
J Math Model Algor manuscript No.
(will be inserted by the editor)

ILIGRA: An Efficient Inverse Line Graph Algorithm

Dajie Liu · Stojan Trajanovski · Piet Van Mieghem

Received: date / Accepted: date

Abstract This paper presents a new and efficient algorithm, Iligra, for in-
verse line graph construction. Given a line graph H, Iligra constructs its root
graph G with the time complexity being linear in the number of nodes in H.
If Iligra does not know whether the given graph H is a line graph, it firstly
assumes that H is a line graph and starts its root graph construction. During
the root graph construction, Iligra checks whether the given graph H is a
line graph and Iligra stops once it finds H is not a line graph. The time
complexity of Iligra with line graph checking is linear in the number of links
in the given graph H. For sparse line graphs of any size and for dense line
graphs of small size, numerical results of the running time show that Iligra
outperforms all currently available algorithms.

Keywords Graph Algorithm · Line Graph · Root Graph

1 Introduction

A simple graph with N nodes (vertices) and L links (edges), denoted by
G (N,L), is an unweighted, undirected graph containing no self-loops (links
starting and ending at the same node) nor multiple links between the same
pair of nodes. The line graph H = l (G) of a graph G is a graph [22] in which
every node in H corresponds to a link in G and two nodes are adjacent if and
only if their corresponding links have a common node in G. The graph G is
called the root graph of H. The complete graph with three nodes K3 is a line
graph, which has two different root graphs, K3 and the bipartite graph K1,3.

This research was supported by Next Generation Infrastructures (Bsik).

Dajie Liu · Stojan Trajanovski · Piet Van Mieghem
Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands.
E-mail: dajieliu85@gmail.com, s.trajanovski@tudelft.nl, p.f.a.vanmieghem@tudelft.nl

2 Dajie Liu et al.

Except for K3, Whitney’s theorem [24] states that all connected line graphs
have only one root graph up to an isomorphism. Whitney’s theorem provides
the theoretical basis for the inverse line graph conversion. Cvetković et al. [5]
reviewed the state-of-the-art knowledge about line graphs.

There exist plenty of real-world networks that can be modeled by line
graphs [16,17]. A graph is assortative if its low-degree nodes tend to be adja-
cent with other low-degree nodes and its high-degree nodes tend to be adjacent
with other high-degree nodes. Line graphs are assortative and clustered [14,
13,16,11]. If two or more communities overlap on a node, it is not feasible
to partition nodes to detect communities. In order to detect the overlapping
communities, the links are partitioned. However, the algorithms for partition-
ing links are less efficient than the algorithms for partitioning the nodes. We
can transform the networks into their line graphs and partition the nodes of
the line graphs [1,8].

To facilitate the applications of line graphs, the construction of a line graph
H from a root graph G and the inverse construction from the line graph H =
l(G) to the root graph G are necessary. The root-to-line graph construction
follows straightforwardly from the definition of a line graph [22]. However,
the line-to-root graph construction is more complex. Two algorithms for line-
to-root graph construction were proposed concurrently by Roussopoulos [20]
and Lehot [12]. The algorithm of Roussopoulos is based on the theorem of
Krausz [10]: A graph is a line graph if and only if it is possible to find a
collection of cliques in the graph, partitioning all the links, such that each
node belongs to at most two of the cliques (some of the cliques can be a single
node) and two cliques share at most one node. Lehot’s algorithm employs the
principles of Van Rooij and Wilf [23]: A graph is a line graph if and only if it
does not have the complete bipartite graph K1,3 as an induced sub-graph, and
if two odd triangles1 have a common link, the sub-graph induced by their nodes
is the complete graph K4. Lehot’s algorithm first constructs a root graph G
from the given graph H, and then compares l (G) and H to determine whether
the given H is a line graph, unlike Roussopoulos’ algorithm, which determines
whether the given graph H is a line graph during the construction of the
root graph G. Naor and Novick [18] proposed a parallel algorithm for line-to-
root graph construction based on a divide-and-conquer scheme. Motivated by
eigenvectors, Simić [21] proposed an algorithm for recognizing generalized line
graphs. Simić’s algorithm searches for the maximum degree node in each loop.
Degiorgi and Simon [6] proposed a constructive algorithm, based on the Ore’s
proof [19] of Whitney’s theorem [24], which states that two connected and
edge-isomorphic graphs with more than four nodes are also node isomorphic
and there exists exactly one node isomorphism which generates the given edge
isomorphism. The original graph construction examines 2-coloring classes in
the input graph components. They showed that their algorithm is more time-
efficient than the algorithms of Roussopoulos and Lehot for sparse line graphs
and non-line graphs.

1 If every node is adjacent to two or zero nodes of a triangle then it is an even triangle.

ILIGRA: An Efficient Inverse Line Graph Algorithm 3

In this paper, we propose Iligra, an Inverse LIne GRaph Algorithm, for
line-to-root graph construction. Unlike previous algorithms, Iligra checks the
connectivity locally. The root graph G is constructed based on the correspon-
dence between a node in the line graph H and a link in its root graph G.
Due to the choice of an arbitrary node in the line graph H and checking the
connectivity of its neighbors during the algorithm’s execution, Iligra is the
simplest inverse line graph algorithm proposed so far.

The paper is organized as follows. Iligra is presented in Section 2 and
additional details are given in Appendix A. Section 3 demonstrates how Iligra
works on a descriptive example. Numerical comparisons of Iligra with the
algorithms of Lehot, Roussopoulos, and Degiorgi and Simon for different types
of line graphs are presented in Section 4. Finally, we conclude in Section 5.
The link density of line graphs is discussed in Appendix B.

2 ILIGRA

2.1 Notation

Table 1 summarizes the notation, which is used in the presentation of Iligra.
According to the definition of the line graph, each node in a line graph H (NH , LH)
corresponds to a link in its root graph G (N,L). Hence, the number of nodes
NH in the line graph H and the number of links L in the root graph G are
equal, NH = L. We always use n (or n with subscript) to denote a node in H.
The link in G corresponding to node n in H is denoted by ln. In the remainder
of the paper, we use v (or v with subscript) to denote a node in G. Denote by
Nb (n) the set of the nodes in H which are adjacent to node n and called the
neighbors2 of node n. Denote by Lb (ln) the set of the links in G which corre-
sponds to the nodes in Nb (n). Every link in the root graph G has two incident
nodes3. In order to construct the root graph G from a given line graph H, we
have to determine the two incident nodes of every link in G. In the root graph
G, we denote by vln the incident node of link ln which is first encountered dur-
ing the algorithm’s execution. The set of the nodes in H, which corresponds
to the links in G whose incident nodes are not yet determined, is denoted by
Nw. The set of the nodes in H corresponding to the links in G of which one
incident node is determined, is denoted by Nh.

2.2 Concept

The nodes in a line graph H (NH , LH) are denoted by n1, n2, n3, · · · , nNH
,

and the corresponding links in the root graph G are denoted by ln1
, ln2

, ln3
,

· · · , lnNH
. Initially, it is unknown how the links ln1

, ln2
, ln3

, · · · , lnNH
connect

the nodes in G, and even the number of nodes N in G is unknown.

