, M.: Earliest arrival flows with multiple sources. Math. Oper. Res. 34(2), 499–512 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Hoppe, B., Tardos, E.: The quickest transshipment problem. Math. Oper. Res. 25(1), 36–62 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Burkard, R.E., Dlaska, K., Klinz, B.: The quickest flow problem. ZOR - Methods Models Oper. Res. 37(1), 31–58 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  35. Zadeh, N.: A bad network problem for the simplex method and other minimum cost flow algorithms. Math. Program. 5, 255–266 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  36. Baumann, N.: Evacuation by Earliest Arrival Flows. Ph.D. thesis, TU Dortmund, Dortmund, Germany (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, H., Chiu, YC. & Mirchandani, P.B. A Heuristic Algorithm for the Earliest Arrival Flow with Multiple Sources. J Math Model Algor 13, 169–189 (2014). https://doi.org/10.1007/s10852-013-9226-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-013-9226-8

Keywords

Navigation