2 A node is the neighbor of another node if they are connected.
3 An incident node of a link is one of the two nodes of that link.

4 Dajie Liu et al.

Table 1 Notation

G (N,L) The root graph with N nodes and L links
H (NH , LH) The line graph of G with NH nodes and LH links
n The node n in H
N The set of all the nodes in H
Nw The set of the nodes in H, corresponding to the

links in G whose incident nodes are not yet determined
Nh The set of the nodes in H, corresponding to the

links in G of which one incident node is determined
Nb (n) The set of the neighbors of node n in H
ln The link in G which corresponds to node n in H
Lb (ln) The set of the links in G which correspond to the nodes in Nb (n)
vln The first identified incident node of link ln in G
Addnode(G, v) The function which adds a node v to G
Addlink(G, v1, v2) The function which adds a link v1 ∼ v2 to G

Suppose that link ln1
is incident to v1 and v2 in G. From the line graph H,

the set Nb (n1) of the neighbors of node n1 in H is known, and the set Lb (ln1
)

of the links in G, which corresponds to the nodes in Nb (n1), is also known.
By the definition of a line graph, the links in Lb (ln1) are the neighboring links
of link ln1 , hence, the links in Lb (ln1) should be incident to either v1 or v2.
If the links in Lb (ln1

) which are incident to v1 are known, the rest of links in
Lb (ln1

) must be incident to v2. Unfortunately, it is unknown which links in
Lb (ln1

) are incident to v1.

When considering links ln2
, ln3

, · · · , lnNH
, the same problem appears. The

difficulty in constructing the root graph G lies in partitioning the set of the
neighboring links into two complementary subsets of links: the links that are
incident to the first incident node of the concerned link, and the other links
which are incident to the second incident node of that link.

Without loss of generality, suppose that Lb (ln1
) = {ln2

, ln3
, · · · , lnk

}, where
k is an integer. Suppose that the set Lb (ln1) of the neighboring links of ln1 are
partitioned successfully into two subsets: Lb,v1 (ln1) = {ln2 , ln3 , ln4} where the
links are incident to v1, and Lb,v2

(ln1
) = {ln5

, ln6
, · · · , lnk

} where the links
are incident to v2. Then, the set Lb (ln2

) of the neighboring links of ln2
is au-

tomatically partitioned: the links ln1
, ln3

, ln4
are incident to v1, and the rest of

links in Lb (ln2) are incident to the second incident node of ln2 . Similarly, the
sets of the neighboring links of links ln3 , ln4 , · · · , lnk

, are also automatically
partitioned. Assuming H is a connected line graph, the sets of the neighboring
links of all the links in G can be partitioned by iterating the described process.
This is the basic idea of Iligra.

Partitioning the set Lb (ln1
) of the neighboring links of ln1

becomes a cru-
cial task in the root graph construction. The theorems in Section 2.3 and
Appendix A provide the theoretical basis for this task.

ILIGRA: An Efficient Inverse Line Graph Algorithm 5

2.3 Theoretical preliminaries

Theorem 1 Suppose that two adjacent nodes n1 and n2 in H correspond to
links ln1

and ln2
in G, respectively, where ln1

is incident to v1 and v2 and
where v1 is also incident to ln2

, as shown in Figure 1 (a). Then, for each
n ∈ Nb(n1) \ Nb(n2) in H, the corresponding link ln in G must be incident to
v2, and the nodes in Nb(n1) \ Nb(n2) must form a clique in H.

Proof. For each n ∈ Nb(n1) \Nb(n2), the corresponding link ln in G has to be
incident to either v1 or v2, since n is adjacent to n1 in H. Because n is not
adjacent to n2, ln in G can only be incident to v2. Since the corresponding
links of all the nodes ∈ Nb(n1) \ Nb(n2) are incident to v2, the nodes in
Nb(n1) \Nb(n2) must be fully connected with each other and form a clique in
H. �

Based on Theorem 1, starting with an initial link with nodes n1 and n2

in H, Iligra determines the first incident node of the links corresponding to
the nodes in Nb(n1) \ Nb(n2). The nodes in Nb(n1) ∩ Nb(n2) (i.e. common
neighbors of n1 and n2 in G) may form a clique in H with the corresponding
links being incident to v1 in G, as shown in Figure 1 (a).

There may also exist a node inNb(n1)∩Nb(n2) which is not adjacent to any
other node in Nb(n1)∩Nb(n2) and whose corresponding link in G is incident to
v2 and another node v3, as shown in Figure 1 (b) where the corresponding links
of n1, n2 and that node form a triangle in G. If there are three or more nodes
in the set Nb(n1) ∩ Nb(n2), we can identify the position of the corresponding
link in G of that node. The last discussion is formalized in Theorem 2.

Theorem 2 Suppose that two adjacent nodes n1 and n2 in H correspond to
links ln1

and ln2
respectively in G, where ln1

is incident to v1 and v2 and
ln2

is incident to v1 and v3. Suppose that |Nb(n1) ∩ Nb(n2)| ≥ 3. If there
exists nu ∈ Nb(n1)∩Nb(n2) such that nu is not adjacent to any other node in
Nb(n1) ∩Nb(n2), then link lnu must be incident to both v2 and v3 in G.

Proof. Since nu ∈ Nb(n1) ∩ Nb(n2), lnu
can be incident to v1 or be incident

to both v2 and v3. If lnu is incident to v1, nu should be adjacent to at least
one other node in Nb(n1) ∩ Nb(n2), since |Nb(n1) ∩ Nb(n2)| ≥ 3. Because nu

is not adjacent to any other node in Nb(n1)∩Nb(n2), lnu
can only be incident

to v2 and v3, as shown in Figure 1 (b). The links corresponding to nodes in
(Nb(n1) ∩Nb(n2)) \ {nu} are incident to v1. �

If the set of common neighbors of two adjacent nodes n1 and n2 have no
more than two nodes in H, then for each node in this set that also has at least 3
additional neighbors different from n1 and n2, the position of its correspondent
link in G can be uniquely determined. This is formalized in Theorem 3.

Theorem 3 Suppose that two adjacent nodes n1 and n2 in H correspond to
links ln1

and ln2
in G, respectively, where ln1

is incident to v1 and v2 and where
ln2

is incident to v1 and v3, as shown in Figure 2. If |Nb(n1) ∩ Nb(n2)| ≤ 2,

6 Dajie Liu et al.

1nl

line graph H root graph G

2nl

1n

2n

1v
2v

3v

(a)

1nl

unl

line graph H root graph G

2nl

1n

2n

un

1v
2v

3v

(b)

Fig. 1 Scenarios in Theorem 1 and 2. Each node (black) in H corresponds to a link (black)
in G.

1nl

line graph H root graph G

2nl
1n

2n

un

1v
2v

3v

rn

unl

rnl

sn

tn

snl

tnl

Fig. 2 Illustration of Theorem 3.

then for each nu ∈ Nb(n1) ∩ Nb(n2), such that |Nb(nu) \ {n1, n2}| ≥ 3 and
Nb(nu) ⊆ Nb(n1) ∪Nb(n2), link lnu

must be incident to both v2 and v3 in G.

Proof. Since nu ∈ Nb(n1)∩Nb(n2), lnu
can be incident to v1 or be incident to

both v2 and v3. Let us first assume lnu
is incident to v1. Two neighbors nx1, nx2

of nu can be adjacent to n1 or n2. However, we have |Nb(nu) \ {n1, n2}| ≥ 3,
there must be at least one neighbor of nu which is not adjacent to either n1

or n2, which contradicts with the fact that Nb(nu) ⊆ Nb(n1)∪Nb(n2). Hence,
lnu

can only be incident to v2 and v3. �

ILIGRA: An Efficient Inverse Line Graph Algorithm 7

When the set of common nodes of two adjacent nodes n1 and n2 in H has
no more than two nodes and a node in this set has no more than two neighbors,
different from n1 and n2, then Theorems 2 and 3 are not applicable. We treat
those remaining cases in Appendix A.

For a given node n1, Iligra uses Theorem 1, 2, 3 and Table 3 from Ap-
pendix A to determine which links in Lb (ln1

) are incident to v1 and which else
are incident to v2, where v1 and v2 are the nodes of ln1

in G. Then, for each
link in Lb (ln1

), the first incident node has been determined.

2.4 Algorithm description

Iligra starts by setting G to an empty graph (line 1). Initially, nothing in
G is determined, hence Nw = N and Nh = ∅ (line 2), where Nw and Nh are
defined in Table 1. Then Iligra picks an arbitrary node n1 in the set Nw and
picks an arbitrary neighbor n2 of n1 in the set Nb (n1) (lines 3-4). Two nodes
v1 and v2 are added to the root graph G (line 5), and link ln1 = v1 ∼ v2
is added to the root graph G (line 6). Since the incident nodes of link ln1

have been determined in G, node n1 is removed from Nw (line 6). Then v1 is
chosen4 to be incident to link ln2

(line 7). Since the first incident node of link
ln2

is determined, node n2 is moved from Nw to Nh (line 7).

According to the definition of the line graph, the links in Lb (ln1
) have a

node in common with link ln1
in G. Since ln1

is incident to v1 and v2, the links
in Lb (ln1) should also be incident to either v1 or v2. By Theorem 1, Iligra
determines that the links in Lb(ln1) \ Lb(ln2), corresponding to the nodes in
n ∈ Nb(n1) \ Nb(n2), are incident to v2. For each node n in Nb(n1) \ Nb(n2),
Iligra sets the first identified incident node vln of the corresponding link ln
to v2, and moves n from Nw to Nh (lines 8-9).

Iligra sets J to the intersection ofNb(n1) andNb(n2) (line 10). If there are
only 1 or 2 nodes in J , and if there exists nu ∈ J such that any neighbor of nu is
also a neighbor of either n1 or n2, and node nu satisfies |Nb(nu) \ {n1, n2}| ≥ 3,
according to Theorem 3, link lnu should be incident to v2. Iligra sets vlnu

to
v2, and adds nu to Nh and removes nu from Nw and removes nu from J (lines
11-14). If |J | ≤ 2 and |Nb(nu) \ {n1, n2}| ≤ 2, the special cases are handled by
the subroutine InitSpecCases (lines 15-16). The subroutine InitSpecCases
is stated in Appendix A. If |J | ≥ 3 and if there exists nu ∈ J such that nu is
not adjacent to any other node in J , according to Theorem 2, link lnu

should
be incident to v2. Iligra sets vlnu

to v2, and adds nu to Nh and removes nu

from Nw and removes nu from J (lines 17-19).

Since node nu has been removed from J , the rest of links in J should be
incident to v1. For each n in J which is adjacent with both n1 and n2, Iligra
sets vln to v1, and adds n to Nh and removes n from Nw (lines 20-21). The
nodes in J should be fully connected to each other, since the corresponding
links are all incident to v1. If the nodes in J do not form a clique in H, then

4 Iligra arbitrarily chooses a node from v1 and v2 and lets it be incident to ln2 .

8 Dajie Liu et al.

Algorithm 1: Iligra(H)

Input: A line graph H
Output: The root graph G of H if H is a line graph

1 G← an empty graph;
2 N ← the set of nodes in H;Nw ← N ; Nh ← ∅;
3 n1 ← an arbitrary node ∈ Nw;
4 n2 ← an arbitrary node ∈ Nb(n1);
5 Addnode(G, v1); Addnode(G, v2);
6 Addlink(G, v1, v2); Nw ← Nw \ {n1};
7 vln2

← v1; Nh ← Nh ∪ {n2}; Nw ← Nw \ {n2};
8 for each n ∈ Nb(n1) \ Nb(n2) do
9 vln ← v2; Nh ← Nh ∪ {n}; Nw ← Nw \ {n};

10 J ← Nb(n1) ∩Nb(n2);
11 if 1 ≤ |J | ≤ 2 then
12 if ∃nu ∈ J such that Nb(nu) ⊆ Nb(n1) ∪Nb(n2) and |Nb(nu) \ {n1, n2}| ≥ 3

then
13 vlnu

← v2; Nh ← Nh ∪ {nu};
14 Nw ← Nw \ {nu}; J ← J \ {nu};
15 else
16 InitSpecCases(H,n1, n2, nu)

17 else if |J | ≥ 3 and ∃nu ∈ J such that nu is not adjacent to any other node in J
then

18 vlnu
← v2; Nh ← Nh ∪ {nu};

19 Nw ← Nw \ {nu}; J ← J \ {nu};
20 for each n ∈ J do
21 vln ← v1; Nh ← Nh ∪ {n}; Nw ← Nw \ {n};
22 if J 6= ∅ and J is not a clique in H then
23 H is not a line graph. Exit.
24 if |Nb(n1)\J | 6= 0 and Nb(n1)\J is not a clique then
25 H is not a line graph. Exit.
26 while Nh 6= ∅ do
27 n← an arbitrary node in Nh;
28 Addnode(G, v);Addlink(G, vln , v);
29 Nh ← Nh \ {n}; C ← ∅;
30 for each nr ∈ Nb(n) do
31 if nr ∈ Nh and vln 6= vlnr

then

32 C ← C ∪ {nr};
33 Addlink(G, vlnr

, v); Nh ← Nh \ {nr};
34 else if nr ∈ Nw then
35 C ← C ∪ {nr};vlnr

← v;

36 Nh ← Nh ∪ {nr}; Nw ← Nw\{nr};

37 if C 6= ∅ and C is not a clique in H then
38 H is not a line graph. Exit.

H is not a line graph (lines 22-23). The nodes in Nb(n1) \ J should also be
fully connected to each other, since the corresponding links are all incident to
v2. If the nodes in Nb(n1) \ J do not form a clique in H, then H is not a line
graph (lines 24-25).

ILIGRA: An Efficient Inverse Line Graph Algorithm 9

The loop (lines 26-38) runs until Nh is an empty set. Iligra picks an
arbitrary node n in Nh (line 27). Iligra adds a node v and a link ln between
vln and v to G (line 28), and removes n from Nh (line 29). Iligra sets C to
an empty set (line 29). For each neighbor nr of n, if nr ∈ Nh and vln 6= vlnr

,
Iligra adds link lnr

between vlnr
and v to G, and removes nr from Nh, and

adds nr to C (lines 30-33); If nr ∈ Nw, Iligra sets vlnr
to v, and moves nr

from Nw to Nh, and adds nr to C (lines 34-36). The nodes in C should be fully
connected with each other, since the corresponding links are all incident to v.
If the nodes in C do not form a clique in H, H is not a line graph (lines 37-38).
If H is a connected graph, Nw should be an empty set when Nh becomes an
empty set. While Nw 6= ∅, repeat lines 3-38. For each component of a given
disconnected line graph, lines 3-38 will be executed once. If the input graphs
are line graphs, lines 22-25 and 37-38 can be skipped, which are used to check
whether the given graph is a line graph.

2.5 Complexity

The lines 1-21 of Iligra examine all the neighbors of the n1 in H, with the
complexity O(NH), where NH is the number of nodes in H. The lines 22-25,
which check whether H is a line graph, have the complexity O(NL), where NL

is the number of links in H. The lines 26-36 have the complexity O(NH). The
lines 37-38 check whether H is a line graph and have the complexity O(NL).
Hence, the overall complexity of Iligra with checking if H is a line graph is
O(NL), and the complexity of Iligra without checking is O(NH).

3 An example

In this section, we use an example depicted in Figure 3 to show how Iligra
works. Given a line graph H shown in Figure 3 (a), Iligra constructs its root
graph G incrementally as shown in Figure 3 (b) to (i).

Initially, set G to an empty graph. We have Nw = {n1, n2, · · · , n11} and
Nh = ∅. Add nodes v1 and v2 to G, and add link ln1 between v1 and v2
to G as shown in Figure 3 (b), and Nw = {n2, n3, · · · , n11}. Set vln2

to v1,
Nw = {n3, n4, · · · , n11} and Nh = {n2}. Since Nb(n1) \ Nb(n2) = {n5, n6},
according to Theorem 1, set vln5

to v2 and also set vln6
to v2. We have

Nw = {n3, n4, n7, n8, · · · , n11} andNh = {n2, n5, n6}. SinceNb(n1)∩Nb(n2) =
{n3, n4, n7} and none of n3 and n4 is not adjacent to n7, according to Theorem
2, set vln7

to v2. NowNw = {n3, n4, n8, n9, n10, n11} andNh = {n2, n5, n6, n7}.
For the two nodes n3 and n4 in Nb(n1) ∩ Nb(n2) \ {n7}, the correspond-
ing links should be incident to v1. Hence, set both vln3

and vln4
to v1. Now

Nw = {n8, n9, n10, n11} and Nh = {n2, n3, n4, n5, n6, n7}.
Take n2 from Nh. Add a node v3 to G and add link ln2

between v3 and
vln2

(vln2
has been found to be v1 previously), as shown in Figure 3 (c). Now

Nh = {n3, n4, n5, n6, n7}. We have Nb(n2) = {n1, n3, n4, n7, n8, n9, n10}. Since

10 Dajie Liu et al.

5nl

1nl

1n

2n

7n 1v
2v

3n

4n

5n

6n

8n11n
10n

9n

1nl1v
2v

3v

2nl
7nl

1nl1v
2v

3v

2nl
7nl

4v
3nl 1nl1v

2v

3v
2nl

7nl

4v
3nl

4nl

5v
8nl

1nl1v

2v

3v
2nl

7nl

4v
3nl

4nl

5v
8nl

5nl

6v

1nl1v

2v

3v
2nl 7nl

4v
3nl

4nl

5v
8nl

6nl

7v

6v

5nl

1nl1v

2v

3v
2nl 7nl

4v
3nl

4nl

5v
8nl

6nl

7v

6v

8v

10nl 10nl

9nl

5nl

1nl1v

2v

3v
2nl 7nl

4v
3nl

4nl

5v
8nl

6nl

7v

6v

8v

10nl

9nl

9v11nl

(a) line graph H (b) root graph G (c) root graph G

(d) root graph G (e) root graph G (f) root graph G

(g) root graph G (h) root graph G (i) root graph G

Fig. 3 An example shows how Iligra constructs G from a given H.

n7 ∈ Nh and vln7
= v2 6= vln2

= v1, add ln7
between v2 and v3 to G. Now

Nh = {n3, n4, n5, n6}. Since n8, n9 and n10 belong to Nw, set vln8
, vln9

and
vln10

to v3. Now Nw = {n11} and Nh = {n3, n4, n5, n6, n8, n9, n10}.
Take n3 from Nh. Add a node v4 to G and add link ln3 between v4 and vln3

,
which is namely v1, as shown in Figure 3 (d). NowNh = {n4, n5, n6, n8, n9, n10}.

Take n4 from Nh. Add a node v5 to G and add link ln4
between v5 and vln4

,
which is also v1, as shown in Figure 3 (e). Now Nh = {n5, n6, n8, n9, n10}. We
have Nb(n4) = {n1, n2, n3, n8, n11}. Since n8 ∈ Nh and vln8

= v3 6= vln4
= v1,

add ln8
between v5 and v3 to G. Now Nh = {n5, n6, n9, n10}. Since n11 ∈ Nw,

set vln11 to v5. Now Nw = ∅ and Nh = {n5, n6, n9, n10, n11}.
Take n5 from Nh. Add a node v6 to G and add link ln5 between v6 and

vln5
, which is also v2, as shown in Figure 3 (f). Now Nh = {n6, n9, n10, n11}.
Take n6 from Nh. Add a node v7 to G and add link ln6 between v7 and

vln6
, which is also v2, as shown in Figure 3 (g). Now Nh = {n9, n10, n11}. We

have Nb(n6) = {n1, n5, n7, n10}. Since n10 ∈ Nh and vln10
= v3 6= vln6

= v2,
add ln10

between v7 and v3 to G. Now Nh = {n9, n11}.
Take n9 from Nh. Add a node v8 to G and add link ln9

between v8 and
vln9

, which is also v3, as shown in Figure 3 (h). Now Nh = {n11}.

ILIGRA: An Efficient Inverse Line Graph Algorithm 11

Take the only node n9 from Nh. Add a node v9 to G and add link ln11

between v9 and vln11
, which is also v5, as shown in Figure 3 (i). Now Nh = ∅.

Since Nw is also an empty set, the construction of G is accomplished.

4 Evaluation

We compare Iligra’s running time with the running times of three published
line graph reconstruction algorithms: Roussopouloss’ algorithm [20], Lehot’s
algorithm [12], and Degiorgi and Simon’s algorithm [6]. All algorithms have
been implemented5 in the same programming language (C++) and the same
data structures and libraries [15] have been used6. The evaluation of all the
algorithms has been conducted on the same machine7.

Table 2 The fastest algorithm for different input line graphs.

graph types line graphs
PPPPPPpH

LH ≤ 500 > 500

0.05 Iligra
0.125 Iligra
0.5 Iligra Lehot
0.65 Iligra Lehot

The performances of the above-mentioned algorithms have been compared
using the same input graphs H. All the algorithms are able to construct the
root graph G if the given graph H is a line graph, and can tell non-line graph
when H if is not a line graph. The line graphs with link density8 pH = 0.05
and 0.125 are generated by converting random graphs [7,3] with a fixed link
density into line graphs. However, the line graphs of these random graphs
can never have high link densities (explained with details in Appendix B).
Therefore, the line graphs with pH = 0.5 and 0.65 have been generated by
converting the scale-free graphs [2] into line graphs.

Figure 4 reflects the trends for the running times of all the algorithms when
the input graphs are line graphs with different link density pH and different
number of links LH . Figure 4a and Figure 4b show the running times for
line graphs with small link density pH = 0.05, 0.125, where Iligra performs
faster than all the other algorithms. Figures 4c, 4d, 4e and 4f illustrate the
trends for the algorithms’ running times for line graphs with high link density
pH = 0.50 and pH = 0.65. Iligra is the fastest algorithm for line graphs with

5 The implementations are available on the authors’ web page:
http://www.nas.ewi.tudelft.nl/people/Stojan/code/ILIGRA.zip

6 LEDA: http://www.algorithmic-solutions.com/leda/
7 Intel(R) Core(TM) 2 Duo CPU T9600 on 2 x 2.80GHz; 4GB RAM memory
8 The link density of a given line graph H(L,LH) is defined by pH = LH/

(L
2

)
, where L

is the number of nodes in H and LH is the number of links in H.

12 Dajie Liu et al.

small number of links 200 ≤ LH ≤ 500 and Lehot’s algorithm has the shortest
running time for line graphs with high number of links 650 ≤ LH ≤ 18000. The
best algorithms, reflected by the running time for all the cases, are summarized
in Table 2.

5000 10000 15000
0

200

400

600

800

1000

1200

number of links L
H

ru
nn

in
g

tim
e

(m
ili

se
c.

)

Roussopoulos
Lehot
Degiorgi & Simon
ILIGRA

200

(a) pH = 5% and 200 ≤ LH ≤ 18000

5000 10000 15000
0

200

400

600

800

number of links L
H

ru
nn

in
g

tim
e

(m
ili

se
c.

)

Roussopoulos
Lehot
Degiorgi & Simon
ILIGRA

200

(b) pH = 12.5% and 200 ≤ LH ≤ 18000

200 400 600 800 1000
0

5

10

15

20

number of links L
H

ru
nn

in
g

tim
e

(m
ili

se
c.

)

Roussopoulos
Lehot
Degiorgi & Simon
ILIGRA

(c) pH = 50% and 200 ≤ LH ≤ 1000

5000 10000 15000
0

500

1000

1500

2000

number of links L
H

ru
nn

in
g

tim
e

(m
ili

se
c.

)

Roussopoulos
Lehot
Degiorgi & Simon
ILIGRA

1000

(d) pH = 50% and 1000 ≤ LH ≤ 18000

200 400 600 800 1000
0

10

20

30

40

50

number of links L
H

ru
nn

in
g

tim
e

(m
ili

se
c.

)

Roussopoulos
Lehot
Degiorgi & Simon
ILIGRA

(e) pH = 65% and 200 ≤ LH ≤ 1000

5000 10000 15000
0

500

1000

1500

2000

number of links L
H

ru
nn

in
g

tim
e

(m
ili

se
c.

)

Roussopoulos
Lehot
Degiorgi & Simon
ILIGRA

1000

(f) pH = 65% and 1000 ≤ LH ≤ 18000

Fig. 4 Algorithms’ running times for line graphs with different pH and LH .

ILIGRA: An Efficient Inverse Line Graph Algorithm 13

5 Conclusion

We present Iligra algorithm for inverse line graph construction. Given a
line graph H, Iligra constructs its root graph G and checks whether the
given graph is a line graph during the construction. Iligra also works for
disconnected line graphs by iterating through the connected components of
the input line graph. The time complexity of Iligra is linear in the number of
nodes in the input graph H without checking if the given graph is a line graph.
The time complexity of Iligra with full functionality is linear in the number
of links in the given line graphs. Numerical comparisons with the algorithms of
Lehot, Roussopoulos, and Degiorgi and Simon have been demonstrated. Given
line graphs with small link density (i.e. sparse graphs), Iligra is the fastest
algorithm in root graph construction, as shown in Table 2.

6 Acknowledgments

We would like to thank Prof. Dr. Klaus Simon from ETH Zürich for providing
us with the initial implementations of the algorithms of Lehot, Roussopoulos,
and Degiorgi and Simon. We are grateful to two anonymous reviewers who
provided us with valuable comments.

A Special cases

We start with two adjacent nodes n1 and n2 in H that correspond to links ln1 and ln2 in
G, respectively, where ln1 is incident to v1 and v2 and where ln2 is incident to v1 and v3.
We denote by J = Nb(n1) ∩Nb(n2), C = Nb(n1) ∪Nb(n2) and L is the number of links in
G. For each nu ∈ J , link lnu is either incident to v1, or incident to both v2 and v3. For each
nu ∈ J , we denote Z = Nb(nu) \ {n1, n2}. In the remainder of this appendix and Table 3,
we continue with the case analysis for the remaining cases: |J | ≤ 2 and |Z| ≤ 2.

1. Z = ∅
(a) |J | = 1

i. L = 3
The root graph G is K3 or K1,3, as shown in Figure 5 (a).

ii. L ≥ 4
lnu is incident to v1.
Proof. Let us assume lnu is incident to v2 and v3. Since H has more than 3
nodes and Nb(n1) ∩ Nb(n2) = {nu}, the extra links must be incident to v2 or
v3 in G, which means nu must have other neighbors different from n1 and n2,
contradicting the fact that Z = Nb(nu) \ {n1, n2} = ∅. Hence, lnu can only be
incident to v1. �

(b) |J | = 2 (J = {nu, nr}) and nr /∈ Nb(nu)
i. L = 4

lnu is incident to v1 or v2, as shown in Figure 5 (b). The resulting root graphs
are isomorphic.

ii. L ≥ 5 and nx is the node in H different from n1, n2, nu, and nr.
If nx /∈ C = Nb(n1)∪Nb(n2), then lnu is incident to v2 (Figure 5 (c)), otherwise
lnu is incident to v1.
Proof. Let us first assume nx /∈ C = Nb(n1) ∪ Nb(n2) and lnu is incident to

14 Dajie Liu et al.

unl
1v

1nl

unl

2nl
1v

2v3v

1nl
unl

2nl
1v

2v3v

1nl

unl

2nl
1v

2v3v

1nl2nl

2v3v
rnl

rnl

1nl

unl

2nl
1v

2v3v

snl

rnl

1nl

unl

2nl
1v

2v3v

snl

rnl

1nl

unl

2nl
1v

2v3v

snl
rnl

(a) (b) (c)

1nl

unl

2nl
1v

2v3v

1nl

unl

2nl
1v

2v3v

snl

snl

1nl

unl

2nl
1v

2v3v

rnl

xnl

(d)

1nl

unl

2nl
1v

2v3v

snl

xnl 1nl

unl

2nl
1v

2v3v

snl
rnl

xnl

(e) (f) (g) (h)

Fig. 5 Scenarios for (a) |Z| = 0, |J | = 1, L = 3; (b) |Z| = 0, |J | = 2, L = 4; (c) |Z| = 0,
|J | = 2, L = 5, nx /∈ C; (d) |Z| = 1, |J | = 1, L = 4; (e) |Z| = 1, |J | = 1, L = 5, nx /∈ C; (f)
|Z| = 1, |J | = 2, L = 5, ns /∈ Nb(nr), ns ∈ C; (g) |Z| = 1, |J | = 2, L = 5, ns ∈ Nb(nr); and
(h) |Z| = 1, |J | = 2, L = 6, ns ∈ Nb(nr), nx /∈ C.

v1. Since |Z| = 0, lnx must be incident to either v2 or v3, which contradicts
the fact that nx /∈ C. Hence, lnu is incident to v2.
Let us now assume nx ∈ C = Nb(n1)∪Nb(n2) and lnu is incident to v2. Since
|Z| = 0, lnx must be incident to v1, which contradicts the fact that |J | = 2.
Hence, lnu is incident to v1. �

2. |Z| = 1 (Z = {ns})
(a) |J | = 1

i. L = 4
lnu is incident to v1 or v2, as shown in Figure 5 (d). The resulting root graphs
are isomorphic.

ii. L ≥ 5 and nx is the node in H different from n1, n2, nu, and ns.
If nx /∈ C = Nb(n1) ∪ Nb(n2), lnu is incident to v2 (Figure 5 (e)), otherwise
lnu is incident to v1.
Proof. Let us first assume nx /∈ C = Nb(n1) ∪ Nb(n2) and lnu is incident to
v1. Since |J | = 1 and |Z| = 1, lnx must be incident to either v2 or v3, which
contradicts the fact that nx /∈ C. Hence, lnu is incident to v2.

ILIGRA: An Efficient Inverse Line Graph Algorithm 15

snl

1nl

unl

2nl
1v

2v3v

rnl

tnl
snl

1nl
unl

2nl
1v

2v3v

rnl

tnl

snl

1nl

unl
2nl

1v

2v3v

tnl

1nl

unl

2nl
1v

2v3v

snltnl

1nl2nl
1v

2v3v

snltnl

unl

1nl2nl
1v

2v3v

snltnl

rnl

unl

rnl

(a) (b) (c)

(d) (e) (f)

snl

1nl

unl
2nl

1v

2v3v

tnl

xnl 1nl2nl
1v

2v3v

snltnl

unl

rnl

xnl

Fig. 6 Scenarios for |Z| = 2: (a) ns /∈ Nb(nt), |J | = 2; (b) ns ∈ Nb(nt) and ns, nt, n1 (or
n2) are pairwise adjacent; ns ∈ Nb(nt) and ns, nt, n1 (or n2) are not pairwise adjacent: (c)
|J | = 1, L = 5; (d) |J | = 1, L = 6, nx /∈ C; (e) |J | = 2, L = 6; and (f) |J | = 2, L = 7,
nx /∈ C.

Let us now assume nx ∈ C = Nb(n1) ∪ Nb(n2) and lnu is incident to v2 and
v3. Since |Z| = 1, lnx must be incident to v1, which contradicts the fact that
|J | = 1. Hence, lnu is incident to v1. �

(b) |J | = 2 (J = {nu, nr}) and nr /∈ Nb(nu)
i. ns /∈ Nb(nr)

If ns ∈ C = Nb(n1) ∪ Nb(n2), lnu is incident to v2 (Figure 5 (f)), otherwise
lnu is incident to v1.
Proof. Let us first assume ns ∈ C = Nb(n1) ∪ Nb(n2) and lnu is incident
to v1. Since lnu is incident to v1, lnr must be incident to v2 and v3. Since
ns /∈ Nb(nr), lns must be incident to v1, contradicting the fact that |J | ≤ 2.
Hence, lnu is incident to v2.
Let us now assume ns /∈ C = Nb(n1) ∪ Nb(n2) and lnu is incident to v2 and
v3. Since ns ∈ Nb(nu), ns is incident to either v2 or v3, contradicting the fact
that ns /∈ C. Hence, lnu is incident to v1. �

ii. ns ∈ Nb(nr)

16 Dajie Liu et al.

A. L = 5
lnu is incident to v1 or v2, as shown in Figure 5 (g). The resulting root
graphs are isomorphic.

B. L ≥ 6 and nx is the node in H different from n1, n2, nu, nr, and ns.
If nx /∈ C = Nb(n1)∪Nb(n2), lnu is incident to v2 (Figure 5 (h)), otherwise
lnu is incident to v1.
Proof. Assume that nx /∈ C = Nb(n1) ∪ Nb(n2) and lnu is incident to
v1. Since nr /∈ Nb(nu), lnr is incident to v2 and v3. Since ns ∈ Nb(nr)
and ns ∈ Nb(nu), lns is incident to the node of lnu different from v1 and
either v2 or v3. Since |J | = 2 and |Z| = 1, lnx must be incident to either
v2 or v3, which contradicts the fact that nx /∈ C. Hence, lnu is incident to
v2.
Now, assume that nx ∈ C = Nb(n1)∪Nb(n2) and lnu is incident to v2 and
v3 and lnr is incident to v1. Since ns ∈ Nb(nu), lns is incident to either
v2 or v3. Since |Z| = 1, lnx must be incident to v1, which contradicts the
fact that |J | = 2. Hence, lnu is incident to v1. �

3. |Z| = 2 (Z = {ns, nt})

(a) ns /∈ Nb(nt)
i. |J | = 1 (J = {nu})

lnu is incident to v2.
Proof. Assume that lnu is incident to v1 and vu. Since |J | = 1, both lns and
lnt must be incident to vu, then ns ∈ Nb(nt), contradicting the assumption
that ns /∈ Nb(nt). Hence, lnu is incident to v2. �

ii. |J | = 2 (J = {nu, nr}) and nr /∈ Nb(nu)
lnu is incident to v2, as shown in Figure 6 (a).
Proof. Assume that lnu is incident to v1 and vu. Since lnu is incident to v1,
lnr must be incident to v2. Since |J | = 2, both lns and lnt must be incident
to vu, then ns ∈ Nb(nt), contradicting with the assumption that ns /∈ Nb(nt).
Hence, lnu is incident to v2. �

(b) ns ∈ Nb(nt) and ns, nt, n1 (or n2) are pairwise adjacent
lnu is incident to v2, as shown in Figure 6 (b).
Proof. If lnu is incident to v1, neither ns, nt, n1 nor ns, nt, n2 can be pairwise
adjacent, hence lnu is incident to v2. �

(c) ns ∈ Nb(nt) and ns, nt, n1 are not pairwise adjacent
i. |J | = 1

A. L = 5
lnu is incident to v1 or v2, as shown in Figure 6 (c). The resulting root
graphs are isomorphic.

B. L ≥ 6 and nx is the node in H different from n1, n2, nu, ns, and nt.
If nx /∈ C = Nb(n1)∪Nb(n2), lnu is incident to v2 (Figure 6 (d)), otherwise
lnu is incident to v1.
Proof. Assume nx /∈ C = Nb(n1)∪Nb(n2) and lnu is incident to v1. Since
|J | = 1 and |Z| = 2, there is no link incident to both v2 and v3, hence
lns and lnt are incident to the node of lnu different from v1 and one of
the nodes v2 and v3. Now, lnx cannot be adjacent to v1 as |J | = 1; it
cannot be adjacent to none of v2, v3 and the node of lnu different from
v1, because |Z| = 1, hence there will not be a space for link lnx , which
contradicts the assumption of the existence of nx and L ≥ 6. Hence, lnu

is incident to v2.
Now, assume nx ∈ C = Nb(n1)∪Nb(n2) and lnu is incident to v2 and v3.
Since |J | = 1, no other link is incident to v1, therefore lns , lnt and lnx are
all incident to either v2 or v3, which contradicts the assumption |Z| = 2.
Hence, lnu is incident to v1. �

ii. |J | = 2 (J = {nu, nr}) and nr /∈ Nb(nu)
A. L = 6

lnu is incident to v1 or v2, as shown in Figure 6 (e). The resulting root
graphs are isomorphic.

ILIGRA: An Efficient Inverse Line Graph Algorithm 17

B. L ≥ 7 and nx is the node in H different from n1, n2, nu, nr, ns, and nt.
If nx /∈ C = Nb(n1)∪Nb(n2), lnu is incident to v2 (Figure 6 (f)), otherwise
lnu is incident to v1.
Proof. Assume nx /∈ C = Nb(n1)∪Nb(n2) and lnu is incident to v1. Since
|J | = 2 and |Z| = 2, lnr is incident to both v2 and v3; lns and lnt are
incident to the node of lnu different from v1 and one of the nodes v2 and
v3. Since nx /∈ C, link lnx is incident to the node of lnu different from v1,
which contradicts the assumption of |Z| = 2. Hence, lnu is incident to v2.
Now, assume nx ∈ C = Nb(n1) ∪ Nb(n2) and lnu is incident to v2 and
v3. Since |J | = 2, lnr is incident to v1. Since nx ∈ C and |J | = 1, link lnx

cannot be incident to v1.Finally, lns , lnr and lnx are all incident to either
v2 or v3, which contradicts the fact that |Z| = 2. Hence, lnu is incident to
v1. �

Table 3 All cases for identifying the special node in J , whose corresponding link is incident
to v2. Notation: J = Nb(n1)∩Nb(n2), nu ∈ J,C = Nb(n1)∪Nb(n2), Z = Nb(nu)\{n1, n2}.

Conditions lnu is incident to
|J | ≥ 3 Use Theorem 2.

|J | ≤ 2

|Z| ≥ 3 Use Theorem 3.

Z = ∅
|J |=1

L = 3 v1 or v2 (G is
K3 or K1,3)

L ≥ 4 v1
|J |=2 and L = 4 v1 or v2 (isomorphic)
nr /∈ Nb(nu) L ≥ 5 v2 if nx /∈ C; v1 if nx ∈ C

|Z|=1

|J |=1
L = 4 v1 or v2 (isomorphic)
L ≥ 5 v2 if nx /∈ C; v1 if nx ∈ C

|J |=2 and
ns /∈ Nb(nr) v2 if ns ∈ C; v1 if ns /∈ C

nr /∈ Nb(nu) ns ∈ Nb(nr)
L = 5 v1 or v2 (isomorphic)
L ≥ 6 v2 if nx /∈ C; v1 if nx ∈ C

|Z|=2

ns /∈ Nb(nt)
|J | = 1 Figure 6 (a)
|J | = 2 and v2
nr /∈ Nb(nu) v2

ns ∈ Nb(nt), ns, nt, n1 pairwise adjacent v2
ns ∈ Nb(nt), |J | = 1

L = 5 v1 or v2 (isomorphic)
ns, nt, n1 are not L ≥ 6 v2 if nx /∈ C; v1 if nx ∈ C
pairwise adjacent |J | = 2 and L = 6 v1 or v2 (isomorphic)

nr /∈ Nb(nu) L ≥ 7 v2 if nx /∈ C; v1 if nx ∈ C

B The link density of line graphs

The link density is an important characteristic for the topology of line graphs. This section
discusses the relation between the link density of line graph H, the number of nodes N and
the number of links L in the root graph G (N,L).

The number of nodes NH in the line graph H is equal to the number of links L in the
root graph G. For the number of links LH in the line graph H, we have

LH =
1

2

N∑
i=1

d2i − L (1)

where d = [d1, d2, · · · , dN] is the degree sequence of G.

18 Dajie Liu et al.

Algorithm 2: InitSpecCases(H,n1, n2, nu)

1 if Nb(nu) \ {n1, n2} = ∅ then
2 if J = {nu} then
3 if L = 3 then
4 G is K1,3 or K3. Exit.
5 else if L ≥ 4 then
6 vlnu

← v1; Nh ← Nh ∪ {nu}; Nw ← Nw \ {nu}; J ← J \ {nu};

7 else if J = {nu, nr} and nr /∈ Nb(nu) then
8 if L = 4 then
9 vlnu

← v2; Nh ← Nh ∪ {nu}; Nw ← Nw \ {nu}; J ← J \ {nu};
10 else if L ≥ 5 and nx /∈ Nb(n1) ∪Nb(n2) then
11 vlnu

← v2; Nh ← Nh ∪ {nu}; Nw ← Nw \ {nu}; J ← J \ {nu};

12 else if Nb(nu) \ {n1, n2} = {ns} then
13 if J = {nu} then
14 if L = 4 then
15 vlnu

← v2; Nh ← Nh ∪ {nu}; Nw ← Nw \ {nu}; J ← J \ {nu};
16 else if L ≥ 5 and nx /∈ Nb(n1) ∪Nb(n2) then
17 vlnu

← v2; Nh ← Nh ∪ {nu}; Nw ← Nw \ {nu}; J ← J \ {nu};

18 else if J = {nu, nr} and nr /∈ Nb(nu) then
19 if ns /∈ Nb(nr) and ns ∈ Nb(n1) ∪Nb(n2) then
20 vlnu

← v2; Nh ← Nh ∪ {nu}; Nw ← Nw \ {nu}; J ← J \ {nu};
21 else if ns ∈ Nb(nr) then
22 if L = 5 then
23 vlnu

← v2; Nh ← Nh ∪ {nu}; Nw ← Nw \ {nu}; J ← J \ {nu};
24 else if L ≥ 6 and nx /∈ Nb(n1) ∪Nb(n2) then
25 vlnu

← v2; Nh ← Nh ∪ {nu}; Nw ← Nw \ {nu}; J ← J \ {nu};

26 else if Nb(nu) \ {n1, n2} = {ns, nt} then
27 if ns /∈ Nb(nt) then
28 if J = {nu} then
29 vlnu

← v2; Nh ← Nh ∪ {nu}; Nw ← Nw \ {nu}; J ← J \ {nu};
30 else if J = {nu, nr} and nr /∈ Nb(nu) then
31 vlnu

← v2; Nh ← Nh ∪ {nu}; Nw ← Nw \ {nu}; J ← J \ {nu};

32 else if ns ∈ Nb(nt) and ns, nt, n1 or n2 form a K3 then
33 vlnu

← v2; Nh ← Nh ∪ {nu}; Nw ← Nw \ {nu}; J ← J \ {nu};

34 else if ns ∈ Nb(nt) and neither ns, nt, n1 nor ns, nt, n2 form a K3 then
35 if J = {nu} then
36 if L = 5 then
37 vlnu

← v2; Nh ← Nh ∪ {nu}; Nw ← Nw \ {nu}; J ← J \ {nu};
38 else if L ≥ 6 and nx /∈ Nb(n1) ∪Nb(n2) then
39 vlnu

← v2; Nh ← Nh ∪ {nu}; Nw ← Nw \ {nu}; J ← J \ {nu};

40 else if J = {nu, nr} and nr /∈ Nb(nu) then
41 if L = 6 then
42 vlnu

← v2; Nh ← Nh ∪ {nu}; Nw ← Nw \ {nu}; J ← J \ {nu};
43 else if L ≥ 7 and nx /∈ Nb(n1) ∪Nb(n2) then
44 vlnu

← v2; Nh ← Nh ∪ {nu}; Nw ← Nw \ {nu}; J ← J \ {nu};

ILIGRA: An Efficient Inverse Line Graph Algorithm 19

By using (1), the link density pH of H equals

pH =
LH(L
2

) =
1
2

∑N
i=1 d

2
i − L(L

2

) =

∑N
i=1 d

2
i − 2L

L2 − L
(2)

Using the basic law of degrees,
∑N

i=1 di = 2L, and Cauchy’s inequality [4,9]

N∑
i=1

d2i ≥
(
∑N

i=1 di)
2

N
=

4L2

N
(3)

and using (3) into (2), we obtain

pH =

∑N
i=1 d

2
i − 2L

L2 − L
≥

2L(2L
N
− 1)

L2 − L
=

2

N

2L−N

L− 1
(4)

Equality in (4) holds for regular root graphs G, where di = 2L
N

, for i = 1, 2, · · · , N . When

L � N , the link density pH asymptotically tends to 4
N

. Hence, the line graphs of dense
root graphs with L� N have small link densities.

We derive an upper bound for the link density pH . Using L = (
∑N

i=1 di)/2 and the

inequality (
∑N

i=1 xi)
2 ≥

∑N
i=1 x

2
i for xi = di − 1 ≥ 0, we obtain

N∑
i=1

d2i =

N∑
i=1

(di − 1)2 −N + 2

N∑
i=1

di =

N∑
i=1

(di − 1)2 −N + 4L

≤4L−N +

(
N∑
i=1

(di − 1)

)2

= (2L−N + 1)2 + N − 1 (5)

Finally, pH is bounded by

4L− 2N

N(L− 1)
≤ pH ≤

(2L−N + 1)2 + N − 2L− 1

L2 − L

Equality in (5) is achieved if and only if (di−1)(dj−1) = 0 for all i, j ∈ 1, 2, · · · , N . The
star graph K1,N satisfies the condition for equality in (5), indicating that the line graph
of K1,N reaches the upper bound of link density pH . In fact, the line graph of K1,N is
complete graph KN−1 with maximum link density of 1. In conclusion, dense line graphs
can be obtained if the original graph has one node with a high degree and the other nodes
have relatively small degrees. On the other hand, the line graph of a regular graph has
the minimum link density. Hence, the line graphs with pH = 0.5 and 0.65 in Section 4 are
generated by converting the scale-free graphs into line graphs.

References

1. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity
in networks. Nature 466(7307), 761–764 (2010)

2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

3. Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge, UK. (2001)
4. Cauchy, A.L.: Cours d’analyse de l’Ecole Royale Polytechnique Vol. 3 (1821). Imprimerie

royale, Paris (reissued by Cambridge University Press), Cambridge, UK. (2009)
5. Cvetković, D., Rowlinson, P., Simić, S.: Spectral Generalizations of Line Graphs. Cam-

bridge University Press, Cambridge, UK. (2004)
6. Degiorgi, D.G., Simon, K.: A dynamic algorithm for line graph recognition. In: Proc. of

21st Int. Workshop on Graph-Theoretic Concepts in Computer Science (Lecture Notes
in Computer Science 1017), pp. 37–48. Springer-Verlag (1995)

20 Dajie Liu et al.

7. Erdős, P., Rényi, A.: On random graphs, I. Publicationes Mathematicae (Debrecen) 6,
290–297 (1959)

8. Evans, T., Lambiotte, R.: Line graphs, link partitions, and overlapping communitities.
Phys. Rev. E 80(1) (2009)

9. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2 edn. Cambridge University
Press (1988)

10. Krausz, J.: Démonstration nouvelle d’un théorème de Whitney sur les réseaux. Mat.
Fiz. Lapok 50, 75–85 (1943)

11. Krawczyk, M.J., Muchnik, L., Manka-Krason, A., Kulakowski, K.: Line graphs as social
networks. Physica A 390, 2611–2618 (2011)

12. Lehot, P.G.H.: An optimal algorithm to detect a line graph and output its root graph.
Journal of the ACM 21, 569–575 (1974)

13. Manka-Krason, A., Kulakowski, K.: Assortativity in random line graphs. Acta Physica
Polonica B Proceedings Supplement 3(2), 259–266 (2010)

14. Manka-Krason, A., Mwijage, A., Kulakowski, K.: Clustering in random line graphs.
Computer Physics Communications 181(1), 118–121 (2010)

15. Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric Com-
puting. Cambridge University Press, Cambridge, UK. (1999)

16. Nacher, J.C., Ueda, U., Yamada, T., Kanehisa, M., Akutsu, T.: Line graphs as social
networks. BMC Bioinformatics 24(207), 2611–2618 (2004)

17. Nacher, J.C., Yamada, T., Goto, S., Kanehisa, M., Akutsu, T.: Two complementary
representations of a scale-free network. Physica A 349, 349–363 (2005)

18. Naor, J., Novick, M.B.: An efficient reconstruction of a graph from its line graph in
parallel. Journal of algorithms 11, 132–143 (1990)

19. Ore, O.: Theory of Graphs, vol. 21. American Mathematical Society Colloquium Pub-
lications (1962)

20. Roussopoulos, N.D.: A max{m,n} algorithm for detecting the graph h from its line
graph g. Information Processing Letters 2, 108–112 (1973)

21. Simić, S.: An algorithm to recognize a generalized line graphs and ouput its root graph.
Publ. Math. Inst. (Belgrade) 49(63), 21–26 (1990)

22. Van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press,
Cambridge, UK. (2011)

23. van Rooij, A.C.M., Wilf, H.S.: The interchange graph of a finite graph. Acta Mathe-
matica Academiae Scientiarum Hungaricae 16, 263–269 (1965)

24. Whitney, H.: Congruent graphs and the connectivity of graphs. American Journal of
Mathematics 54, 150–168 (1932)

